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Abstract
We present Code Phage (CP), a system for automatically transferring
correct code from donor applications into recipient applications
that process the same inputs to successfully eliminate errors in the
recipient. Experimental results using seven donor applications to
eliminate ten errors in seven recipient applications highlight the
ability of CP to transfer code across applications to eliminate out of
bounds access, integer overflow, and divide by zero errors. Because
CP works with binary donors with no need for source code or
symbolic information, it supports a wide range of use cases. To the
best of our knowledge, CP is the first system to automatically transfer
code across multiple applications.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Error handling and recovery; D.2.7 [Distribution, Mainte-
nance, and Enhancement]: Corrections

Keywords automatic code transfer, program repair, data structure
translation

1. Introduction
Horizontal gene transfer is the transfer of genetic material between
cells in different organisms. Examples include plasmid transfer
(which plays a major role in acquired antibiotic resistance [17]),
virally-mediated gene therapy [28], and the transfer of insect toxin
genes from bacteria to fungal symbionts [16]. Because of its ability
to directly transfer functionality evolved and refined in one organism
into another, horizontal gene transfer is recognized as a significant
factor in the development of many forms of life [29].

Like biological organisms, software applications often face chal-
lenges and threats from the environment in which they operate. De-
spite significant software development effort, errors and security
vulnerabilities still remain a important concern. Many of these errors
are caused by an uncommon case that the developers of one (or more)
of the applications did not anticipate. But in many cases, the devel-
opers of another application did anticipate the uncommon case and
wrote correct code to handle it.
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1.1 The Code Phage (CP) Code Transfer System
We present Code Phage (CP), a novel horizontal code transfer system
that automatically eliminates errors in recipient software applications
by finding correct code in donor applications, then transferring that
code from the donor into the recipient. The result is a software
hybrid that productively combines beneficial code from multiple
applications:

• Donor Selection: CP starts with an application and two inputs: an
input that triggers an error and a seed input that does not trigger the
error. Working with a database of applications that can read these
inputs, it locates a donor that processes both inputs successfully.
The hypothesis is that the donor contains a check, missing in
the recipient, that enables it to process the error-triggering input
correctly. The goal is to transfer that check from the donor into
the recipient (and eliminate the error in the recipient).

• Candidate Check Discovery: To identify the check that enables
the donor to survive the error-triggering input, CP analyzes the
executed conditional branches in the donor to find branches that
take different directions for the seed and error-triggering inputs.
The hypothesis is that if the check eliminates the error, the seed
input will pass the check but the error-triggering input will fail
the check (and therefore change the branch direction).

• Patch Excision: CP performs an instrumented execution of
the donor on the error-triggering input to obtain a symbolic
expression tree that expresses the check as a function of the
input fields that determine its value. This execution translates the
check from the data structures and name space of the donor into
an application-independent representation suitable for insertion
into another application.

• Patch Insertion: CP next uses an instrumented execution of the
recipient on the seed input to find candidate insertion points at
which all of the input fields in the excised check are available as
recipient program expressions. At each such point, it is possible to
translate the check from the application-independent representa-
tion into the data structures and name space of the recipient. This
translation, in effect, inserts the excised check into the recipient.

• Patch Validation: CP inserts the translated check into the recip-
ient at each candidate insertion point in turn, then attempts to
validate the patch. It recompiles the application, uses regression
testing to verify that the patch preserves correct behavior on the
regression suite, and checks that the patch enables the patched
recipient to correctly process the error-triggering input. As avail-
able, CP also reruns error detecting tools to generate additional
error-triggering inputs, which it then uses to recursively eliminate
any residual or newly discovered errors.
As appropriate, CP can also exploit the semantics of specific
classes of errors (such as divide by zero or integer overflow) to
perform additional validation steps. For integer overflow errors,
for example, CP analyzes the check, the expression that overflows,



and other existing checks in the recipient that are relevant to the
error to verify that there is no input that 1) satisfies the checks to
traverse the exercised path through the program to the overflow
and also 2) triggers the overflow.

• Retry: If the validation fails, CP tries other candidate insertion
points, other candidate checks, and other donors.

If the transferred check detects an input that may trigger the
error, it exits the application before the error occurs. The check
therefore introduces no new and potentially unpredictable behaviors
— it simply narrows the set of inputs that the application decides to
process. This narrowing is conceptually similar to transformations
that eliminate concurrency errors by narrowing the set of possible
interleavings [27, 43].

1.2 Usage Scenarios
Proprietary Donors: The CP donor analysis operates directly on
stripped binaries with no need for source code or symbolic informa-
tion of any kind. CP can therefore use arbitrary binaries, including
closed-source proprietary binaries, as donors for other applications.
A developer could, for example, reduce development and testing
effort by simply omitting checks for illegal inputs, then using CP to
automatically harden the application by automatically transferring in
checks from more intensively engineered (including closed-source
proprietary) applications.
Multilingual Code Transfer: CP supports multilingual code trans-
fer between applications written in different programming languages.
Because CP works with binary donors, the current implementation
supports arbitrary (compiled) donors. The current CP implementation
generates source-level patches in C. It would be straightforward to
extend CP to generate patches in other languages. Given appropriate
binary patching capability, it would also be straightforward to gener-
ate binary patches, including hot patches for running applications.
Multiversion Code Transfer: In addition to transferring checks
between independently developed applications, we have also used CP
to transfer checks between different versions of the same application.
The motivation is to automatically obtain a targeted update that
eliminates an error in an older version without the disruption often
associated with full upgrade [22].
Divergent Functionality: Even though CP works with applications
that process the same inputs, the recipient and donor do not need to
implement the same functionality. Many errors occur in code that
parses the input, constructs the internal data structures that hold the
input, and/or reads the input into those data structures. Even when
the applications have different goals and functionality, the fact that
they both read the same input is often enough to enable a successful
transfer.
Continuous Multiple Application Improvement: CP can work
with any source of seed and error-triggering inputs. Its current integra-
tion with the DIODE automatic error-discovery system [55] points the
way to future systems that combine 1) large libraries of applications,
2) a variety of automatic error discovery tools (for example, DIODE
and BuzzFuzz [25]), and 3) CP along with other automatic error repair
tools such as ClearView [48], staged program repair [37], and auto-
matic code fracture and recombination [57]. Continuously running
the error-discovery tools across the library of applications, then using
horizontal code transfer and other program repair mechanisms to gen-
erate repairs delivers an automatic application improvement system
that productively leverages the entire global software development
enterprise.

Such a system holds out the promise of automatically producing
robust software hybrids that incorporate the best code produced
anywhere by any mechanism. Given the ability of DIODE and CP
to work with stripped binary donors, it is possible to include closed-
source software produced by proprietary software development
efforts into this continuous application improvement system.

1.3 Scope
CP is currently designed to locate and transfer checks, including all
computation required to compute the checks, between applications
that process the same inputs. The goal is to change the (incorrect)
semantics of the recipient so that it rejects inputs that would otherwise
trigger the error. The patch validation phase, along with the rejection
of unstable insertion points (Section 3.3), is designed to reduce, but
not necessarily eliminate, the possibility of rejecting inputs that the
recipient could have processed correctly. The excised computation
can be, and in practice always is, distributed across multiple system
layers and abstraction boundaries within the donor — the excised
computation always includes code from multiple system libraries and
procedures within the application.

In the current implementation of CP, a set of values sufficient to
compute the check must be available in the recipient at one of the
granularities at which they are accessed in the excised computation
and in one of the same byte orders. It is straightforward to extend
the implementation to reassemble values sufficient to compute the
check from bits arbitrarily distributed across the address space of the
recipient as long such a set of bits is accessible via the name space of
the recipient.

CP is currently designed to transfer code that computes a check.
But the basic CP transfer techniques are designed to dynamically
track, extract, and insert any computation (or computations) that
generate any value (or values) in the donor as long as CP can identify
the value(s). The two critical questions are identifying the value(s)
in the donor and the insertion point(s) in the recipient. CP automates
this identification for checks in the donor that eliminate errors in the
recipient.

1.4 Experimental Results
We evaluate CP on 10 errors in 7 recipient applications (JasPer
1.9 [11], gif2tiff 4.0.3 [9], CWebP 0.31 [1], Dillo 2.1 [2], swfplay
0.55 [7], Display 6.5.2-8 [5], and Wireshark-1.4.14 [14]). The donor
applications are FEH-2.9.3 [3], mtpaint 3.4 [12], ViewNoir 1.4 [8],
gnash 0.8.11 [10], OpenJpeg 1.5.2 [13], Display 6.5.2-9 [5], and
Wireshark-1.8.6 [14]. CP was able to successfully generate patches
that eliminated the errors, in five cases demonstrating the ability to
transfer patches from multiple donors (see Section 4).

For all of the applications except Wireshark-1.4.14 (which uses
Wireshark 1.8), CP successfully excises code from an independently
developed alien donor and successfully implants the code into the
recipient. The ability of CP to translate the check from the donor name
space and data structures into the name space and data structures of
the recipient is critical to the success of many transfers. Wireshark-
1.4.14 demonstrates the ability of CP to deliver targeted updates that
eliminate specific errors while leaving the behavior and functionality
of the recipient otherwise intact.

1.5 Contributions
This paper makes the following contributions:

• Basic Concept: CP automatically eliminates software errors by
identifying and transferring correct code from donor applications
into incorrect recipient applications. In this way CP can automati-
cally harness the combined knowledge and labor invested across
multiple software systems to improve each application.
To the best of our knowledge, CP is the first system to automati-
cally transfer code across multiple applications.

• Name Translation: One of the major challenges in code transfer
is translating the names of values from the name space of the
donor into the name space of the recipient. CP shows how to use
instrumented executions of the donor and recipient to meet this
name translation challenge.



• Data Structure Translation: Another major code transfer chal-
lenge is translating between different data representations. CP
shows how to use instrumented executions and data structure
traversals to meet this challenge — it takes code that accesses
values stored in the data structures of the donor and produces code
that accesses values stored in the data structures of the recipient.

• Donor Code Identification: It presents a mechanism to identify
correct code in donor applications for transfer into recipient
applications. CP uses two instrumented executions of the donor
to automatically identify the correct code to transfer into the
recipient: one on the seed input and one on the error-triggering
input (which the donor, but not the recipient, can successfully
process). A comparison of the paths that these two inputs take
through the donor enables CP to isolate a single check (present in
the donor but missing in the recipient) that eliminates the error.

• Insertion Point Identification: CP automatically identifies ap-
propriate check insertion points within the recipient at which 1)
the values needed to express the transferred check computation
are available as valid program expressions in the name space of
the recipient and 2) the transferred check will not affect observed
computations unrelated to the error.

• Experimental Results: We present experimental results that
characterize the ability of CP to eliminate ten otherwise fatal
errors in seven recipient applications by transferring correct
code from seven donor applications. For all of the 10 possible
donor/recipient pairs, CP was able to obtain a successful validated
transfer that eliminated the error.

The remainder of the paper is structured as follows. Section 2
presents an example that illustrates how CP eliminates an error in
CWebp (with FEH as the donor). Section 3 discusses the CP design
and implementation. We present experimental results in Section 4,
related work in Section 5, and conclude in Section 6.

2. Example
We next present an example that illustrates how CP automatically
patches an integer overflow error in CWebP, the Google conversion
program for the WepP image format.

Figure 1 presents (simplified) CWebP source code that contains
an integer overflow error. CWebP uses the libjpeg library to read
JPG images before converting them to the CWebP format. It uses
the ReadJPEG function to parse the JPG files. There is a poten-
tial overflow at line 9, where CWebP calculates the size of the al-
located image as stride * height, where stride is: width *
output_components * sizeof(rgb).

On a 32-bit machine, inputs with large width and height fields can
cause the image buffer size calculation at line 9 to overflow. In this
case CWebP allocates an image buffer that is smaller than required
and eventually writes beyond the end of the allocated buffer.
Error Discovery: In our example, CP works with seed and error-
triggering inputs identified by the DIODE integer-overflow discovery
tool, which performs a directed search on the input space to discover
inputs that trigger integer overflow errors at memory allocation
sites [55]. In the error-triggering input in our example, the JPG
height field is 62848 and the width field is 23200.
Donor Selection: CP next searches a database of applications that
process JPG files to find candidate donor applications that success-
fully process both the seed and the error-triggering inputs. In our
example, CP determines that the FEH image viewer application pro-
cesses both inputs successfully.
Candidate Check Discovery: CP next runs an instrumented version
of the FEH donor application on the two inputs. At each conditional
branch that is influenced by the relevant input field values (in this
case the JPG height and width fields), it records the direction
taken at the branch and a symbolic expression for the value of the

1 int ReadJPEG(...) {
2 ...
3 width = dinfo.output_width;
4 height = dinfo.output_height;
5 stride = dinfo.output_width *
6 dinfo.output_components *
7 sizeof(*rgb);
8 /* the overflow error */
9 rgb = (uint8_t*)malloc(stride * height);

10 if (rgb == NULL) {
11 goto End;
12 }
13 ...
14 }

Figure 1: (Simplified) CWebP Overflow Error

1 # define IMAGE_DIMENSIONS_OK(w, h) \
2 ( ((w) > 0) && ((h) > 0) && \
3 ((unsigned long long)(w) * \
4 (unsigned long long)(h) <= (1ULL << 29) - 1) )
5

6 char load(...) {
7 int w, h;
8 struct jpeg_decompress_struct cinfo;
9 struct ImLib_JPEG_error_mgr jerr;

10 FILE *f;
11 ...
12 if (...) {
13 ...
14 im->w = w = cinfo.output_width;
15 im->h = h = cinfo.output_height;
16 /* Candidate check condition */
17 if ((cinfo.rec_outbuf_height > 16) ||
18 (cinfo.output_components <= 0) ||
19 !IMAGE_DIMENSIONS_OK(w, h))
20 {
21 // Clean up and quit
22 ...
23 return 0;
24 }
25 }
26 }

Figure 2: (Simplified) FEH Overflow Check

branch condition. The free variables in these expressions represent
the values of input fields.

CP operates under the hypothesis that one of the FEH branch con-
ditions implements a check designed to detect inputs that trigger the
overflow. Under this hypothesis, the seed input and error-triggering
inputs take different directions at this branch (because the error-
triggering input would satisfy the check and the seed input would
not). CP therefore considers the check for each branch at which
the seed and error-triggering inputs take different directions to be a
candidate check.

In our example, CP discovers a candidate check in the imlib
library that FEH uses to load and process JPG files. Figure 2
presents (simplified) source code for this check.1 The macro
IMAGE_DIMENSIONS_OK (defined on lines 1-4, invoked on
line 19), performs an overflow check on the computation of
output_width * output_height. This check enables FEH
to detect and correctly process the error-triggering input without
overflow.
Candidate Check Excision: The FEH check is expressed in terms
of the FEH data structures. The next step is to translate the check
from this form into an application-independent form that expresses
the check as a function of the input bytes that determine its value.

1 Because CP operates on binaries, information about the source code for
the donor patch is, in general, not available. So that we can present the FEH
source code for the check in our example, we used the symbolic debugging
information in FEH to manually locate the source code for the check.



((unsigned long long)(w) ((unsigned long long)(h) 

*
<=

(1ULL << 29) - 1) 

Add(Width(BvOr(Constant(0x0),Width(Shl(Widt
h(BvAnd(Variable("/start_frame/content/

height"),Constant(0xff)),
 Constant(32)),Constant(0x8)), Constant(32))),
Constant(32)),Width(BvOr(Constant(0x0),Width

(UShr(Width(BvAnd(Variable("/start_frame/
content/height"),Constant(0xff00)),

 Constant(32)),Constant(0x8)), Constant(32))), 
Constant(32)))

Add(Width(BvOr(Constant(0x0),Width(Shl(Widt
h(BvAnd(Variable("/start_frame/content/

width"),Constant(0xff)),
 Constant(32)),Constant(0x8)), Constant(32))),
Constant(32)),Width(BvOr(Constant(0x0),Width

(UShr(Width(BvAnd(Variable("/start_frame/
content/width"),Constant(0xff00)),

 Constant(32)),Constant(0x8)), Constant(32))), 
Constant(32))), Constant(32))),

Add(BvOr(Constant(0x00),Shl(Width(BvAnd(Va
riable('/start_frame/content/

height'),Constant(0xFF)),Constant(32)),Consta
nt(8))),

BvOr(Constant(0x00),Width(UShr(BvAnd(Varia
ble('/start_frame/content/

height'),Constant(0xFF00)),Constant(8)),Const
ant(32))))", 32

Add(BvOr(Constant(0x00),Shl(Width(BvAnd(Va
riable('/start_frame/content/

width'),Constant(0xFF)),Constant(32)),Constan
t(8))),

BvOr(Constant(0x00),Width(UShr(BvAnd(Varia
ble('/start_frame/content/

width'),Constant(0xFF00)),Constant(8)),Consta
nt(32))))", 32,

dinfo.output_image dinfo.output_width

dinfo->image_height dinfo_image_width

*
<=

536870911

if ((((unsigned long) ((dinfo.output_height) * 
((unsigned long) (dinfo.output_width)))) <= 536870911))•

# define IMAGE_DIMENSIONS_OK(w, h)  \
((unsigned long long)(w) * (unsigned long long)(h) <= (1ULL << 29) - 1) )

DONOR

RECIPIENT

Figure 3: Patch Transfer

This translation uses an instrumented execution of the donor to
dynamically track the flow of input bytes through program. CP uses
this instrumentation to obtain symbolic expressions, in terms of the
input bytes, for relevant expressions that the application computes.
In our example the translated application-independent symbolic
expression for the check is:
ULessEqual(32,Shrink(32,Mul(64,Shrink(32,Div(32,BvOr(64,Shl(64,
ToSize(64,SShr(32,Sub(32,Add(32,Constant(8),Shl(32,Add(32,Shl
(32,ToSize(32,BvAnd(16,HachField(16,’/start_frame/content/height’),
Constant(0xFF))),Constant(8)),ToSize(32,UShr(32,BvAnd(16,HachField(16,
’/start_frame/content/height’),Constant(0xFF00)),Constant(8)))),
Constant(3))),Constant(1)),Constant(31))),Constant(32)),ToSize(64,
Sub(32,Add(32,Constant(8),Shl(32,Add(32,Shl(32,ToSize(32,BvAnd(16,
HachField(16,’/start_frame/content/height’),Constant(0xFF))),Constant(8)),
ToSize(32,UShr(32,BvAnd(16,HachField(16,’/start_frame/content/height’),
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)))),Constant(8))),
Shrink(32,Div(32,BvOr(64,Shl(64,ToSize(64,SShr(32,Sub(32,Add(32,
Constant(8),Shl(32,Add(32,Shl(32,ToSize(32,BvAnd(16,HachField(16,
’/start_frame/content/width’),Constant(0xFF))),Constant(8)),
ToSize(32,UShr(32,BvAnd(16,HachField(16,’/start_frame/content/width’),
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)),
Constant(31))),Constant(32)),ToSize(64,Sub(32,Add(32,Constant(8),
Shl(32,Add(32,Shl(32,ToSize(32,BvAnd(16,HachField(16,
’/start_frame/content/width’),Constant(0xFF))),Constant(8)),
ToSize(32,UShr(32,BvAnd(16,HachField(16,’/start_frame/content/width’),
Constant(0xFF00)),Constant(8)))),Constant(3))),Constant(1)))),
Constant(8))))),Constant(536870911))

There are two primary reasons for the complexity of this excised
check. First, it correctly captures how FEH manipulates the input
fields to convert from big-endian (in the input file) to little-endian (in
the FEH application) representation. The excised check correctly
captures the shifts and masks that are performed as part of this
conversion. Second, FEH casts the 16-bit input fields to unsigned
long long integers before it performs the overflow check. The excised
check properly reflects these operand length manipulations.
Patch Transfer: The next step is to insert the check into the recipient
CWebP application. There are two related challenges: 1) finding
a successful insertion point for the check and 2) translating the
check from the application-independent representation into the data
representation of the recipient CWebP application. Note that this
translation must find CWebP data structures that contain the relevant
input field values and express the check in terms of these data
structures.
Candidate Patch Insertion Point Identification: CP runs CWebP
(the recipient) on the seed input. At each function the CP instrumen-
tation records the input fields that the function reads. CP identifies
program points at which the function has read all of the input fields
as potential patch insertion points. In our example, CP recognizes
that theReadJPEG function has read both the input JPGwidth and
height fields after line 4 in Figure 1. It therefore identifies the point
after this statement as a candidate insertion point. The next step is to
use the variables and data structures available at this point to express
the check.

Patch Translation: To translate the patch into the recipient, CP first
finds the relevant input fields as stored in the variables and data
structures of the recipient. It then determines how to use these fields
to express the check.

To find the values, CP uses the debugging information from the
recipient binary to identify the local and global variables available
at that candidate insertion point. Using these variables as roots, it
traverses the data structures to find memory locations that store
relevant input fields or values computed from relevant inputs fields
and constants. As part of this traversal it also records expressions
(in the name space of the recipient) that evaluate to each of the
input fields or input field expressions. In our example CP determines
that dinfo.height contains the JPG height input field and
dinfo.width contains the JPG width input field.

The next step is to use the extracted recipient expressions to
express the extracted check in the name space of the recipient. CP
recursively processes the application-independent expression tree
to find subtrees that always evaluate to the same value as one of the
extracted recipient expressions. CP uses an SMT solver to determine
this equivalence (see Section 3.3). In our example, CP produces the
following translated check, which it inserts after line 4 in Figure 1:

if (!((unsigned long long)dinfo.output_height *
(unsigned long long)dinfo.output_width)<=536870911)) {
exit(-1);

}

Note that CP was able to successfully convert the complex
application-independent excised check into this simple form — the
SMT solver detects that CWebP and FEH, even though developed in-
dependently, perform semantically equivalent endianess conversions,
shifts, and masks on the input fields. CP therefore realizes that the
input fields are available in the same format in both the CWebP and
FEH internal data structures, enabling CP to generate a simple patch
that accesses the CWebP data structures directly with no complex
format conversion. The generated patch evaluates the check and, if
the input fails the check, exits the application. The rationale is to exit
the application before the integer overflow (and any ensuing errors or
vulnerabilities) can occur.
Multiple Patch Insertion Points: For CWebP, CP identifies 38
candidate insertion points. 2 of these points are unstable — in some
executions of the point, the generated expressions reference values
other than the desired JPEG width and height input fields. To
avoid perturbing computations not related to the error, CP filters out
these unstable points. CP then sorts the remaining generated patches
by size and attempts to validate the patches in that order. In our
example the above patch is the first patch that CP tries (and this patch
validates).



Patch Validation: Finally, CP rebuilds CWebP, which now includes
the generated patch, and subjects the patch to a number of tests.
First, it ensures the compilation process finished correctly. Second,
it executes the patched version of CWebP on the error-triggering
input and checks that the input no longer triggers the error (CP runs
CWebP under Valgrind memcheck to detect any errors that do not
manifest in crashes). Third, it runs a regression test that compares
the output of the patched application to the output of the original
application, on a regression suite of inputs that the application is
known to process correctly. Fourth, CP runs the patched version of
the application through the DIODE error discovery tool to determine
if DIODE can generate new error-triggering inputs. In our example
DIODE finds no new error-trigging inputs — if it had, CP would have
rerun the entire patch discovery and generation process, patching the
discovered errors, until DIODE discovered no new errors. The end
result, in this example, is a version of CWebP that contains a check
that completely eliminates the integer overflow error.

3. Design and Implementation
We next discuss how CP deals with the many technical issues it
must overcome to successfully transfer code between applications.
CP consists of approximately 10,000 lines of C (most of this code
implements the taint and symbolic expression tracking) and 4,000
lines of Python (code for rewriting donor expressions into expressions
that can be inserted into the recipient, code that generates patches
from the bitvector representation, code that interfaces with Z3, and
the code that manages the database of relevant experimental results).
Figure 4 presents an overview of the CP components.

3.1 Donor Selection
For each input format, CP works with a set of applications that
process that format. Given seed and error-triggering inputs, CP
considers applications that can successfully process both inputs as
potential donors. Open source repositories such as github can be
a rich source of independently developed applications that process
the same input formats. Different versions, releases, or variants of
the same application can also be good sources of patches either for
regression errors introduced during maintenance or to obtain targeted
updates for specific errors. Our set of benchmark donors includes
both sources of applications (Section 4).

3.2 Candidate Check Discovery and Excision
To extract candidate checks from donor applications, CP implements
a fine-grained dynamic taint analysis built on top of the Valgrind [46]
binary analysis framework. Our analysis takes as input a specified
taint source, such as a file or a network connection, and marks all data
read from the taint source as tainted. Each input byte is assigned a
unique label and is tracked by the execution monitor as it propagates
through the application. Our analysis instruments arithmetic instruc-
tions (e.g., ADD, SUB), data movement instructions (e.g., MOV,
PUSH), and logic instructions (e.g., AND, XOR). It also supports
additional instrumentation to reconstruct the full symbolic expression
of each computed value, which records how the application computes
the value from input bytes and constants.

CP can optionally work with only a specified subset of the input
bytes. We call this subset the relevant bytes. Working with properly
identified relevant bytes can often improve the efficiency of the
analysis without hampering its ability to find successful patches
(because only a subset of the bytes are relevant to the patch). In our
experiments, CP identifies the relevant bytes as those input fields that
differ between the seed and error-triggering inputs.

CP uses Hachoir [4] to convert byte ranges into symbolic input
fields. If Hachoir does not support a particular input format or is
otherwise unable to perform this conversion, CP also supports a

raw mode in which all input bytes are represented as offsets. Raw
mode is effective, for example, for closely related inputs generated
by standard error-finding tools [6, 25, 55, 61].
Identify Candidate Checks: CP runs the dynamic taint analysis on
the donor application twice, once with the seed input and once with the
error-triggering input. For each execution, CP extracts the executed
conditional branch instructions and records which direction each
execution of the branch takes. After filtering out branches that are not
affected by the relevant bytes, branches that take different directions
are the candidate branches. CP proceeds under the assumption
that the condition associated with one of the candidate branches
implements the desired check. Starting with the first (in the program
execution order) candidate branch, CP attempts to transfer each check
in turn until a transferred check successfully validates.
Check Excision: To obtain the application-independent form of the
check, CP reruns the application with additional instrumentation
that enables CP to reconstruct the full symbolic expression tree for
the candidate check. This expression tree records how the donor
application computes the condition of the candidate check from
the input byte values and constants. Conceptually, CP generates a
symbolic record of all calculations that the application performs. To
reduce the volume of recorded information, CP only builds expression
trees for calculations that involve the relevant input bytes. This
optimization substantially reduces the volume of generated data.

A key challenge in transferring code between applications is
translating between the different data representations in the donor
and recipient. Translating the check into a symbolic expression over
the input bytes performs the first half of this translation — it translates
the check out of the naming environment and data structures of the
donor into an application-independent representation.
Bit Manipulation Optimizations: As the symbolic expressions are
recorded during the instrumented execution of the donor, CP applies
several optimizations that reduce the size of the generated expressions.
Among the most important of these are optimizations that simplify
expressions generated by bit manipulation operations (such as shifts)
that extract, align, or combine operands of subsequent computations.
Because such bit manipulation operations occur frequently (for
example, when the application extracts pieces of data read from
the input or because of SSE optimizations) in donor binaries, the
rules significantly reduce the size and complexity of the extracted
symbolic expressions.

Figure 5 presents several rewrite rules that CP applies to simplify
the symbolic expressions that such operations generate. The first two
rules simplify symbolic expressions that extract the bottom or top
8-bit byte, respectively, of a 16 bit value. Here Shl(8,E) represents an
8-bit left shift of the 16 bit value E; ShrinkH(8,Shl(8,E)) converts the
resulting 16 bit value into an 8 bit value by extracting the top byte. One
important consequence of these rules is that, by eliminating discarded
bytes from the symbolic representation, they can disentangle bytes
from adjacent input fields that were read into the same word as part
of the input process.

Note that the rules require the operand of the shift to be represented
symbolically as a concatenation of two 8-bit bytes (the operand
E must be of the form [b1,b2], where b1 and b2 are independent
bytes). Potential other representations that may appear as an operand
include unified 16-bit values produced by addition or subtraction
operations. CP does not further optimize the representation of bit
manipulation operations involving such unified operands as there is
no straightforward way to disentangle the two bytes of the unified
operand.

The last two rules simplify symbolic expressions that start with
a 16-bit value composed of two 8-bit bytes, shift one of the bytes
out of the value, then or another byte into the position vacated by
the shift. Here BvOrH(b1, Shr(8,E)) bitwise ors b1 into the top byte
of the 16 bit value produced by Shr(8,E). The result is a new 16 bit



Donor
Selection

Candidate
Check

Discovery
Check

Excision
Patch

Validation

Donor 
DB

Patch

Seed Input

Error 
Trigerring 

Input

Check
Insertion

Check
Translation

Figure 4: High-level overview of CP’s components

E ≡ [b1,b2]

ShrinkH(8,Shl(8,E))⇒ b2

E ≡ [b1,b2]

ShrinkL(8,Shr(8,E))⇒ b1

E ≡ [b2,b3]

BvOrH(b1,Shr(8,E))⇒ [b1,b2]

E ≡ [b2,b3]

BvOrL(b1,Shl(8,E))⇒ [b3,b1]

Figure 5: CP Rewrite Rules for Bit Manipulation Operations

value. Once again, one of the benefits of these rules is that they can
eliminate bytes that would otherwise entangle unrelated input fields
that appear adjacent in the input. Like the first two rules, the last two
rules require the initial 16-bit value to be represented symbolically as
a concatenation of two 8-bit values.

CP also implements similar rules for other combinations of
operand sizes. Specifically, there are similar rules for expressions that
represent results of bit manipulation operations involving combina-
tions of 8, 16, 32, and 64 bit values.

3.3 Check Insertion
To transfer the candidate check to an insertion point in the recipient
application, CP rewrites the check to access the input field values as
stored in variables and data structures available in the recipient.
Candidate Insertion Points: The first step is to find candidate inser-
tion points – program points at which a set of values computed from
all of the input bytes in the symbolic check expression are available as
program expressions in the recipient. CP runs an instrumented version
of the recipient that tracks the flow of the relevant input bytes through
the application. Whenever the recipient evaluates an expression that
involves the relevant input bytes, CP records the symbolic expression
for the computed value. This symbolic expression records how the
recipient application computes the value as a function of the input
bytes and constants. Using these collected symbolic expressions, CP
finds functions that access a set of values computed from all of the
input bytes in the check. It then finds points within these functions at
which the function has accessed all of these values. These points are
the set of candidate insertion points.
Unstable Points: In general, the application may execute a candidate
insertion point multiple times, potentially accessing different input
bytes or even different values not derived from the input bytes on
different executions. Candidate insertion points in multipurpose code
such as libraries, for example, may execute with different values
when invoked from different parts of the computation. To minimize
the risk that the inserted check may affect a computation not related
to the error, CP filters out all points that access different values on
different executions (we call these points unstable points). The goal
is choose the insertion point so that the patch performs the check only
when it is relevant to the error.
Paths to Relevant Values: CP next attempts to express the extracted
symbolic check in terms of the available variables and data structures
at the remaining stable candidate insertion points. Given a candidate
point, CP uses the debugging information to find the setV of local and
global variables available at that point. Starting with these variables
as roots, it then uses the debugging information to traverse the data

structures to find relevant values (values computed from relevant
fields and constants) stored in the data structures. As part of the
traversal it computes the data structure traversal paths that lead to
these relevant values.

Figure 6 presents the traversal algorithm. Starting from a given
variable or data structure traversal path, the algorithm computes
names that lead to reachable relevant values. Each name has the
form 〈p,E〉. Here p is a path through the reachable data structures.
Each path p starts at a variable v, then identifies a sequence of pointer
dereferences and data structure field accesses that reaches the relevant
value. The symbolic expression E records how the program computed
the value from relevant input bytes.

For each variable v ∈ V , CP invokes the traverse algorithm
and merges the resulting sets of names. The algorithm recursively
traverses the data structures of the recipient program based on type
signatures from the debugging information. At line 15, it uses the
debugging information to determine the type of the path p. At line
16, it queries the symbolic tracking analysis results to obtain the
corresponding symbolic expression for the traversed path p.
Check Translation: The next step is to rewrite the application-
independent form of the check to use the variables and data structures
of the recipient. Figure 7 presents the CP expression rewrite algorithm.
The algorithm takes as input a symbolic expression E and a set of
names Names produced by the traversal algorithm in Figure 6. It then
uses the Names to translate E to use the available variables and data
structures at the candidate insertion point in the recipient. E may
take one of four possible forms, 1) an input field, 2) a constant c, 3)
a unary operation expression 〈unaryop,E〉, or 4) a binary operation
expression 〈binop,E1,E2〉.

The algorithm first uses an SMT solver to try to find a single
value in the recipient with the same value as the expression E. In
practice, CP is often able to find single recipient values that are
equivalent to very complex expressions E — many of these symbolic
expressions include complex shift and mask operations that are
also performed by the recipient as it reads the input. Otherwise
the algorithm decomposes the expression and attempts to rewrite
each subexpression recursively (lines 13-15 for expressions with
unary operations, lines 16-19 for expressions with binary operations).
Constants (line 20) translate directly.

CP implements two optimizations that reduce the number of solver
invocations: 1) if two symbolic expressions depend on different sets
of input bytes, CP does not invoke the solver and 2) CP caches all
queries to the SMT solver so that it can retrieve results from the
cache for future duplicate queries. Together, these two optimizations
produce an order of magnitude reduction in the translation times.

There are two ways for the Rewrite algorithm to fail. First, it does
not attempt to rearrange or reorder input bits as stored in the recipient
data structures to match the groups of input bits as accessed by the
application-independent representation of the check. So all of the
required input bits may be available in the recipient but not stored as
a contiguous block in the order accessed by the check. Second, it is
possible for the function to access a value required to compute the
check, then overwrite the value before it reaches the insertion point.



1 Parameters:
2 p: A data structure path.
3 Subroutines:
4 Type(p) : The type of the path p.
5 Fields(t) : If t is a struct type, the set of fields in t.
6 Addr(p) : The address (at runtime) for the path p.
7 Expr(a) : The symbolic expression for the value
8 stored in the address a.
9 Visited(a) : A boolean that tracks whether the address

10 was already processed to avoid infinite recursion.
11 Returns:
12 A set of path, symbolic expression pairs.
13

14 Traverse(p) {
15 T ← Type(p)
16 E ← Expr(Addr(p))
17 if (Visited(Addr(p))) return /0
18 else if (T is Pointer) return Traverse("(*"+p+")")
19 else if (T is Struct)
20 Names ← /0
21 for f in Fields(T)
22 Names ← Names ∪ Traverse(p+"."+ f)
23 return Names
24 else if (E 6= NIL) return {〈p, E〉}
25 return /0
26 }

Figure 6: CP Data Structure Traversal Algorithm

1 Parameters:
2 E: A symbolic expression over input values.
3 Names: A set of available names.
4 Subroutines:
5 SolverEquiv(E1, E2): Query the SMT solver to determine
6 whether expressions E1 and E2 are equivalent.
7 Return:
8 Rewritten expression of E or NIL if failed
9

10 Rewrite(E, Names) {
11 for 〈p,E ′〉 in Names
12 if (SolverEquiv(E,E ′)) return p
13 if (E is of the form 〈unaryop,E1〉)
14 E ′1 ← Rewrite(E1,Names)
15 if (E ′1 6= NIL) return 〈unaryop,E ′1〉
16 else if (E is of the form 〈binop,E1,E2〉)
17 E ′1 ← Rewrite(E1,Names)
18 E ′2 ← Rewrite(E2,Names)
19 if (E ′1 6= NIL and E ′2 6= NIL) return 〈binop,E ′1,E

′
2〉

20 else if (E is Constant c) return c
21 return NIL
22 }

Figure 7: CP Rewrite Algorithm

In this case the value may be unavailable at the insertion point even
though it was previously accessed by the enclosing function.

If CP successfully constructs the new condition, CP generates a
candidate patch as an if statement inserted at the insertion point. In
the current implementation, CP transforms the constructed bitvector
condition into a C expression as the if condition (appropriately
generating any casts, shifts, and masks required to preserve the
semantics of the transferred check). If the condition is satisfied, the
patch exits the application with an exit(-1).

3.4 Patch Validation
CP first recompiles the patched recipient application. It then executes
the patched application on the bug-triggering input to verify that the
patch successfully eliminates the error for that input. CP also runs
the patched build on a set of regression suite inputs to validate that
the patch does not break the core functionality of the application.
As appropriate, CP may also test other error-triggering inputs or run
additional error-finding tools (such as DIODE) to determine if the
patch leaves any residual errors behind. If so, CP recursively attempts
to find and transfer patches that eliminate the residual errors.

4. Experimental Results
We evaluate CP on three classes of errors — out of bounds access,
integer overflow, and divide by zero errors. The two out of bounds
access errors occur in JasPer 1.9 [11] and gif2tiff 4.0.3 [9] and are trig-
gered by JPEG2K (JasPer) and gif (gif2tiff) images. OpenJPEG [13]
and Display 6.5.2-9 [5] are the donors. We use standard fuzzing
techniques to obtain the seed and error-triggering inputs.

The seven integer overflow errors occur in four applications:
CWebP 0.31 [1], Dillo 2.1 [2], swfplay 0.55 [7], and Display 6.5.2-
8 [5]. Two of these errors were listed in the CVE database; one was
first discovered by BuzzFuzz [25]; the other four were, to the best
of our knowledge, first discovered by DIODE [55]. The errors are
triggered by JPG image files (CWebP), PNG image files (Dillo),
SWF video files (swfplay), and TIFF image files (Display). The
donor applications include FEH-2.9.3 [3], mtpaint 3.4 [12], ViewNoir
1.4 [8], and 0.8.11 [10]. We use DIODE to obtain the seed and error-
triggering inputs.

The two divide by zero errors occur in Wireshark-1.4.14 [14]
and are triggered by degenerate network packets with zero size
fields. Wireshark-1.8.6 is the donor — in this scenario the goal is to
obtain a targeted update that eliminates the error without the potential
disruption of a full update to a later version. Starting with an error-
triggering input from the corresponding CVE report, we used standard
techniques to obtain a corresponding seed input that did not trigger
the error.

We obtained integer overflow errors from the DIODE project [55].
The buffer overflow errors are reported as security vulnerabilities
in the CVE database (CVE-2012-3352,CVE-2013-4231). We se-
lected donor applications by collecting applications that successfully
process the seed and error-triggering inputs. We further filter any
applications that use the same underlying library (and version) to
process inputs (e.g., we select only one donor application that uses
libjpeg to process jpeg images). For every class of errors, we try
all combinations of recipient-donor pairs that can process the same
inputs.
Results Summary: Figure 8 summarizes the results of these experi-
ments. There is a row in the table for each combination of error and
donor. The first column (Recipient) identifies the recipient applica-
tion that contains the error. The second column (Target) identifies the
source code file and line where the vulnerability occurs. The third
column (Donor) identifies the donor application. The fourth column
(Patch Time) presents the amount of time that CP required to generate
the patch.

The fifth column (Relevant Branches) presents the number of
branches that depend on relevant values. The sixth column (Flipped
Branches) presents the number of branches that take different direc-
tions for the seed and error-triggering inputs. Several entries are of
the form [X1, ...,Xn]. These entries correspond to errors with multiple
error-triggering inputs. The first patch eliminates the error for the first
input but there is a residual error. Recursive CP executions transfer
patches to eliminate each remaining residual error, with an error elim-
inated per patch transfer. In all cases the final sequence of patches
completely eliminates the exposed errors. For all four cases with
multiple patches DIODE, running on the previously patched version,
automatically generates the additional error-triggering inputs. The
seventh column (Used Checks) presents the number of checks that
CP transferred to eliminate the error. In all of our experiments, the
transferred checks came from the first (in the execution order) flipped
branch.

The eighth column (Candidate Insertion Points) contains entries
of the form X −Y − Z = W . Here X is the number of candidate
insertion points, Y is the number of unstable points (CP filters these
points), Z is the number of insertion points at which CP was unable
to translate the patch (see Section 3.3), and W is the number of points
at which CP is able to insert a successfully translated patch.



Generation # Relevant # Flipped # Used # Candidate Check
Recipient Target Donor Time Branches Branches Checks Insertion Pts Size

CWebP 0.3.1 jpegdec.c:248 feh-2.9.3 4m 157 5 1 38 - 2 - 31 = 5 57→ 4
CWebP 0.3.1 jpegdec.c:248 mtpaint-3.40 4m 94 5 1 38 - 2 - 30 = 6 28→ 2
CWebP 0.3.1 jpegdec.c:248 viewnior-1.4 1m 137 1 1 38 - 2 - 31 = 5 111→ 12

Dillo 2.1 png.c@203 mtpaint-3.40 3m 29 [1,1] 2 16 - 1 - 8 = 7 [(18→ 1),(18→ 1)]
16 - 1 - 9 = 6

Dillo 2.1 png.c@203 feh-2.9.3 3m 120 [4,1] 2 16 - 1 - 9 = 6 [(76→ 8), (37→ 3)]
16 - 1 - 9 = 6

Dillo 2.1 png.c@203 viewnior-1.4 18m 117 1 1 16 - 1 - 9 = 6 79→ 12
Dillo 2.1 fltkimagebuf.cc@39 mtpaint-3.40 13m 29 [1,1] 2 22 - 1 - 10 = 11 [(18→ 1),(18→ 1)]

22 - 1 - 11 = 10
Dillo 2.1 fltkimagebuf.cc@39 feh-2.9.3 2m 120 4 1 22 - 1 - 11 = 10 76→ 9
Dillo 2.1 fltkimagebuf.cc@39 viewnior-1.4 9m 117 1 1 22 - 1 - 11 = 10 79→ 12

Display 6.5.2 xwindow.c@5619 viewnior-1.4 4m 142 6 1 74 - 5 - 60 = 9 55→ 14
Display 6.5.2 xwindow.c@5619 feh-2.9.3 4m 147 6 1 74 - 7 - 58 = 9 17→ 4
Display 6.5.2 display.c@4393 viewnior-1.4 4m 142 6 1 49 - 2 - 45 = 2 55→ 14
Display 6.5.2 display.c@4393 feh-2.9.3 4m 147 6 1 49 - 2 - 45 = 2 17→ 4

SwfPlay 0.5.5 jpeg_rgb_decoder.c@253 gnash 12m 264 7 1 43 - 3 - 35 = 5 53→ 12
SwfPlay 0.5.5 jpeg.c@192 gnash 18m 264 [1,1,3,3] 4 38 - 2 - 34 = 2 [(5→1),(5→1),(4→1),(3→1)]

38 - 2 - 34 = 2
38 - 0 - 37 = 1
38 - 0 - 37 = 1

JasPer 1.9 jpg_dec.c:492 OpenJpeg 1.5.2 1m 63 19 1 18 - 1 - 16 = 1 188→ 3
gif2tiff 4.0.3 gif2tiff.c:355 Display 6.5.2-9 9m 9 2 1 2 - 1- 0 = 1 3→ 3

Wireshark 1.4.14 packet-dcp-etsi.c:258 Wireshark 1.8.6 4m 101 2 1 40 - 5 - 15 = 20 6→ 2

Figure 8: Summary of CP Experimental Results

The ninth column (Check Size) contains entries of the form
X→Y . Here X is the number of operations in the excised application-
independent representation of the check.Y is the number of operations
in the translated check as it is inserted into the recipient. We attribute
the significant size reduction to the ability of the CP Rewrite algorithm
(Figure 7) to recognize complex expressions that are semantically
equivalent. The typical scenario is that CP recognizes that a complex
application-independent expression containing shifts and masks from
(for example) the endianess conversion is equivalent to a single
variable or data structure field in the recipient.

We next discuss several specific patches in more detail (see
Section 2 for a detailed example that illustrates how CP corrects
an integer overflow error).

4.1 JasPer 1.9
JasPer 1.9 is an open-source image viewing and image processing
utility. It is specifically known for its implementation of the JPEG-
2000 standard. JPEG-2000 images may be composed of multiple
tiles, with the number of tiles specified by a 16 bit field in the input
file. JasPer contains an off-by-one error in the code that processes
JPEG-2000 tiles. When JasPer processes the tiles, it includes code
that is designed to check that the number of tiles actually present in
the image is less than or equal to the number specified in the input file.
Unfortunately, the check was miscoded — at jpc_dec.c:492, JasPer
checks if the number of the current tile is greater than (>) the specified
number of tiles. The correct check is a greater than or equal to (>=)
check. The result is that JasPer can write tile data beyond the end of
the buffer allocated to hold that data.

The following correct check appears in OpenJPEG 1.5.2 at
j2k.c:1394:2

if ((tileno < 0) || (tileno >= (cp->tw * cp->th))) { ... }

CP automatically locates the compiled version of this correct
check in the OpenJPEG binary and correctly transfers the check into
JasPer at jpc_dec.c:492 as:

2 CP does not have access to the OpenJPEG 1.5.2 source code — it instead
transfers the check directly from the compiled binary. For presentation
purposes, we used the debugging information to manually locate this check in
the OpenJPEG source code.

if (!(!(dec->numtiles <= sot->tileno))) { exit(-1); }

To generate this check, CP had to map tileno in OpenJPEG 1.5.2
to dec->numtiles in JasPer and recognize that cp->tw * cp->th in
OpenJPEG 1.5.2 has the same value as sot->tileno in JasPer. This
patch highlights CP’s data structure translation capabilities and its
ability to recognize different expressions in different applications
that produce the same value. We note that the OpenJPEG tileno < 0

check is redundant — other constraints in both OpenJPEG and JasPer
ensure that tileno and dec->numtiles are always nonnegative.

4.2 gif2tiff
gif2tiff is a utility in the libtiff-4.0.3 library which converts gif images
to the tif format. gif2tiff is vulnerable to a buffer overflow attack when
processing gif images. gif2tiff iterates over the size of the LZW code
size, which under the gif specification should be limited to a size of
12. Without a check to constrain the code size to 12, the loop over the
code size in gif2tif.c:355 can be forced to overwrite over a set of
statically allocated buffers.

CP successfully created a patch for this error using ImageMagick-
6.5.2-9 as the donor. The transfered check appears in ImageMagick-
6.5.2-9 as:

#define MaximumLZWBits 12
if (data_size > MaximumLZWBits)

ThrowBinaryException(CorruptImageError,
"CorruptImage",image.filename);

This check was translated into the following patch for gif2tiff
(gif2tiff.c:357) as:

if (!(datasize <= 12)) {exit(-1);}

The check correctly enforces the gif specification that the code
size should have a maximum size of 12 and protects gif2tiff from the
buffer overflow vulnerability.

4.3 Wireshark
Wireshark is a popular open-source packet analyzer. It is used for a
variety of networking tasks such as network analysis, network trou-
bleshooting and protocol development. Wireshark 1.4.14 contains a
divide by zero error at packet-dcp-etsi.c:276 in code that processes
DCP ETSI packets.



The following check, which appears in a later version of Wireshark
(1.8.6) and checks that the length of the packet payload is not zero
before attempting to further process the packet, eliminates this error:

if (real_len) ...

Recognizing that real_len and plen contain the same input fields
(the different names reflect the substantial reengineering between
the two versions), CP inserts the check into Wireshark 1.4.14 at
packet-dcp-etsi.c:258 as:

if (!(!(plen == 0))) { exit(-1); }

Empirically, returning zero as the result of divide by zero errors
often enables the application to continue to execute productively [40].
We therefore implemented an alternate strategy that returns 0 if
the check fires rather than exiting. Our results and manual analysis
indicate that this strategy delivers correct continued execution for
both of the Wireshark divide by zero errors.

4.4 Discussion
The patches we present above are, in general, representative of the
remaining patches (our CP technical report presents these remaining
patches [58]). Like the JasPer patch, 10 of the remaining 18 patches
access the stored field values via pointers. This fact highlights the
critical role that the CP data structure traversal and rewrite algorithms
play in enabling the data structure translations required for successful
transfers. As the numbers in Figure 8 indicate, the CP rewrite
algorithm is effective at generating compact readable patches — like
the patches we present above, they are all expressible in at most
several lines of code.

Our manual evaluation of the patches indicates that 1) they
all completely eliminate the target error and 2) they do not affect
computations unrelated to the error. We attribute this success to three
factors: 1) the developers of the donor applications were able to write
code that correctly handled the case responsible for the error in the
recipient, 2) CP was able to locate and transfer the check that handles
this case, and 3) eliminating unstable points is an effective way to filter
out the many points that appear in multipurpose library code. The
result is focused patches that fire only when necessary to eliminate
the target error.

The results also highlight several aspects of CP’s techniques.
Most of the applications contain more than 100 checks that involve
relevant input fields. The ability of CP to find the single check (within
these more than 100 checks) that eliminates the error highlights the
effectiveness of CP’s check identification technique (which uses
flipped branches to isolate the relevant check). CP’s ability to find
effective patch insertion points among the many potential source code
locations highlights the effectiveness of CP’s insertion point location
algorithm.

All of the transfers involve naming and/or data structure trans-
lations. In some cases the translation could be accomplished via a
simple variable renaming (if the source code for the donor was avail-
able, which it may not be). In other cases there is a more significant
data structure translation that involves finding values stored in differ-
ent structures or accessed via pointers. Even though the application-
independent representation of the checks is typically quite complex,
CP’s Rewrite algorithm is very effective at finding small recipient
representations of the check.

Given that programs often deploy different data representations,
any general code transfer system requires some data structure transla-
tion technique. CP’s technique, which is based on representing values
as functions of the input bytes, then traversing the data structures to
find desired values, would be equally effective for any approach that
can establish a correspondence between executions of the donor and
recipient.

CP’s current data structure translation technique is effective at
translating (potentially quite complex) computations that can be ex-
pressed as single expressions. Already this technique enables CP
to eliminate significant errors in real-world applications. General-
izing CP to support expressions with simple conditionals would be
relatively straightforward — augmenting CP’s data structure transla-
tion technique with a symbolic execution of the two branches would
suffice. An effective loop body identification and generalization tech-
nique would enable CP to support loops.

5. Related Work
N-Version Programming: N-version programming [21] aims to
improve software reliability by independently developing multiple
implementations of the same specification. All implementations
execute and the results are compared to detect faulty versions. The
expense of N-version programming and a perception that the multiple
implementations may suffer from common errors and specification
misinterpretations has limited the popularity of this approach [32].

Rather than running multiple versions and comparing the results,
CP transfers correct code to obtain a single improved hybrid system.
CP has a simpler execution model (run a single hybrid system instead
of multiple systems) and can leverage applications with overlapping
but not identical functionality. Also unlike traditional N-version
programming, CP is also designed to work with applications that
are produced by multiple global, spontaneous, and uncoordinated
development efforts performed by different organizations. Our results
indicate that these development efforts can deliver enough diversity
to enable CP to find and transfer correct error checks.
Program Fracture and Recombination: Program fracture and
recombination breaks multiple applications into shards, analyzes
the shards, then transfers shards across applications [57]. Transferred
shards may deliver better performance, more correct code, more
secure code, more analyzable code, cleaner code, the ability to exploit
specialized hardware, or the ability to operate successfully in parallel
or distributed computing contexts, to cite a few potential applications
of the technique [57]. It may also enable the automatic identification
and transfer of functionality from donor to recipient applications
to obtain new hybrid applications that incorporate the best or most
desirable functionality developed anywhere.
Static Program Repair: Staged Program Repair (SPR) uses condi-
tion synthesis to instantiate transformation schemas to repair errors
in large software systems [37]. SPR’s novel staged repair approach
combines a rich space of program repairs with a targeted search
algorithm that makes this space viably searchable in practice. The
results show that 1) SPR can find significantly more correct repairs
than previous automatic patch generation systems [34, 63] and 2) the
majority of these correct repairs lie outside the search spaces of these
previous systems [34, 63].

GenProg [34, 64] is an automatic program repair tool that uses
genetic programming to synthesize program patches. AE is a follow-
on tool that uses a set of equivalence tests to reduce the patch search
space [63]. Despite what one might reasonably conclude from reading
the relevant papers, GenProg and AE are remarkably ineffective
at fixing bugs — because of errors in the patch evaluation scripts,
74% (GenProg) and 50% (AE) of the reported patches produce
incorrect outputs even for the inputs in the test suite used to validate
the patches [49]. GenProg and AE produce correct patches for
2 (GenProg) and 3 (AE) of the 105 defects on which they were
evaluated [49]. Kali, an automatic patch generation system that
aspires only to delete the code that contains the exposed defect, can do
as well [49]. SPR finds correct repairs for 11 of the 105 defects [37].

All of these systems work with a single application and require
recompilable source code. CP, in contrast, eliminates errors (suc-
cessfully) by transferring correct code across multiple applications,
including binary donor applications.



Khmelevsky et al. [30] present a source-to-source repair tool for
missing return value checks after system library calls (e.g., fopen()).
The tool scans through the source code for these library calls. For
each of these calls, if the source code misses the corresponding check
after the call, the tool will automatically add one.

Logozzo and Ball [36] have proposed a program repair technique
that provides the guarantee of verified program repair in the form
that the repaired program has more good executions and less bad
executions than the original program. However, it relies on developer-
supplied contracts (i.e., preconditions, postconditions, and object
invariants) for scalability, which makes the technique less practical.
In contrast, CP is fully automatic — it does not require any human
annotations to transfer patches from the donor application to the
recipient application.

SJava [23] is a Java type system that exploits common iterative
structures in applications. When a developer writes program in SJava,
the compiler can prove that the effects of any error will be flushed
from the system state after a fixed number of iterations.
Runtime Program Repair: Failure-Oblivious Computing enables
applications to survive common memory errors [51]. It recompiles
the application to discard out of bounds writes, manufacture values
for out of bounds reads, and enable applications to continue along
their normal execution paths. RCV [40] enables applications to
dynamically recover from divide-by-zero and null-dereference errors.
When such an error occurs, RCV attaches the application, applies a
fix strategy that typically ignores the offending instruction, forces
the application to continue along the normal execution path, contains
the error repair effect, and detaches from the application once the
repair succeeds. SRS [45] enables server applications to survive
memory corruption errors. When such an error occurs, it enters a
crash suppression mode to skip any instructions that may access
corrupted values. It reverts back to normal mode once the server
moves to the next request.

ClearView [48] first learns a set of invariants from training runs.
When a learned invariant is violated during the runtime execution,
it generates repairs that enforce the violated invariant via binary
instrumentation. Jolt [19] and Bolt [31] enable applications to survive
infinite loop errors. Bolt attaches to unresponsive applications, detects
if the application is in an infinite loop, and if so, either exits the loop
or returns out of the enclosing function to enable the application to
continue successful execution.

DieHard [18] provides probabilistic memory safety in the pres-
ence of memory errors. In stand-alone mode, DieHard replaces the
default memory manager with a memory manager that places objects
randomly across a heap to reduce the possibility of memory over-
writes due to buffer overflows. In replicated mode, DieHard obtains
the final output of the application based on the votes of multiple repli-
cations. Exterminator [47] automatically generates patches for buffer
overflow and dangling pointer errors. Starting with an input that
triggers the error, Exterminator patches overflow errors by padding
allocated objects and patches dangling pointer errors by deferring
object deallocations.

Rx [50] and ARMOR [20] are runtime recovery systems based on
periodic checkpoints. When an error occurs, Rx [50] reverts back to
a previous checkpoint and makes system-level changes (e.g, thread
scheduling, memory allocations, etc.) to search for executions that
do not trigger the error. ARMOR [20] reverts back to a previous
checkpoint and finds semantically equivalent workarounds for the
failed component based on user-provided specifications.

Error Virtualization [53, 54] is a general error recovery technique
that retrofits exception-handing capabilities to legacy software. Fail-
ures that would otherwise cause a program to crash are turned into
transactions that use a program’s existing error handling routines to
survive unanticipated faults.

Input rectification [38] empirically learns input constraints from
benign training inputs and then enforces learned constraints on
incoming inputs to nullify potential errors. SIFT [39] can generate
sound input filter constraints for integer overflow errors at critical
program points (i.e., memory allocation and block copy sites).

All of the above techniques aim to repair the application at runtime
to recover from or nullify the error. In contrast, CP is designed to
locate and transfer correct code from donors to recipients to, after
recompilation, directly eliminate the error.
Deviant Code and Code Clone Errors: Researchers have built
tools that analyze programs to discover common resource usage
patterns [33] and security checks that guard sensitive program
actions [59]. The result is a model that an analysis tool can use
find errors in code that deviates from the discovered patterns. Code
cloning is a common software development activity. Maintenance
of the resulting clones can introduce bugs or leave latent bugs in
place when one clone is updated but another is not. One approach
uses linked editing to ensure that clones are updated consistently [62].
Researchers have also developed approaches detect inconsistent code
clones that may contain errors [24, 26, 35]. Because such techniques
only provide reports that identify potential errors, and not inputs that
demonstrate the actual existence of a suspected error, they are not
directly relevant to CP.
Example-Driven Program Edits: SYDIT [41] and LASE [42] are
given an original and modified method and synthesize a transforma-
tion that, when applied to the original method, produces the modified
method. The goal is to obtain a transformation that can be applied to
other methods to achieve a similar semantic goal. CP differs in that
it works with multiple independent programs to transfer code from
alien donors into unrelated recipients without human intervention. To
this end, CP contains novel value name and data structure translation
capability.
PHP Sanitization and Access Control Repair: PHPQuickFix and
PHPRepair use string constraint-solving techniques to automatically
repair php programs that generate HTML [52]. By formulating the
problem as a string constraint problem, PHPRepair obtains sound,
complete, and minimal repairs to ensure the patched php program
passes a validation test suite. FixMeUp starts with a high-level speci-
fication that indicates the conditional statement of a correct access-
control check and automatically computes an interprocedural access-
control template (ACT), which includes all program statements in-
volved in this instance of access control logic. The ACT serves as
both a low-level policy specification and a program transformation
template. FixMeUp uses the ACT to find faulty access-control logic
that misses some or all of these statements, inserts only the missing
statements, and ensures that unintended dependences do not change
the meaning of the access-control policy. FixMeUp then presents the
transformed program to the developer, who decides whether to accept
the proposed repair [60].3

Researchers have developed a technique that is provided with
two input validation and sanitization PHP functions (typically from
different PHP client and server programs) and uses a static semantic
analysis of the string operations to obtain finite state models that (po-
tentially conservatively) characterize relevant input/output relations.
It then uses automata operations on the finite state models to obtain
patch automata that model different aspects of the desired validation
and sanitization operations. From these patch automata it generates
new PHP validation and sanitization functions [15]. These new func-
tions return a string only if both of the original input validation and
sanitization functions would also return that string. This technique
is based on semantic analysis and synthesis of string operations. Its
scope is therefore limited to string validation and sanitization func-

3 These sentences are taken verbatim from the abstract of the FixMeUp
paper [60].



tions with input/output relationships that it can accurately analyze
and represent with finite state automata.

CP differs in multiple ways. For example, it transfers code
between different donor and recipient applications, it works with
binary donors, and it implements value naming and data structure
transfer algorithms, to cite a few differences. Because CP works
directly with code extracted from the donor, it is not limited to any
particular semantic model or domain and can transfer arbitrary code
relevant to many different problems and domains.
Accuracy-Enhancing Program Transformations: CP, like essen-
tially all research that aspires to eliminate software errors, works with
the standard binary correct/incorrect perspective on program behavior.
From this perspective, the natural goal is to convert incorrect behav-
ior into correct behavior. But it is also possible to approach program
behavior from an accuracy perspective (which characterizes program
behaviors not as correct/incorrect or acceptable/unacceptable, but
simply as more or less accurate). The QuickStep parallelizing com-
piler takes this perspective — it automatically generates parallel loops
with data races, then applies accuracy-enhancing transformations
(such as synchronization insertion and privatization) to increase the
accuracy of the program and obtain an acceptably (but not neces-
sarily completely) accurate approximate computation [43, 44]. As
approximate computing enters the mainstream, we expect accuracy-
enhancing transformations to become increasingly visible and impor-
tant.

6. Conclusion
In recent years the increasing scope and volume of software develop-
ment efforts has produced a broad range of systems with similar or
overlapping goals. Together, these systems capture the knowledge
and labor of many developers. But each individual system largely
reflects the effort of a single team and, like essentially all software
systems, still contains errors.

We present a new and, to the best of our knowledge, the first,
technique for automatically transferring code between systems to
eliminate errors. The system that implements this technique, CP,
makes it possible to automatically harness the combined efforts of
multiple potentially independent development efforts to improve
them all regardless of the relationships that may or may not exist
across development organizations. In the long run we hope this
research will inspire other techniques that identify and combine the
best aspects of multiple systems. The ideal result will be significantly
more reliable and functional software systems that better serve the
needs of our society.
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