
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Automatic Patch Generation by Learning Correct Code

Fan Long and Martin Rinard
MIT CSAIL

{fanl, rinard}@csail.mit.edu

Abstract
We present Prophet, a novel patch generation system that works
with a set of successful human patches obtained from open-
source software repositories to learn a probabilistic, application-
independent model of correct code. It generates a space of candi-
date patches, uses the model to rank the candidate patches in order
of likely correctness, and validates the ranked patches against a
suite of test cases to find correct patches. Experimental results
show that, on a benchmark set of 69 real-world defects drawn from
eight open-source projects, Prophet significantly outperforms the
previous state-of-the-art patch generation system.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis; D.2.5 [SOFTWARE
ENGINEERING]: Testing and Debugging

Keywords Program repair, Code correctness model, Learning cor-
rect code

1. Introduction
We present Prophet, a new generate-and-validate patch generation
system for repairing defects in large, real-world applications. To
the best of our knowledge, Prophet is the first system to learn
a probabilistic model of correct code. Prophet uses this model
to automatically generate correct patches that repair defects in
incorrect applications:

• Learned Model of Correct Code: Working with a set of suc-
cessful patches obtained from open-source software reposito-
ries, Prophet learns a probabilistic model of correct code. It uses
this model to rank and identify correct patches within an auto-
matically generated space of candidate patches (only a small
fraction of which are correct).

• Code Interactions: Each patch inserts new code into the pro-
gram. But correctness does not depend only on the new code —
it also depends on how that new code interacts with the applica-
tion into which it is inserted. The learned correctness model
therefore works with features that capture critical aspects of
how the new code interacts with the surrounding code from the
patched application.

• Universal Features: A fundamental new hypothesis behind
the design of Prophet is that, across applications, correct code
shares a core set of universal correctness properties. To expose
and learn these properties, Prophet works with universal fea-
tures that abstract away shallow syntactic details that tie code
to specific applications while leaving the core correctness prop-
erties intact at the semantic level. These universal features are
critical for enabling Prophet to learn a correctness model from
patches for one set of applications, then successfully apply the
model to new, previously unseen applications.

• Large Applications: Unlike many previous patch generation
systems, which work with small programs with hundreds of
lines of code [14, 23, 30, 31], Prophet generates correct patches
for large, real-world applications with tens of thousands to a
million lines of code or more. The previous state-of-the-art
system for such applications uses a set of manually derived
heuristics to rank candidate patches [18]. The experimental
results show that the Prophet code correctness model enables
Prophet to significantly outperform this previous state-of-the-
art system on the same benchmark set.

Generate-and-validate systems start with a program and a suite
of test cases, at least one of which exposes an defect in the program.
They then generate a space of candidate patches and search this
space to find plausible patches that produce correct outputs for all
test cases in the test suite. Unfortunately, the presence of plausible
but incorrect patches (which produce correct outputs for all of the
test cases in the test suite but incorrect outputs for other inputs) has
complicated the ability of previous generate-and-validate systems
to find correct patches within the (potentially quite large) space of
plausible but incorrect patches [18, 25].

Prophet uses its learned model of correct code to rank the
patches in its search space, with the goal of obtaining a correct
patch as the first (or one of the first few) patches to validate.

1.1 Prophet
Probabilistic Model: Prophet operates with a parameterized prob-
abilistic model that, once the model parameters are determined,
assigns a probability to each candidate patch in the search space.
This probability indicates the likelihood that the patch is correct.
The model is the product of a geometric distribution determined by
the Prophet defect localization algorithm (which identifies target
program statements for the patch to modify) and a log-linear distri-
bution determined by the model parameters and the feature vector.
Maximum Likelihood Estimation: Given a training set of correct
patches, Prophet learns the model parameters by maximizing the
likelihood of observing the training set. The intuition behind this
approach is that the learned model should assign a high probability
to each of the correct patches in the training set.

Patch Generation: Given a program with an defect and a test suite
that exposes the defect, Prophet operates as follows:

• Defect Localization: The Prophet defect localization algorithm
analyzes execution traces of the program running on the test
cases in the test suite. The result is a ranked list of target pro-
gram statements to patch (see Section 3.7). Prophet prioritizes
statements that are frequently executed on negative inputs (for
which the unpatched program produces incorrect results) and
infrequently executed on positive inputs (for which the un-
patched program produces correct results).

• Search Space Generation: Prophet generates a space of can-
didate patches, each of which modifies one of the statements
identified by the defect localization algorithm.

• Universal Feature Extraction: For each candidate patch,
Prophet extracts features that summarize relevant patch prop-
erties. These features include program value features, which
capture relationships between how variables and constants are
used in the original program and how they are used in the patch,
and modification features, which capture relationships between
the kind of program modification that the patch applies and the
kinds of statements that appear near the patched statement in
the original program. Prophet converts the extracted features
into a binary feature vector.

• Patch Ranking and Validation: Prophet uses the learned
model and the extracted binary feature vectors to compute a
probability score for each patch in the search space of candi-
date patches. Prophet then sorts the candidates according to
their scores and validates the patches against the supplied test
suite in that order. It returns an ordered sequence of patches
that validate (i.e., produce correct outputs for all test cases in
the test suite) as the result of the patch generation process.

Universal Roles and Program Value Features: A key challenge
for Prophet is to identify, learn, and exploit universal properties
of correct code. Many surface syntactic elements of the correct
patches in the Prophet training set (such as variable names and
types) tie the patches to their specific applications and prevent the
patches from directly generalizing to other applications.

The Prophet program value features address this challenge as
follows. Prophet uses a static analysis to obtain a set of application-
independent atomic characteristics for each program value (i.e.,
variable or constant) that the patch manipulates. Each atomic char-
acteristic captures a (universal, application-independent) role that
the value plays in the original or patched program (for example, a
value may occur in the condition of an if statement or be returned
as the value of an enclosing function).

Prophet then defines program value features that capture rela-
tionships between the roles that the same value plays in the patch
and the original code that the patch modifies. These relationships
capture interactions between the patch and the patched code that
correlate with patch correctness and incorrectness. Because the
features are derived from universal, application-independent roles,
they generalize across different applications.

1.2 Hypothesis
A key hypothesis of this paper is that, across applications, success-
ful human patches share certain characteristics which, if appropri-
ately extracted and integrated with a patch generation system, will
enable the system to identify correct patches among the candidate
patches in its search space. The experimental are consistent with
this hypothesis.

1.3 Experimental Results
We evaluate Prophet on 69 real world defects drawn from eight
large open source applications. The results show that, on the
same benchmark set, Prophet outperforms previous generate-and-
validate patch generation systems, specifically SPR [18], Kali [27],
GenProg [15], and AE [35].

The Prophet search space contains correct patches for 19 of the
69 defects. Within its 12 hour time limit, Prophet finds correct
patches for 18 of these 19 defects. For 15 of these 19 defects,
the first patch to validate is correct. SPR, which uses a set of
hand-coded heuristics to prioritize its search of the same space of
candidate patches, finds correct patches for 16 of these 19 defects
within its 12 hour time limit. For 11 of these 19 defects, the first
patch to validate is correct. Kali, GenProg, and AE find correct
patches for 2, 1, and 2 defects, respectively.

The results also highlight how program value features are crit-
ical for the success of Prophet. Within its 12 hour time limit, a
variant of Prophet that disables program value features also finds
correct patches for 18 of these 19 defects. But for only 10 of these
19 defects is the first patch to validate correct. A common scenario
is that the search space contains multiple plausible patches that ma-
nipulate different program variables. The extracted program value
features often enable Prophet to identify the correct patch (which
manipulates the right set of program variables) among these multi-
ple plausible patches.

1.4 Contributions
This paper makes the following contributions:

• Hypothesis: It presents the hypothesis that, even across appli-
cations, correct code shares properties that can be learned and
exploited to generate correct patches for incorrect applications.

• New Approach: It presents a novel approach for learning cor-
rect code. This approach uses a parameterized discriminative
probabilistic model to assign a correctness probability to can-
didate patches. This correctness probability captures not only
properties of the new code present in the candidate patches, but
also properties that capture how this new code interacts with
the surrounding code into which it is inserted. It also presents
an algorithm that learns the model parameters via a training set
of successful human patches collected from open-source project
repositories.

• Features: It presents a novel set of universal features for captur-
ing deep semantic code correctness properties across different
applications. Because these features abstract away application-
specific surface syntactic elements (such as variable names)
while preserving important structural characteristics, they sig-
nificantly improve the ability of Prophet to learn universal prop-
erties of correct code.

• Patch Generation with Learning: It presents the implemen-
tation of the above techniques in the Prophet automatic patch
generation system. Prophet is, to the best of our knowledge, the
first system to use a machine learning algorithm to automati-
cally learn and exploit properties of correct code.

• Experimental Results: It presents experimental results that
evaluate Prophet on 69 real world defects. The Prophet search
space contains correct patches for 19 of these 69 defects. For
15 of these 19 defects, Prophet finds a correct patch as the
first patch to validate. Working with the same search space, the
previous state-of-the-art system finds a correct patch as the first
to validate for 11 of these 19 defects [18].

2. Example
We next present an example that illustrates how Prophet corrects a
defect in the PHP interpreter. The PHP interpreter (before version
5.3.5 or svn version 308315) contains a defect (PHP bug #53971) in
the Zend execution engine. If a PHP program accesses a string with
an out-of-bounds offset, the PHP interpreter may produce spurious
runtime errors even in situations where it should suppress such
errors.

Figure 1 presents (simplified) code (from the source code file
Zend/zend_execute.c) that contains the defect. The C function at
line 1 in Figure 1 implements the read operation that fetches values
from a container at a given offset. The function writes these values
into the data structure referenced by the first argument (result).

When a PHP program accesses a string with an offset, the
second argument (container_ptr) of this function references the
accessed string. The third argument (dim) identifies the specified
offset values. The code at lines 17-18 checks whether the specified
offset is within the length of the string. If not, the PHP interpreter
generates a runtime error indicating an offset into an uninitialized
part of a string (lines 32-34).

In some situations PHP should suppress these out-of-bounds
runtime errors. Consider, for example, a PHP program that calls is-
set(str[1000]). According to the PHP specification, this call should
not trigger an uninitialized data error even if the length of the PHP
string str is less than 1000. The purpose of isset() is to check if a
value is properly set or not. Generating an error message when is-
set() calls the procedure in Figure 1 is invalid because it interferes
with the proper operation of isset().

In such situations the last argument (type) at line 3 in Figure 1 is
set to 3. But the implementation in Figure 1 does not properly check
the value of this argument before generating an error. The result is
spurious runtime errors and, depending on the PHP configuration,
potential denial of service.
Offline Learning: Prophet works with a training set of success-
ful human patches to obtain a probabilistic model that captures
why these patches were successful. We obtain this training set by
collecting revision changes from open source repositories. In our
example, we train Prophet with patches from seven open source
projects (apr, curl, httpd, libtiff, python, subversion, and wireshark).
Although revision changes for PHP are available, we exclude these
revision changes from this training set. During the offline learning
phase, Prophet performs the following steps:

• Extract Features: For each patch in the training set, Prophet
analyzes a structural diff on the abstract syntax trees of the orig-
inal and patched code to extract both 1) modification features,
which summarize how the patch modifies the program given
characteristics of the surrounding code and 2) program value
features, which summarize relationships between roles that val-
ues accessed by the patch play in the original unpatched pro-
gram and in the patch.

• Learn Model Parameters: Prophet operates with a parameter-
ized log-linear probabilistic model in which the model param-
eters can be interpreted as weights that capture the importance
of different features. Prophet learns the model parameters via
maximum likelihood estimation, i.e., the Prophet learning algo-
rithm attempts to find parameter values that maximize the prob-
ability of observing the collected training set in the probabilistic
model.

Apply Prophet: We apply Prophet to automatically generate a
patch for this defect. Specifically, we provide Prophet with the PHP
source code that contains the defect and a test suite that contains

1 static void zend_fetch_dimension_address_read(
2 temp_variable *result, zval **container_ptr,
3 zval *dim, int dim_type, int type)
4 {
5 zval *container = *container_ptr;
6 zval **retval;
7 switch (Z_TYPE_P(container)) {
8 ...
9 case IS_STRING: {

10 zval tmp;
11 zval *ptr;
12 ...
13 ALLOC_ZVAL(ptr);
14 INIT_PZVAL(ptr);
15 Z_TYPE_P(ptr) = IS_STRING;
16

17 if (Z_LVAL_P(dim) < 0 ||
18 Z_STRLEN_P(container) <= Z_LVAL_P(dim)) {
19 // A plausible but incorrect patch that validates
20 // if (!(type == 3)) return;
21

22 // An unconstrained patch with abstract condition C
23 // if (C), where C is unconstrained
24 // An partially instantiated patch
25 // if (C), where C checks the variable "type"
26

27 // The guard that the correct Prophet patch inserts
28 // before the following error generation statement.
29 // This Prophet patch is identical to the (correct)
30 // developer patch.
31 // if (!(type == 3))
32 zend_error(E_NOTICE,
33 "Uninitialized string offset: %ld",
34 (*dim).value.lval);
35 Z_STRVAL_P(ptr) = STR_EMPTY_ALLOC();
36 Z_STRLEN_P(ptr) = 0;
37 } else {
38 Z_STRVAL_P(ptr) = (char*)emalloc(2);
39 Z_STRVAL_P(ptr)[0] =
40 Z_STRVAL_P(container)[Z_LVAL_P(dim)];
41 Z_STRVAL_P(ptr)[1] = 0;
42 Z_STRLEN_P(ptr) = 1;
43 }
44 AI_SET_PTR(result, ptr);
45 return;
46 } break;
47 ...
48 }
49 }

Figure 1. Simplified Code for PHP bug #53971

6957 test cases. One of the test cases exposes the defect (i.e., the
unpatched version of PHP produces incorrect output for this test
case). The remaining 6956 test cases are to prevent regression (the
unpatched version of PHP produces correct outputs for these test
cases). Prophet generates a patch with the following steps:

• Defect Localization: Prophet first performs a dynamic analy-
sis of the execution traces of the PHP interpreter on the supplied
test suite to identify a set of candidate program points for the
patch to modify. In our example, the Prophet defect localiza-
tion algorithm observes that the negative test case executes the
statement at lines 32-34 in Figure 1 while the positive test cases
rarely execute this statement. Prophet therefore generates can-
didate patches that modify this statement (as well as candidate
patches that modify other statements).

• Search Space Generation: Prophet works with the SPR search
space, which uses transformation schemas, staged program re-
pair, and condition synthesis to generate candidate patches [18].
Some (but by no means all) of these candidate patches are gen-
erated by a transformation schema (see lines 22-23) that adds
an if statement to guard (conditionally execute) the statement
at lines 32-34 in Figure 1. This transformation schema contains

an abstract condition that the Prophet condition synthesis algo-
rithm will eventually instantiate with a concrete condition [18].
During search space generation and candidate patch ranking,
Prophet does not attempt to fully instantiate the patch. It in-
stead works with partially instantiated patches that identify the
variable that the final concrete condition will check (but not the
final concrete condition itself).
In our example one of the partially instantiated patches is shown
as lines 24-25. It 1) adds an if statement guard before the state-
ment at lines 32-34 in Figure 1 (the statement that generates the
error message) and 2) has a condition that checks the function
parameter type.

• Rank Candidate Patches: Prophet computes a feature vector
for each candidate (fully or partially instantiated) patch in the
search space. It then applies the learned model to the computed
feature vector to obtain a probability that the corresponding
patch is correct. It then ranks the generated patches according
to the computed correctness probabilities.
In our example, the model assigns a relatively high correctness
probability to the partially instantiated patch mentioned above
(lines 32-34) because it has several features that positively cor-
relate with correct patches in the training set. For example, 1) it
adds an if statement to guard a call statement and 2) the guard
condition checks a parameter of the enclosing procedure.

• Validate Candidate Patches: Prophet then uses the test suite
to attempt to validate the candidate patches (including partially
instantiated patches) in order of highest patch correctness prob-
ability. When the validation algorithm encounters a partially in-
stantiated patch, Prophet invokes the Prophet condition synthe-
sis algorithm to obtain concrete conditions that fully instantiate
the patch [18]. In our example, the condition synthesis algo-
rithm comes back with the condition (type != 3) (the resulting
patch appears at line 31 in Figure 1). This patch is the first patch
to validate (i.e., it is the first generated patch that produces cor-
rect outputs for all of the test cases in the test suite).

The generated Prophet patch is correct and identical to the de-
veloper patch for this defect. Note that the Prophet search space
may contain incorrect patches that nevertheless validate (because
they produce correct outputs for all test cases in the test suite).
In our example, line 20 in Figure 1 presents one such patch. This
patch directly returns from the function if type != 3. This patch is
incorrect because it does not properly set the result data structure
(referenced by the result argument) before it returns from the func-
tion. Because the negative test case does not check this result data
structure, this incorrect patch nevertheless validates. The Prophet
model ranks this plausible but incorrect patch below the correct
patch because the incorrect patch inserts a return statement before a
subsequent assignment statement in a code block. This interaction
between the patch and the surrounding code incurs a significant
penalty in the learned model.

3. Design
Prophet first performs an offline training phase to learn a probabilis-
tic model over features of successful patches drawn from a large set
of revisions. Given a new defective program p, Prophet generates a
search space of candidate patches for p and uses the learned model
to recognize and prioritize correct patches. In this way the model
guides the exploration of the search space.

We first discuss how Prophet works with the fully instantiated
patches in the Prophet search space. We then extend the treatment
to partially instantiated patches (see Section 3.6).

3.1 Probabilistic Model
Given a defective program p and a search space of candidate
patches, the Prophet probabilistic model is a parameterized like-
lihood function which assigns each candidate patch δ a probabil-
ity P (δ | p, θ), which indicates how likely δ is a correct patch
for p. θ is the model parameter vector which Prophet learns dur-
ing its offline training phase (see Section 3.3). Once θ is deter-
mined, the probability can be interpreted as a normalized score
(i.e.,

∑
δ P (δ | p, θ) = 1) which prioritizes correct patches among

all possible candidate patches.
The Prophet probabilistic model assumes that each candidate

patch δ in the search space can be derived from the given defec-
tive program p in two steps: 1) Prophet selects a program point
` ∈ L(p), where L(p) denotes the set of program points in p that
Prophet may attempt to modify and 2) Prophet selects an AST mod-
ification operation m ∈ M(p, `) and applies m at ` to obtain δ,
where M(p, `) denotes the set of all possible modification opera-
tions that Prophet may attempt to apply at `.

Therefore the patch δ is a pair 〈m, `〉. We define P (δ | p, θ) =
P (m, ` | p, θ) for ` ∈ L(p) and m ∈M(p, `) as follows:

P (m, ` | p, θ) =
1

Z
·A ·B

A = (1− β)r(p,`)

B =
exp (φ(p,m, `) · θ)∑

`′∈L(p)

∑
m′∈M(p,`′) exp (φ(p,m′, `′) · θ)

HereB is a standard parameterized log-linear distribution deter-
mined by the extracted feature vectors φ and the learned parameter
vector θ. A is a geometric distribution that encodes the informa-
tion Prophet obtains from its defect localization algorithm (which
identifies target program points to patch). The algorithm performs
a dynamic analysis on the execution traces of the program p on the
supplied test suite to obtain a ranked set L(p) of candidate pro-
gram points to modify (see Section 3.7). r(p, `) denotes the rank of
` ∈ L(p) assigned by the defect localization algorithm. Here β is
the parameter of the geometric distribution (which Prophet empiri-
cally sets to 0.02).

We use a geometric distribution for the defect localization infor-
mation because previous defect localization work reports that state-
ments with higher localization ranks are significantly more likely to
be patched than statements with lower localization ranks [11, 37].
The Prophet geometric geometric distribution matches this obser-
vation of previous work.

Intuitively, the formula assigns the weight eφ(p,m,`)·θ to each
candidate patch 〈m, `〉 based on the extracted feature vector
φ(p,m, `) and the learned parameter vector θ. The formula then
computes the weight proportion of each patch over the total weight
of the entire search space derived from the functions L and M .
The formula obtains the final patch probability by multiplying the
weight proportion of each patch with a geometric distribution prob-
ability, which encodes the defect localization ranking of the patch.

Note that L(p), r(p, `), and M(p, `) are inputs to the proba-
bilistic model. M(p, `) defines the patch search space while L(p)
and r(p, `) define the defect localization algorithm. The model can
work with arbitrary L(p), r(p, `), and M(p, `), i.e., it is indepen-
dent of the underlying search space and the defect localization al-
gorithm. It is straightforward to extend the Prophet model to work
with patches that modify multiple program points.

3.2 Defect Localization Approximation for Learning
The input to the Prophet training phase is a large set of revision
changes D = {〈p1, δ1〉, . . . , 〈pn, δn〉}, where each element of D

Input : the training set D = {〈p1, δ1〉, . . . , 〈pn, δn〉}, where pi is
the original program and δi is the successful human patch
for pi.

Output: the feature weight parameter vector θ.
1 for i = 1 to n do
2 〈mi, `i〉 ←− δi
3 L′i ←− NearLocations(pi, `i)

4 n0 ←− 0.85 · n
5 Initialize all elements in θ to 0

6 θ∗ ←− θ
7 α←− 1

8 γ∗ ←− 1

9 cnt ←− 0

10 while cnt < 200 do
11 Assume g(p, `,m,L, θ) =

eφ(p,m,`)·θ/(Σ`′∈LΣm′∈M(p,`′)e
φ(p,m′,`′)·θ)

12 Assume f(θ) =
1
n0
· Σn0

i=1 log g(pi, `i,mi, L
′
i, θ)− λ1 · Σki=1|θi| − λ2|θ|2

13 θ ←− θ + α · ∂f
∂θ

14 γ ←− 0

15 for i = n0 + 1 to n do
16 tot ←− |{m | m ∈M(pi, `), ` ∈ L′i}|
17 rank ←− |{m | m ∈M(pi, `), ` ∈ L′i,

g(pi, `,m,L
′
i, θ) ≥ g(pi, `i,mi, L′i, θ)}|

18 γ ←− γ + (rank/tot)/(n− n0)

19 if γ < γ∗ then
20 θ∗ ←− θ
21 γ∗ ←− γ
22 cnt ←− 0

23 else
24 cnt ←− cnt + 1

25 if α > 0.01 then
26 α←− 0.9 · α

27 return θ∗

Figure 2. Learning Algorithm

is a pair of a defective program pi and the corresponding successful
human patch δi. Prophet learns a model parameter θ such that the
resulting probabilistic model assigns a high conditional probability
score to δi among all possible candidate patches in the search space.

It is, in theory, possible to learn θ directly over P (m, ` | p, θ).
But obtaining the defect localization information requires 1) a
compiled application that runs in the Prophet training environment
and 2) a test suite that includes both positive and negative test cases
(and not just a standard set of regression test cases for which the
unpatched application produces correct output).

The Prophet learning algorithm therefore uses an oracle-like de-
fect localization approximation to drive the training. For each train-
ing pair 〈pi, δi〉, the algorithm computes the structural AST differ-
ence that the patch δi induces to 1) locate the modified program
location `i and 2) identify a set of program points L′i near `i (i.e.,
in the same basic block as `i and within three statements of `i in
this basic block). It then uses maximum likelihood estimation to
learn θ over the following formula:

θ = arg max
θ

(∑
i

logCi − λ1

∑
i

|θi| − λ2

∑
i

θ2i

)

Ci =
exp (φ(pi,mi, `i) · θ)∑

`′∈L′
i

∑
m′∈M(pi,`′)

exp (φ(pi,m′, `′) · θ)

λ1 and λ2 are L1 and L2 regularization factors which Prophet uses
to avoid overfitting. Prophet empirically sets both factors to 10−3.

Using the defect localization approximation (as opposed to full
defect localization) provides at least two advantages. First, it sig-
nificantly expands the range of applications from which Prophet
can draw training patches — it enables Prophet to work with suc-
cessful human patches from applications even if the application
does not fully compile and execute in the Prophet training environ-
ment and even if the application does not come with an appropriate
test suite. Second, it also improves the running time of the training
phase (which takes less than two hours in our experiments, see Sec-
tion 4), because Prophet does not need to compile and run patches
during training.

3.3 Learning Algorithm
Figure 2 presents the Prophet learning algorithm. Combining stan-
dard machine learning techniques, Prophet computes θ via gradient
descent as follows:

• AST Structural Difference: For each pair 〈pi, δi〉 in D,
Prophet computes the AST structural difference of δi to obtain
the corresponding modification operation mi and the modified
program point `i (lines 1-3). The function NearLocations(pi, `i)
at line 3 returns a set of program points that are close to the
known correct modification point `i.

• Initialization: Prophet initializes θ with all zeros. Prophet also
initializes the learning rate of the gradient descent (α at line 7)
to one. At line 4, Prophet splits the training set and reserves
15% of the training pairs as a validation set. Prophet uses this
validation set to measure the performance of the learning pro-
cess and avoid overfitting. Prophet uses the remaining 85% of
the training pairs to perform the gradient descent computation.

• Update Current θ: Prophet runs an iterative gradient descent
algorithm. Prophet updates θ at lines 11-13 at the start of each
iteration.

• Measure Performance: For each pair of 〈pi, δi〉 in the vali-
dation set, Prophet computes the percentage of candidate pro-
grams in the search space that have a higher probability score
than δi (lines 15-18). Prophet uses the average percentage (γ)
over all of the validation pairs to measure the performance of
the current θ. Lower percentage is better because it indicates
that the learned model ranks correct patches higher among all
candidate patches.

• Update Best θ and Termination: θ∗ in Figure 2 corresponds
to the best observed θ. At each iteration, Prophet updates θ∗ at
lines 19-22 if the performance (γ) of the current θ on the valida-
tion set is better than the best previously observed performance
(γ∗). Prophet decreases the learning rate α at lines 25-26 if θ∗

is not updated. If it does not update θ∗ for 200 iterations, the
algorithm terminates and returns θ∗ as the result.

3.4 Feature Extraction
Figure 3 presents the syntax of a simple programming language

which we use to present the Prophet feature extraction algorithm
(see the end of this section for a discussion of how we extend the
feature extraction algorithm for C programs). Each of the state-
ments (except compound statements) is associated with a unique
label `. A program p in the language corresponds to a compound
statement. The semantics of the language in Figure 3 is similar to
C. For brevity, we omit the operational semantics.

Figure 4 presents the notation we use to present the feature ex-
traction algorithm. Figure 5 presents the feature extraction algo-
rithm itself. Given a program p, a program point `, and a modifi-

ψ : Prog ×Atom× (Cond ∪ Stmt)→ AC ψ(p, a,node) = ψ0(a,node) ∪ ψ1(a,node)
AC = {var, const0, constn0, cond, if, prt, loop, ==, !=, 〈op, L〉, 〈op, R〉, 〈=, L〉, 〈=, R〉}

v ∈ Var

ψ0(v,node) = {var}
const = 0

ψ0(const,node) = {const0}
const ∈ Int const 6= 0

ψ0(const,node) = {constn0}
a /∈ Atoms(node)

ψ1(a,node) = ∅

c = “v==const”

ψ1(v, c) = {cond, ==} ψ1(const, c) = {cond, ==}
c = “v!=const”

ψ1(v, c) = {cond, !=} ψ1(const, c) = {cond, !=}

c = “c1 && c2” or c = “c1 || c2” a ∈ Atoms(c)

ψ1(a, c) = ψ1(a, c1) ∪ ψ1(a, c2)

s = “` : v = v1 op v2”

ψ1(v, s) = {〈=, L〉} ψ1(v1, s) = {〈op, L〉, 〈=, R〉} ψ1(v2, s) = {〈op, R〉, 〈=, R〉}

s = “` : v=const”

ψ1(v, s) = {〈=, L〉} ψ1(const, s) = {〈=, R〉}
s = “` : print v”

ψ1(v, s) = {prt}
s = “` : while (c) s1” a ∈ Atoms(s)

ψ1(a, s) = ψ1(a, c) ∪ ψ1(a, s1) ∪ {loop}

s = “{s1s2 . . .}” a ∈ Atoms(s)
ψ1(a, s) = ψ1(a, s1) ∪ ψ1(a, s2) ∪ · · ·

s = “` : if (c) s1 s2” a ∈ Atoms(s)

ψ1(a, s) = ψ1(a, c) ∪ ψ1(a, s1) ∪ ψ1(v, s2) ∪ {if}

Figure 6. Atomic Characteristic Extraction Rules for ψ(p, a,n)

c := c1 && c2 | c1 || c2 | v!=const | v==const
simps := v = v1 op v2 | v = const | print v

| skip | break
s := ` : simps | { s1 s2 . . . } | ` : if (c) s1 s2

| ` : while (c) s1
p := { s1 s2 . . . }
v, v1, v2 ∈ Var const ∈ Int ` ∈ Label
c, c1, c2 ∈ Cond s, s1, s2 ∈ Stmt
p ∈ Prog Atom = Var ∪ Int

Figure 3. The language statement syntax

Patch = Modification× Label Pos = {C,P,N}
MK = {InsertControl,InsertGuard,ReplaceCond,

ReplaceStmt,InsertStmt}
SK = {Assign,Print,While,Break,Skip,If}
ModFeature = MK ∪ (Pos× SK×MK)
ValueFeature = Pos×AC×AC
Stmt : Prog × Label→ Stmt
ApplyPatch : Prog ×Patch→ Prog × (Cond ∪ Stmt)
ModKind : Modification→MK
StmtKind : Stmt→ SK
ψ : Prog ×Atom× (Cond ∪ Stmt)→ AC
FIdx : (ModFeature ∪ValueFeature)→ Int

∀a,∀b, (FIdx(a) = FIdx(b)) ⇐⇒ (a = b)

Figure 4. Definitions and notation. SK corresponds to the set
of statement kinds. MK corresponds to the set of modification
kinds. AC corresponds to the set of atomic characteristics that the
analysis function ψ extracts.

cation operation m that is applied at `, Prophet extracts features by
analyzing both m and the original code near `.

Prophet first partitions the statements near ` in the original pro-
gram p into three sets SC, SP, and SN based on the relative positions
of the statements (lines 1-3). SC contains only the statement associ-
ated with the modification point ` (returned by the utility function
Stmt). SP contains the statements that appear at most three state-
ments before ` in the enclosing compound statement (returned by
the utility function Prev3stmts). SN contains the statements that
appear at most three statements after ` in the enclosing compound
statement (returned by the utility function Next3stmts).

Prophet then extracts two types of features, modification fea-
tures (lines 5-10) and program value features (lines 11-18). Mod-

Input : the input program p, the modified program point `, and the
modification operation m

Output: the extracted feature vector φ(p, `,m)
1 Initialize all elements in φ to 0
2 SC ←− {Stmt(p, `)}
3 SP ←− Prev3stmts(p, `))

4 SN ←− Next3stmts(p, `))

5 idx ←− FIdx(ModKind(m))

6 φidx ←− 1

7 for i in {C,P,N} do
8 for s in Si do
9 idx ←− Fid(〈i, StmtKind(s),ModKind(m)〉)

10 φidx ←− 1

11 〈p′,n〉 ←− ApplyPatch(p, 〈m, `〉)
12 for i in {C,P,N} do
13 for a in Atoms(n) do
14 for s in Si do
15 for ac′ in ψ(p′, a,n) do
16 for ac in ψ(p, a, s) do
17 idx ←− FIdx(〈i, ac, ac′〉)
18 φidx ←− 1

19 return φ
Figure 5. Feature Extraction Algorithm

ification features capture interactions between the modification m
and the surrounding statements, while program value features cap-
ture how the modification works with program values (i.e., vari-
ables and constants) in the original and patched code. For each ex-
tracted feature, Prophet sets the corresponding bit in φwhose index
is identified by the utility function FIdx (lines 5-6, lines 9-10, and
lines 17-18). FIdx maps each individual feature to a unique integer
value.
Modification Features: Prophet implements two classes of mod-
ification features. The first class captures the kind of modification
that m applies. The second class captures relationships between
the kinds of statements that appear near the patched statement in
the original program and the modification kind ofm. So, for exam-
ple, if successful patches often insert a guard condition before a call
statement, a modification feature will enable Prophet to recognize
and exploit this fact.

At lines 5-6 in Figure 5, Prophet extracts the modification kind
of m as the modification feature. At lines 7-10, Prophet also ex-
tracts the triple of the position of an original statement relative to
the patched statement (“C” corresponds to the original statement,
“P” corresponds to one of the three previous statements in the same
block, and “N” corresponds to one of the three next statements in
the same block), the kind of the original statement, and the modi-
fication kind of m as the modification feature. At line 9, the utility
function StmtKind(s) returns the statement kind of s and the util-
ity function ModKind(m) returns the modification kind of m.

Prophet currently classifies modification operations into five
kinds: InsertControl (inserting a potentially guarded control
statement before a program point), AddGuardCond (adding a
guard condition to an existing statement), ReplaceCond (replac-
ing a branch condition), InsertStmt (inserting a non-control
statement before a program point), and ReplaceStmt (replacing
an existing statement). See Figure 4 for the definition of modifica-
tion features, statement kinds, and modification kinds.
Program Value Features: Program value features are designed
to capture relationships between how variables and constants are
used in the original program and how they are used in the patch.
For example, if successful patches often insert a check involving a
variable that is subsequently passed as a parameter to a nearby call
statement, a program value feature will enable Prophet to recognize
and exploit this fact. Program value features capture interactions
between an occurrence of a variable or constant in the original
program and an occurrence of the same variable or constant in the
new code in the patch.

To avoid polluting the feature space with application-specific in-
formation, program value features abstract away the specific names
of variables and values of constants involved in the interactions
that these features model. This abstraction enables Prophet to learn
properties of correct code as captured by program value features
from patches for one set of applications, then apply the learned in-
formation to generate correct patches for other applications.

To extract program value features, Prophet first applies the patch
to the original program (line 11 in Figure 5). ApplyPatch(p, 〈m, `〉)
denotes the results of the patch application, which produces a pair
〈p′,n〉, where p′ is the new patched program and n is the AST
node for the new statement or condition that the patch introduces.
Prophet performs a static analysis on both the patched and original
programs to extract a set of atomic characteristics for each pro-
gram atom a (i.e., a variable or an integer). In Figure 5, ψ(p, a,n)
denotes the set of atomic characteristics extracted for a in n .

At lines 12-18, Prophet extracts each program value feature,
which is a triple 〈i, ac, ac′〉 of the position i of a statement in the
original program, an atomic characteristic ac of a program atom
in the original statement, and an atomic characteristic ac′ of the
same program atom in the AST node that the patch introduces.
Intuitively, the program value features track co-occurrences of each
pair of the atomic characteristic ac in the original code and the
atomic characteristic ac′ in the modificationm. The utility function
Atoms(n) at line 12 returns a set that contains all program atoms
(i.e., program variables and constants) in n .

Figure 6 presents the static analysis rules that Prophet uses
to extract atomic characteristics ψ(p, v,n). These rules track the
roles that v plays in the enclosing statements or conditions and
record the operations in which v participates. The first three rules
in Figure 6 track whether an expression atom is a variable, a
zero constant, or a non-zero constant. The fourth through eleventh
rules track statement types and operators that are associated with
each expression atom. The last three rules recursively compute and

Commutative Is an operand of
Operators +, *, ==, or !=
Binary Is a left/right operand of
Operators -, /, <, >, <=, >=, . (field access),

-> (member access), or [] (index)
Unary Is an operand of
Operators -, ++ (increment), -- (decrement),

* (dereference), or & (address-taken)
Enclosing Occurs in an assign/loop/return/if statement
Statements Occurs in a branch condition

Is a function call parameter
Is the callee of a call statement

Value Is a local variable, global variable, argument,
Traits struct field, constant, non-zero constant,

zero, or constant string literal
Has an integer, pointer, or struct pointer type
Is dereferenced

Patch Is the only variable in an abstract expression
Related Is replaced by the modification operation

Figure 7. Atomic Characteristics of Program Values for C

propagate atomic characteristics for if statements, statement blocks,
and while statements, respectively.

Note that Prophet can work with any static analysis to extract ar-
bitrary atomic characteristics. It is therefore possible, for example,
to combine Prophet with more sophisticated analysis algorithms to
obtain a richer set of atomic characteristics.
Feature Extraction for C: Prophet extends the feature extrac-
tion algorithm described in Section 3.4 to C programs as follows.
Prophet treats call expressions in C as a special statement kind for
feature extraction. Prophet extracts atomic characteristics for bi-
nary and unary operations in C. For each variable v, Prophet also
extracts atomic characteristics that capture the scope of the vari-
able (e.g., global or local) and the type of the variable (e.g., integer,
pointer, pointer to structure). The current Prophet implementation
tracks over 30 atomic characteristics (see Figure 7 for a list of these
atomic characteristics) and works with a total of 3515 features, in-
cluding 455 modification features and 3060 program value features.

3.5 Repair Algorithm
Given a program p that contains a defect, the goal of Prophet is
to find a correct patch δ that eliminates the defect and correctly
preserves the other functionality of p. We use an oracle function
Oracle to define patch correctness, specifically Oracle(p, δ) =
true if and only if δ correctly patches the defect in p.

Note that the oracle function is hidden. Instead, Prophet as-
sumes that the user provides a test suite which exposes the defect in
the original program p. We use the test suite to obtain an approxi-
mate oracle T such that Oracle(p, δ) implies T (p, δ). Specifically,
T (p, δ) = true if and only if the patched program passes the test
suite, i.e., produces correct outputs for all test cases in the test suite.
Repair Algorithm: Figure 8 presents the Prophet repair algorithm.
Prophet generates a search space of candidate patches and uses the
learned probabilistic model to prioritize potentially correct patches.
Specifically, Prophet performs the following steps:

• Generate Search Space: At line 1, Prophet runs the de-
fect localization algorithm (DefectLocalizer(p, T)) to return
a ranked list of candidate program points to modify. At lines 2-
6, Prophet then generates a search space that contains candidate
patches for all of the candidate program points.

Input : the original program p, the test suite T and the learned
model parameter vector θ

Output: emit a list of validated patches
1 〈L, r〉 ←− DefectLocalizer(p,T)

2 Candidates ←− ∅
3 for ` in L do
4 for m in M(p, `) do
5 prob_score ←− (1− β)r(p,`) · eφ(p,`,m)·θ

6 Candidates ←− Candidates ∪ {〈prob_score,m, `〉}

7 SortedCands ←− SortWithFirstElement(Candidates)

8 for 〈_,m, `〉 in SortedCands do
9 δ ←− 〈m, `〉

10 if T (p, δ) = true then
11 emit δ

Figure 8. Prophet Repair Algorithm

• Rank Candidate Patch: At lines 5-6, Prophet uses the learned
θ to compute the probability score for each candidate patch.
At line 7, Prophet sorts all candidate patches in the search
space based on their probability score. Note that the score
formula at line 5 omits the constant divisor from the formula
of P (δ | p, θ), because it does not affect the sort results.

• Validate Candidate Patch: At lines 8-11, Prophet finally tests
all of the candidate patches one by one in the sorted order
with the supplied test suite (i.e., T). Prophet outputs a list of
validated candidate patches.

3.6 Staged Program Repair and Prophet
The Prophet probabilistic model can work with any search space of
candidate patches. The current implementation of Prophet operates
on the same search space as SPR [18]. This search space is derived
from a set of parameterized transformation schemas that Prophet
applies to target statements identified by the defect localization
algorithm [18]. Some of these schemas contain abstract conditions
that the Prophet condition synthesis algorithm will later instantiate
to obtain a final patch. Specifically, Prophet implements schemas
that 1) (Tighten) tighten the condition of a target if statement (by
conjoining a condition C to the if condition), 2) (Loosen) loosen
the condition of a target if statement (by disjoining a condition C
to the if condition), 3) (Add Guard) add a guard with a condition C
to a target statement, and 4) (Insert Guarded Control Flow) insert a
new guarded control flow statement (if (C) return; if (C) break; or
if (C) goto l; where l is an existing label in the program andC is the
condition that the guard enforces) before the target statement. Here
C is an abstract condition that the condition synthesis algorithm
will later instantiate. This staged approach enables Prophet (like
SPR) to efficiently bypass incorrect patches and focus the search
on the most promising parts of the search space [18].

Prophet also implements schemas that produce a final fully in-
stantiated patch directly without an intermediate condition synthe-
sis step. These schemas include 1) (Initialize) insert a memory ini-
tialization statement before the target statement, 2) (Replace) re-
place one value in the target statement with another value, and 3)
(Copy and Replace) copy an existing statement before the target
statement and replace a value in the copied statement with another
value.
Partially Instantiated Patches: There are two obvious approaches
to implement staged program repair within Prophet. The first is
to use staged program repair to generate fully instantiated final
patches during the initial generation of the search space, then use
the Prophet learned model to rank these patches for validation along

with all of the other candidate patches. A downside of this approach
is the time required to run the condition synthesis algorithm (which
compiles and executes the application potentially multiple times)
to generate fully instantiated patches (many of which will have low
correctness probabilities).

The second approach is to rank the uninstantiated patch (this
patch has an unconstrained abstract condition C), then instantiate
the abstract condition C later during patch validation. The down-
side of this approach is that the correctness of the final instanti-
ated patches will depend heavily on the variables that they access.
This information, of course, is not available for patches with uncon-
strained abstract conditions, which inhibits the ability of Prophet to
compute accurate correctness probabilities for the final fully instan-
tiated patches that the condition synthesis algorithm will generate.

Prophet therefore uses an intermediate third approach — it gen-
erates and ranks partially instantiated patches that specify the vari-
able that the synthesized condition will check, but leave the abstract
condition otherwise unconstrained. This approach enables Prophet
to work with patches that it can acceptably accurately rank while
deferring condition synthesis until patch validation time. Because
deferring condition synthesis enables Prophet to move quickly on
to start validating highly ranked patches, it can significantly reduce
the time Prophet requires to find correct fully instantiated patches.
Learning for Partially Instantiated Patches: We extend the
Prophet feature extraction algorithm to handle partially instantiated
patches. Specifically, we define atomic characteristics that identify
variables that the conditions in partially instantiated patches check
(see Figure 7).

The Prophet learning algorithm works with partially instantiated
patches as follows. For each patch in the training set that could have
been generated by a schema with an abstract condition, it derives
the corresponding partially instantiated patch. It then extracts the
features for this partially instantiated patch and learns over the
partially instantiated patch and its extracted features (instead of
learning over the fully instantiated patch).

3.7 Defect Localization
Prophet uses the same defect localization algorithm as SPR [17, 18]
(the SPR technical report presents this algorithm [17]). The Prophet
defect localizer recompiles the given application with additional in-
strumentation. It inserts a call back before each statement in the
source code to record a positive counter value as the timestamp of
the statement execution. Prophet then invokes the recompiled appli-
cation on all test cases and produces a prioritized list that contains
target statements to modify based on the recorded timestamp val-
ues. Prophet prioritizes statements that 1) are executed with more
negative test cases, 2) are executed with fewer positive test cases,
and 3) are executed later during executions with negative test cases.

The probabilistic model and the repair algorithm are indepen-
dent from the defect localization component. Prophet can integrate
with any defect localization technique that returns a ranked list of
target program points to patch. It is therefore possible to combine
Prophet with other (potentially more accurate) defect localization
techniques [3, 11, 37].

3.8 Alternative Learning Objective
Prophet uses maximum likelihood estimation to learn the model pa-
rameter θ. One alternative learning objective is to minimize the sum
of hinge losses as defined by a hinge-loss function h(p,m, l, θ):

h(p,m, l, θ) = maxl′∈L(p),m′∈M(p,m′)

((φ(p,m′, l′) · θ − φ(p,m, l) · θ) + ∆(p, 〈m, l〉, 〈m′, l′〉))

Prophet can then learn θ with the following objective function:

θ = arg min
θ

(∑
i

h(pi,mi, li, θ) + λ1

∑
i

|θi|+ λ2

∑
i

θ2i

)
Intuitively, for each correct patch in the training set, the hinge-

loss function measures the score difference between the correct
patch and the incorrect patch with the highest score plus the dis-
tance between these two patches. The objective function minimizes
the sum of the hinge losses over all correct patches in the training
set. λ1 and λ2 are regularization parameters, which we empirically
set to 10−3 (we found that 10−3 gives the best results in our exper-
iments). ∆ is an arbitrary distance function. In our implementation,
we use the euclidean distance between two feature vectors. In the
ideal case, the hinge-loss learning algorithm finds a θ such that the
score of the correct patch outweighs the incorrect patch with the
highest score by a significant margin given by the distance between
the two patches.

Although previous work has used the hinge-loss learning algo-
rithm to successfully predict program properties such as variable
names and types [28], our experimental results show that, for our
set of benchmark defects, maximum likelihood estimation outper-
forms using the hinge-loss objective function (see Section 4.3).

The reason is that the hinge-loss function considers only the
score of the most highly ranked incorrect patch and not the scores
of the other incorrect patches. The hinge-loss algorithm therefore
(unlike maximum likelihood estimation) does not directly attempt
to optimize the rank of the correct patch within the full set of
candidate patches. On both the training and benchmark sets, the
hinge-loss algorithm is unable to find a θ that consistently ranks
the correct patch within the top few patches in the search space. In
this situation maximum likelihood estimation, because it considers
the scores of all of the patches, produces a θ that ranks the correct
patches more highly within the search space than the θ that the
hinge-loss algorithm produces. The result is that the correct patches
appear earlier in the validation order with maximum likelihood
estimation than with the hinge loss algorithm.

4. Experimental Results
We evaluate Prophet on 69 real world defects and 36 functionality
changes in eight large open source applications: libtiff, lighttpd,
the PHP interpreter, gmp, gzip, python, wireshark, and fbc. This
is the same benchmark set used to evaluate SPR [18], Kali [27],
GenProg [15], and AE [35].1 For each defect, the benchmark set
contains a test suite with positive test cases for which the unpatched
program produces correct outputs and at least one negative test case
for which the unpatched program produces incorrect output (i.e.,
the negative test case exposes the defect).

This benchmark set is, to the best of our knowledge, currently
the most comprehensive publicly available C data set suitable for
evaluating generate-and-validate systems — other benchmark sets
have fewer defects, much smaller programs, or do not have the
positive and negative test cases and build infrastructures required
for generate-and-validate patch generation.

4.1 Methodology
Collect Successful Human Patches: We used the advanced search
functionality in GitHub [1] to obtain a list of open source C project
repositories that 1) were started before January 1, 2010 and 2) had
more than 2000 revisions. We browsed the projects from the list one
by one and collected the first eight projects that 1) are command-
line applications or libraries running on our experimental environ-

Project Revisions Used for Training
apr 12
curl 53
httpd 75
libtiff 11
php 187
python 114
subversion 240
wireshark 85
Total 777

Figure 9. Statistics of Collected Successful Human Patches

ment Ubuntu 14.04, 2) whose repositories contain more than ten
revision changes with patches that are within the Prophet search
space, and 3) whose compilation flags can be extracted by our
scripts for clang to obtain abstract syntax trees for these patches.

In this process, we considered but rejected many applications
because they do not satisfy the above requirements. For example,
we rejected lighttpd because it contained fewer than ten revision
changes with patches within the Prophet search space. We rejected
git because we were unable to extract its compilation flags using
our scripts. We stopped collecting projects when we believed we
had obtained a sufficiently large training set of successful patches.

For each of the resulting eight application repositories, we ran
a script to analyze the check-in logs to identify and collect all of
those patches that repair defects (as opposed to changing or adding
functionality) and are within the Prophet search space. From the
eight repositories, we collected a total of 777 such patches. Figure 9
presents statistics for these 777 patches.
Train Prophet on Collected Training Set: We train Prophet on
the collected set of successful human patches. The collected set
of training applications and the benchmark set share four common
applications, specifically libtiff, PHP, python, and wireshark. For
each of these four applications, we train Prophet separately and
exclude the collected human patches of the same application from
the training set. The goal is to ensure that we evaluate the ability
of Prophet to apply the learned model trained with one set of
applications to successfully repair defects in other applications.

The offline training takes less than two hours. Training is sig-
nificantly faster than repair because the learning algorithm does
not compile and run the patches in the training set during training
(see Section 3.3). This approach enables Prophet to include patches
from applications 1) for which an appropriate test suite may not be
immediately available and/or 2) with relevant source code files that
may not fully compile on the training platform. These two prop-
erties can significantly expand the range of applications that can
contribute patches to the training set of successful human patches.
Reproduce Defects: We reproduce each defect in our experimental
environment. We perform all experiments except those of fbc on
Amazon EC2 Intel Xeon 2.6GHz machines running Ubuntu-64bit
server 14.04. The benchmark application fbc runs only in 32-bit
environments, so we use a virtual machine with Intel Core 2.7Ghz
running Ubuntu-32bit 14.04 for the fbc experiments.

1 This benchmark set is reported to contain 105 defects [15]. An examina-
tion of the revision changes and corresponding check in entries indicates
that 36 of these reported defects are not, in fact, defects. They are instead
deliberate functionality changes [18]. Because there is no defect to correct,
they are therefore outside the scope of Prophet. We nevertheless also report
results for Prophet on these functionality changes.

App LoC Tests Defects/
Changes

Plausible Correct
Prophet SPR Kali GenProg AE Prophet SPR Kali GenProg AE

libtiff 77k 78 8/16 5/0 5/0 5/0 3/0 5/0 2,2/0 1,1/0 0/0 0/0 0/0
lighttpd 62k 295 7/2 3/1 3/1 4/1 4/1 3/1 0,0/0 0,0/0 0/0 0/0 0/0
php 1046k 8471 31/13 17/1 16/1 8/0 5/0 7/0 13,10/0 10,9/0 2/0 1/0 2/0
gmp 145k 146 2/0 2/0 2/0 1/0 1/0 1/0 1,1/0 1,1/0 0/0 0/0 0/0
gzip 491k 12 4/1 2/0 2/0 1/0 1/0 2/0 1,1/0 1,0/0 0/0 0/0 0/0
python 407k 35 9/2 5/1 5/1 1/1 0/1 2/1 0,0/0 0,0/0 0/1 0/1 0/1
wireshark 2814k 63 6/1 4/0 4/0 4/0 1/0 4/0 0,0/0 0,0/0 0/0 0/0 0/0
fbc 97k 773 2/1 1/0 1/0 1/0 1/0 1/0 1,1/0 1,0/0 0/0 0/0 0/0
Total 69/36 39/3 38/3 25/2 16/2 25/2 18,15/0 16,11/0 2/1 1/1 2/1

Figure 10. Benchmark Applications and Patch Generation Results

Apply Prophet to Defects: For each defect, we run the trained
Prophet to obtain a sequence of validated plausible patches for
that defect. For comparison, we also run SPR on each defect. We
obtain the results of Kali [27], GenProg [15], and AE [35] on
this benchmark set from previous work [27]. We terminate the
execution of Prophet or SPR after 12 hours. The Kali, GenProg,
and AE results are from runs that terminate when the first plausible
patch validates.

To better understand how the probabilistic model, the learning
algorithm, and the features affect the result, we also run five vari-
ants of Prophet, specifically Random (a naive random search al-
gorithm that prioritizes the generated patches in a random order),
Baseline (a baseline algorithm that prioritizes patches in the defect
localization order, with patches that modify the same statement pri-
oritized in an arbitrary order), MF (an variant of Prophet with only
modification features; program value features are disabled), PF (a
variant of Prophet with only program value features; modification
features are disabled), and HL (a variant of Prophet that replaces
the maximum likelihood learning with the hinge-loss learning as
described in Section 3.8). All of these variants, Prophet, and SPR
differ only in the patch validation order, i.e., they operate with the
same patch search space and the same set of optimizations for val-
idating candidate patches.

We note that GenProg and AE require the user to specify the
source file name to modify when the user applies GenProg and AE
to an application that contains multiple source files (all applications
in the benchmark set contain multiple source files) [27]. Prophet,
SPR, and Kali do not have this limitation.

Although we set 12 hours as the time limit for generating
patches, for the 39 defects for which Prophet finds at least one
plausible patch, Prophet requires, on average, only 108.9 minutes
to find and validate the first plausible patch. For the 15 defects
for which the first validated patch is correct, Prophet requires, on
average, 138.5 minutes to find and validate the first correct patch.
Evaluate Validated Patches: We manually analyze each validated
patch to determine whether the patch is a correct patch or just
a plausible but incorrect patch that happens to produce correct
outputs for all of the inputs in the test suite.

We acknowledge that, in general, determining whether a spe-
cific patch corrects a specific defect can be difficult (or in some
cases not even well defined). We emphasize that this is not the case
for the patches and defects that we consider here. The correct be-
havior for all of the evaluated defects is clear, as is patch correct-
ness and incorrectness. Furthermore, subsequent developer patches
are available for all of the defects in the benchmark set. A man-
ual code analysis indicates that each of the correct patches in the
experiments is semantically equivalent to the subsequent developer
patch for that defect.

4.2 Patch Generation Result Summary
Figure 10 summarizes the results for Prophet, SPR, Kali, GenProg,
and AE. There is a row in the table for each benchmark application.
The first column (App) presents the name of the application, the
second column (LoC) presents the number of lines of code in each
application, and the third column (Tests) presents the number of
test cases in the test suite for that application. The fourth column
(Defects/Changes) contains entries of the form X/Y, where X is the
number of exposed defects in each application and Y is number of
exposed functionality changes. The benchmark set contains a total
of 69 exposed defects and 36 exposed functionality changes.

The fifth through ninth columns (Plausible) summarize the plau-
sible patches that each system finds. Each entry is of the form X/Y,
where X is the number of the 69 defects for which the correspond-
ing system finds at least one plausible patch (i.e., a patch that passes
the supplied test suite) and Y is the number of the 36 functionality
changes for which each system finds at least one plausible patch.

The tenth through fourteenth columns (Correct) summarize the
correct patches that each system finds. For Prophet and SPR, each
entry is of the form X,Y/Z. Here X is the number of the 69 defects
for which Prophet or SPR finds a correct patch before the 12 hour
timeout (even if that patch is not the first patch to validate), Y is the
number of defects for which Prophet or SPR finds a correct patch
as the first patch to validate, and Z is the number of functionality
changes for which Prophet or SPR finds a correct patch before the
12 hour timeout (this number is always 0 for Prophet and SPR).

For Kali, GenProg, and AE, each entry is of the form X/Y, where
X is the number of the 69 defects for which the corresponding sys-
tem finds a correct patch and Y is the number of the 36 functionality
changes for which the corresponding system finds a correct patch.

The results show that Prophet finds a correct patch as the first
to validate for more defects than SPR, Kali, GenProg, and AE (4
more defects than SPR, 14 more than GenProg, and 13 more than
Kali and AE). One potential explanation for the underperformance
of Kali, GenProg, and AE is that the correct Prophet and SPR
patches are outside the search spaces of these systems [18, 27],
which suggests that these systems will never find correct patches
for the remaining defects.

Both Prophet and SPR find a correct patch as the first to validate
significantly more often for PHP than for other applications. There
are significantly more defects for PHP than for other applications.
PHP also has a much stronger test suite (an order of magnitude
more test cases) than other applications, which helps both Prophet
and SPR find correct patches as the first to validate.

Kali, GenProg, and AE all find a correct patch for one of the
functionality changes. This functionality change eliminates support
for dates with two digit years. The Kali, GenProg, and AE patches

System Corrected Defects Mean Rank
in Search Space

Prophet 18,15 Top 11.5%
Random 14,7 Top 41.8%
Baseline 15,8 Top 20.7%
MF 18,10 Top 12.2%
PF 18,13 Top 12.3%
HL 17,13 Top 17.0%
SPR 16,11 Top 17.5%

Figure 11. Comparative Results for Different Systems

all remove the block of code that implements this functionality.
This patch is in the Prophet search space, but it is deprioritized
in the learned model because few successful human patches only
remove code.

4.3 Comparison of Different Systems
Figure 11 presents results from different patch generation systems.
The first column (System) presents the name of each system (Ran-
dom, Baseline, MF, and PF are variants of Prophet with different
capabilities disabled, see Section 4.1). The second column (Cor-
rected Defects) presents the number of the 69 defects for which the
system finds at least one correct patch. Each entry is of the form
X,Y, where X is the number of defects for which the system finds
correct patches (whether this correct patch is the first to validate or
not) and Y is the number of defects for which the system finds a
correct patch as the first patch to validate.

The third column (Mean Rank in Search Space) presents a per-
centage number, which corresponds to the mean rank, normalized
to the size of the search space for each defect, of the first correct
patch in the patch prioritization order of each system. This num-
ber is an average over the 19 defects for which the search space of
these systems contains at least one correct patch. We compute the
size of the search space as the sum of 1) the number of partially
instantiated patches generated by transformation schemas with ab-
stract conditions and 2) the number of patches generated by other
transformation schemas (these patches do not include abstract con-
ditions). “Top X%” in an entry indicates that the corresponding sys-
tem prioritizes the first correct patch as one of the top X% of the
patches in the search space on average. We run the random search
algorithm with the default random seed to obtain the results in the
figure. The results are generally consistent with the hypothesis that
the more highly a system ranks the first correct patch, the more cor-
rect patches it finds and the more correct patches it finds as the first
patch to validate.

The results show that Prophet delivers the highest average rank
(11.7%) for the first correct patch in the search space. The results
also highlight how the Prophet model enables Prophet to success-
fully prioritize correct patches over plausible but incorrect patches
— the Random and Baseline systems, which operate without a
probabilistic model or heuristics, find a correct patch as the first
to validate only roughly half as often as Prophet.

The results also show that the maximum likelihood learning al-
gorithm in Prophet outperforms the alternative hinge-loss learning
algorithm. One potential explanation is that the hinge-loss objec-
tive function only considers two patches: the correct patch and the
incorrect patch with the highest score. The maximum likelihood
objective function, in contrast, considers all of the patches. The re-
sult is that the hinge-loss-trained model does not prioritize correct
patches as highly in the search space as the maximum likelihood
model (also see Section 3.8).

The results also highlight how program value features are
more important than modification features for distinguishing cor-
rect patches from plausible but incorrect patches. We observed a
common scenario that the search space contains multiple plausible
patches that operate on different program variables. In these sce-
narios, the learned model with program value features enables PF
(and Prophet) to identify the correct patch among these multiple
plausible patches.

4.4 Per-Defect Results
Figure 12 presents detailed results for each of the 19 defects for
which the Prophet search space contains correct patches. The fig-
ure contains a row for each defect. Each entry in the first column
(Defect) is of the form X-Y-Z, where X is the name of the appli-
cation that contains the defect, Y is the defective revision in the
repository, and Z is the revision in which the developer repaired the
defect. Each entry of the second column (Search Space) is of the
form X(Y), where X is the size of the search space (i.e., the sum
of the number of partially instantiated patches from transformation
schemas with abstract conditions and the number of patches from
schemas without abstract conditions) and Y is the number of cor-
rect patches in the search space.

The third through eighth columns (First Correct Patch Rank)
present correct patch generation results for each system. The num-
ber in each entry is the rank of the first correct patch in the patch
validation order for each system. “X” in an entry indicates that the
corresponding system successfully finds this correct patch as the
first plausible patch. “4” in an entry indicates that the algorithm
finds a plausible but incorrect patch before it reaches its first cor-
rect patch. “X” indicates that the algorithm fails to find any plausi-
ble patch in 12 hours.

The ninth through fourteenth columns (Correct/Plausible Patches
Validated) present statistics regarding the validated correct and
plausible patches that each system finds. Each entry is of the form
X/Y. Y is the total number of plausible patches the corresponding
system finds if we run the system on the corresponding defect ex-
haustively for 12 hours. X is the rank of the first correct patch to
validate among these validated plausible patches. “-” indicates that
the system finds no correct patch among these validated plausible
patches.

The results show that for 5 out of the 19 defects (php-307562-
307561, php-307846-307853, php-309516-309535, php-310991-
310999, and php-307914-307915), all validated patches are correct.
The results indicate that for these five defects, the supplied test
suite is strong enough to identify correct patches within the Prophet
search space. Therefore any patch generation order is sufficient as
long as it allows the system to find a correct patch within 12 hours.
In fact, all six algorithms in Figure 12 find correct patches for these
5 defects.

For 10 of the remaining 14 defects, Prophet finds a correct
patch as the first to validate. SPR, in contrast, finds a correct patch
as the first to validate for 6 of these 14 defects. SPR empirically
prioritizes candidate patches that change existing branch conditions
above all other candidate patches in the search space [18]. This
rule conveniently allows SPR to find a correct patch as the first
to validate for php-309579-309580, php-309892-309910, and php-
311346-311348.

Prophet outperforms SPR on four defects, php-308262-308315,
libtiff-d13be-ccadf, gzip-a1d3d4-f17cbd, and fbc-5458-5459. For
php-308262-308315, the correct patch inserts an if statement guard
for an existing statement. Prophet successfully ranks the correct
patch as one of top 2% in the patch validation order, while the

Defect Search First Correct Patch Rank Correct/Plausible Patches Validated
Space Prophet SPR MF PF HL Base. Prophet SPR MF PF HL Base.

php-307562-307561 29560(1) 2672X 4918X 304X 4263X 3341X 4435X 1/1 1/1 1/1 1/1 1/1 1/1
php-307846-307853 22131(1) 10742X 3867X 11139X 10123X 14225X 5971X 1/1 1/1 1/1 1/1 1/1 1/1
php-308734-308761 14536(2) 5376X 5771X 7525X 46764 8770X 12903X 1/4 1/4 1/4 3/4 1/4 1/4
php-309516-309535 27098(1) 10954X 4000X 9365X 9442X 14320X 8042X 1/1 1/1 1/1 1/1 1/1 1/1
php-309579-309580 51306(1) 767X 46X 19774 492X 2347X 37584 1/2 1/2 2/2 1/2 1/2 2/2
php-309892-309910 36940(4) 462X 179X 2174 863X 1031X 1530X 1/21 1/17 4/21 1/21 1/20 1/21
php-310991-310999 87574(2) 907X 384X 351X 1381X 866X 5061X 1/1 1/2 1/2 1/1 1/1 1/2
php-311346-311348 8730(2) 27X 312X 125X 34X 107X 9774 1/49 1/50 1/49 1/49 1/50 12/50
php-308262-308315 81412(1) 1365X 7191X 3094X 2111X 2836X 6784X 1/2 -/0 1/2 1/2 1/2 -/0
php-309688-309716 60936(1) 34654 83984 22264 13964 4744 63524 38/47 -/17 44/50 29/57 64/73 -/25
php-310011-310050 68534(1) 13484 306474 56294 33364 26194 55814 6/48 -/22 -/76 8/41 -/58 -/33
php-309111-309159 52908(1) 77014 243474 70894 189194 64554 41214 9/10 3/10 9/10 10/10 10/10 8/10
php-307914-307915 45389(1) 1X 5748X 2703X 1X 1X 5110X 1/1 1/1 1/1 1/1 1/1 1/1
libtiff-ee2ce-b5691 171379(1) 280X 13296X 348X 44X 12X 3374 1/328 1/328 1/328 1/328 1/328 2/328
libtiff-d13be-ccadf 296409(1) 1183X 3724 46714 1333X 3220X 7784 1/1423 3/1723 2/1723 1/1423 1/1723 2/1723
libtiff-5b021-3dfb3 219851(1) 507704 566444 82014 620824 1198384 1329814 -/242 206/237 178/210 -/202 -/147 -/147
gmp-13420-13421 50672(2) 14102X 14645X 3260X 13085X 17246X 41741X 1/3 1/3 1/3 1/3 1/3 1/3
gzip-a1d3d4-f17cbd 47602(1) 1929X 219264 159284 7224 52624 41234 1/14 4/14 5/14 2/14 4/14 3/14
fbc-5458-5459 9788(1) 33X 4544 7414 28X 4134 6864 1/37 8/37 5/37 1/37 3/26 5/38

Figure 12. Per-Defect Results

SPR hand-coded heuristics rank patches that add a guard statement
below patches that change a branch condition. Because of this
lower rank, SPR is unable to find the correct patch within 12 hours.

For gzip-a1d3d4-f17cbd, an initialization statement can be in-
serted at multiple candidate locations to pass the supplied test case,
but not all of the resulting patches are correct. Prophet success-
fully prioritizes the correct patch among multiple plausible patches,
while the SPR heuristics prioritize an incorrect patch that inserts the
initialization at the start of a basic block.

For libtiff-d13be-ccadf and fbc-5458-5459, there are multiple
candidate program variables that can be used to tighten a branch
condition to enable the resulting patched program to pass the sup-
plied test suite. The learned program value features enable Prophet
(and PF) to successfully identify and prioritize correct patches
that manipulate the right variables. The SPR heuristics (and MF,
which operates without program value features) incorrectly priori-
tize patches that manipulate the wrong variables.

4.5 Discussion
Hypothesis: The patch generation results are consistent with a key
hypothesis of this paper, i.e., that even across applications, correct
code shares properties that can be learned and exploited to generate
correct patches for incorrect applications. The results show that by
learning properties of correct code from successful patches for dif-
ferent applications, Prophet significantly outperforms all previous
patch generation systems on a systematically collected benchmark
set of defects in large real-world applications.

We note that the applications in the training set share many
characteristics with the benchmark applications on which we eval-
uate Prophet. Specifically, all of these applications are open source
Linux applications, written in C, that can be invoked from the com-
mand line. It therefore remains an open question whether this hy-
pothesis generalizes across broader classes of programs.
Important Features: The Prophet features capture interactions
between the code in the patch and the surrounding code that the
patch modifies. The learning algorithm of Prophet then identifies a
subset of such interactions that characterize correct patches.

We inspected the feature weights of the learned model. Features
with large positive weights capture positively correlated interac-
tions. Examples of such interactions include 1) the patch checks
a value that is used as a parameter in a nearby procedure call, 2)

the patch checks a pointer that nearby code dereferences, and 3)
the patch checks a value that was recently changed by nearby code.
These features are positively correlated because the root cause of
many defects is a failure to check for a condition involving values
that the surrounding code manipulates. Successful patches often in-
sert checks involving these values. Another example of a positively
correlated interaction is an inserted function call that replaces one
of the parameters with a pointer that nearby code manipulates. Such
patches often correct defects in which the programmer forgot to
perform an operation on the object that the pointer references.

Features with large negative weights capture negatively corre-
lated interactions. Examples of such interactions include: 1) the
patch changes the value of a variable whose value is also changed
by nearby code in the same block, 2) the patch checks a global vari-
able, and 3) the patch inserts a call to a function that nearby code in
the same block also calls. These features are negatively correlated
because they often correspond to redundant, irrelevant, or less or-
ganized program logic that rarely occurs in successful patches.

While none of these features is, by itself, able to definitively
distinguish correct patches among candidate patches, together they
deliver a model that makes Prophet significantly better at finding
correct patches than the previous state-of-the-art heuristics that
SPR implements.

5. Related Work
We next survey related work in automatic patch generation, at-
tack/error recovery and survival, and program beautification.

5.1 Automatic Patch Generation
SPR: SPR is the previous state-of-the-art generate-and-validate
patch generation system for large applications [18]. SPR applies
a set of transformation schemas to generate a search space of
candidate patches. It then uses staged program repair to validate
the generated patches on a test suite of test cases, at least one of
which exposes a defect in the original program. SPR uses a set of
hand-coded heuristics to guide the exploration of the search space.

Prophet works with the same patch search space as SPR but
differs in that it uses its learned correctness model to guide the
exploration of the search space. Our experimental results show that
this learned model enables Prophet to more effectively recognize
and prioritize correct patches than the hand-coded SPR heuristics.

CodePhage: CodePhage automatically locates correct code in one
application, then transfers that code to eliminate defects in another
application [33]. CodePhage has been applied to eliminate other-
wise fatal integer overflow, buffer overflow, and divide by zero er-
rors. CodePhage relies on the existence of donor applications that
already contain the exact program logic required to eliminate the
defect. Both CodePhage and Prophet work with correct code from
one (or more) applications to obtain correct code for other applica-
tions. But Prophet does not transfer existing code. It instead works
with a model of correct code learned from one set of applications to
guide the exploration of an automatically generated space of candi-
date patches for different applications.
ClearView: ClearView is a generate-and-validate system that ob-
serves normal executions to learn invariants that characterize safe
behavior [25]. It deploys monitors that detect crashes, illegal con-
trol transfers and out of bounds write defects. In response, it selects
a nearby invariant that the input that triggered the defect violates,
and generates patches that take a repair action to enforce the invari-
ant. ClearView operates directly on stripped x86 binaries.

By monitoring the continued execution of patched applications,
ClearView recognizes and rejects unsuccessful patches that do not
protect the application against attacks or cause the application
to fail. It also recognizes and propagates successful patches that
protect the application against attacks. In this way ClearView learns
whether specific deployed patches are successful in practice.
GenProg, RSRepair, AE, and Kali: GenProg [15, 36] uses a
genetic programming algorithm to search a space of patches, with
the goal of enabling the application to pass all considered test cases.
RSRepair [26] replaces the GenProg genetic search algorithm to
instead use random search. AE [35] uses a deterministic patch
search algorithm and uses program equivalence relations to prune
equivalent patches during testing.

An analysis of the generated patches shows that the overwhelm-
ing majority of the patches that these three systems generate are
incorrect [27]. Because of errors in the patch validation infrastruc-
ture, the majority of the generated patches do not produce correct
results even for the test cases in the test suite used to validate the
patches [27]. Further analysis of the patches that do produce correct
outputs for the test suite reveals that despite the surface complexity
of these patches, an overwhelming majority of these patches sim-
ply remove functionality [27]. The Kali patch generation system,
which only eliminates functionality, can do as well [27].

Prophet differs in that it works with a richer space of candidate
patches, uses learned properties of successful patches to guide its
search, and generates significantly more correct patches, including
correct patches that insert new logic to the patched application (as
opposed to simply eliminating functionality).
PAR: PAR [12] is another automatic patch generation system.
Unlike Prophet, which uses a probabilistic model and machine
learning techniques to automatically learn properties of successful
patches, PAR is based on a set of predefined patch templates that
the authors manually summarize from past human patches. We
are unable to directly compare PAR with Prophet because, despite
repeated requests to the authors of the PAR paper over the course
of 11 months, the authors never provided us with the patches that
PAR was reported to have generated [12].

Monperrus found that PAR fixes the majority of its benchmark
defects with only two templates (“Null Pointer Checker” and “Con-
dition Expression Adder/Remover/Replacer”) [22]. A manual anal-
ysis indicates that the PAR search space (with the eight hand-
coded templates in the PAR paper [12]) is in fact a subset of the
Prophet/SPR search space [18].

Angelic Debugging: Angelic Debugging [3] relaxes the program
semantics to support angelic expressions that may take arbitrary
values and identifies, in a program, those expressions which, if
converted into angelic expressions, enable the program to pass the
supplied test cases. Prophet could use the methodology of Angelic
Debugging to improve its defect localization component.
NOPOL and SemFix: NOPOL [4, 8] applies angelic debugging to
locate conditions that, if changed, may enable defective Java pro-
grams to pass the supplied test suite. It then uses an SMT solver
to synthesize repairs for such conditions. SemFix [23] replaces a
potentially faulty expression in a program with a symbolic value,
performs symbolic executions on the supplied test cases to gen-
erate symbolic constraints, and uses SMT solvers to find concrete
expressions that enable the program to pass the test cases.

Prophet differs from NOPOL and SemFix [23] in that these
systems rely only on the information from the test cases with
the goal of finding plausible (but not necessarily correct) patches.
Prophet learns properties of past successful patches to recognize
and prioritize correct patches among multiple plausible patches.
Repair Model: Martinez and Monperrus manually analyze previ-
ous human patches and suggest that if a patch generation system
works with a non-uniform probabilistic model, the system would
find plausible patches in its search space faster [21]. In contrast,
Prophet automatically learns a probabilistic model of code correct-
ness from past successful patches. Prophet is the first patch gener-
ation system to operate with such a learned model. The goal is to
automatically identify correct patches among the plausible patches
in the search space.
PHPQuickFix/PHPRepair: PHPQuickFix and PHPRepair use
string constraint-solving techniques to automatically repair PHP
programs that generate HTML [31]. By formulating the problem as
a string constraint problem, PHPRepair obtains sound, complete,
and minimal repairs to ensure the patched php program passes a
validation test suite.
FixMeUp: FixMeUp starts with a specification that indicates the
conditional statement of a correct access-control check. It then uses
program analysis to automatically find and repair missing access-
control checks in Web applications [34].
Repair with Formal Specifications: Deductive Program Repair
formalizes the program repair problem as a program synthesis
problem, using the original defective program as a hint [14]. It
replaces the expression to repair with a synthesis hole and uses
a counterexample-driven synthesis algorithm to find a patch that
satisfies the specified pre- and post-conditions. AutoFixE [24] is a
program repair tool for the Eiffel programming language. Aut-
oFixE leverages developer-provided formal specifications (e.g.,
post-condtions, pre-conditions, and invariants) to automatically
find and generate repairs for defects. Cost-aware Program Re-
pair [30] abstracts a C program as a boolean constraint, repairs
the constraint based on a cost model, and then concretizes the con-
straint back to a repaired C program. The goal is to find a repaired
program that satisfies all assertions in the program with minimal
modification cost. The technique was evaluated on small C pro-
grams (less than 50 lines of code) and requires human intervention
to define the cost model and to help with the concretization.

Prophet differs from these techniques in that it works with large
real world applications where formal specifications are typically
not available. Note that the Prophet probabilistic model and the
Prophet learning algorithm can apply to these specification-based
techniques as well, i.e., if there are multiple patches that satisfy the
supplied specifications, the learned model can be used to determine
which patch is more likely to be correct.

Defect Repair via Q&A Sites: Gao et. al. [10] propose to repair
recurring defects by analyzing Q&A sites such as Stack Overflow.
The proposed technique locates the relevant Q&A page for a recur-
ring defect via a search engine query, extracts code snippets from
the page, and renames variables in the extracted code snippets to
generate patches. Prophet is different from this technique, because
Prophet directly learns a probabilistic model from successful hu-
man patches and does not rely on the existence of exact defect re-
pair logic on Q&A pages.
LeakFix: LeakFix statically analyzes the application source code
and automatically inserts deallocation statements to fix memory
leak errors in an applicaiton [9]. It guarantees that the new inserted
deallocation will not interfere with normal executions.

5.2 Attack/Error Recovery and Survival
Failure-Oblivious Computing, RCV, and RIFL: Failure-oblivious
computing [29] checks for out of bounds reads and writes. It dis-
cards out of bounds writes and manufactures values for out of
bounds reads. This eliminates data corruption from out of bounds
writes, eliminates crashes from out of bounds accesses, and en-
ables the application to continue execution along its normal execu-
tion path. The results show that this technique enables servers to
continue to operate successfully to service legitimate requests even
after attacks trigger their memory errors.

RCV [20] enables applications to survive null dereference and
divide by zero errors. It discards writes via null references, returns
zero for reads via null references, and returns zero as the result of
divides by zero. Execution continues along the normal execution
path. The results show that this technique enables applications to
continue to execute to provide acceptable output and service to its
users on error-triggering inputs.

The reason behind these potentially counterintuitive results is
that applications typically process inputs in units such as requests
or input file lines. Each unit triggers a corresponding computation
that is often relatively loosely coupled with computations for other
units. Failure-oblivious computing and RCV succeed because they
enable the application to survive attacks and errors without corrup-
tion to successfully process subsequent units.

The filtered iterators of RIFL provide explicit support for this
pattern — they make the decomposition of the input into sep-
arate units explicit and execute the corresponding computations
atomically. Input units that trigger errors or vulnerabilities are dis-
carded [32].
Bolt: Bolt [13] attaches to a running application, determines if the
application is in an infinite loop, and, if so, exits the loop. A user
can also use Bolt to exit a long-running loop. The results show that
Bolt can enable applications to provide useful results to users even
in the face of infinite loops.
DieHard: DieHard [2] provides probabilistic memory safety in the
presence of memory errors. In stand-alone mode, DieHard replaces
the default memory manager with a memory manager that places
objects randomly across a heap to reduce the possibility of memory
overwrites due to buffer overflows. In replicated mode, DieHard
obtains the final output of the application based on the votes of
multiple replications.
APPEND: APPEND [7] proposes to eliminate null pointer excep-
tions in Java by applying recovery techniques such as replacing the
null pointer with a pointer to an initialized instance of the appropri-
ate class. The presented examples illustrate how this technique can
effectively eliminate null pointer exceptions and enhance program
survival.

Data Structure Repair: Data structure repair enables applications
to recover from data structure corruption errors [6]. Data struc-
ture repair enforces a data structure consistency specification. This
specification can be provided by a human developer or automati-
cally inferred from correct program executions [5].
Input Rectification: Input rectification learns constraints that char-
acterize inputs that applications can process successfully. It pro-
cesses each input, enforcing any violated constraints to produce a
new input that it presents to the application [16]. The results show
that this technique effectively converts malicious inputs into inputs
that the application can process successfully while typically pre-
serving the desirable data in the input.
SIFT: SIFT uses static program analysis to generate sound input fil-
ters that nullify integer overflow errors at security critical program
points [19]. It guarantees that any input that passes the generated
filters will not be able to trigger the corresponding overflow errors.
JSNICE: JSNICE [28] is a JavaScript beautification tool that au-
tomatically predicts variable names and generates comments to an-
notate variable types for JavaScript programs. JSNICE first learns,
from a database of JavaScript programs, a probabilistic model of
relationships between either pairs of variable names (for predicting
variable names) or pairs of types (for generating comments to anno-
tate variable types). Given a new JavaScript program, JSNICE uses
a greedy algorithm to search a space of predicted variable names or
types, with the learned model guiding the search.

A key difference between JSNICE and Prophet is that JSNICE
does not aspire to change the program semantics — the goal of
JSNICE is instead to change variable names and add comments
to beautify the program but leave the original semantics intact.
The goal of Prophet, in contrast, is to produce correct patches that
change the program semantics to eliminate defects. Prophet there-
fore aspires to solve deep semantic problems associated with au-
tomatically generating correct program logic. To this end, Prophet
works with a probabilistic model that combines defect localization
information with learned universal properties of correct code.

6. Conclusion
Prophet automatically learns from past successful human patches
to obtain a probabilistic, application-independent model of cor-
rect code. It uses this model to automatically generate correct
patches for defects in real world applications. The experimental
results show that, in comparison with previous patch generation
systems, the learned information significantly improves the ability
of Prophet to generate correct patches.

Acknowledgements
We thank Tao Lei for valuable discussions about the learning algo-
rithm. We thank the anonymous reviewers for their insightful com-
ments on early draft of the paper. This research was supported by
DARPA (Grant FA8650-11-C-7192 and FA8750-14-2-0242).

References
[1] GitHub. https://github.com/.

[2] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory safety
for unsafe languages. In Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’06’, pages 158–168. ACM, 2006.

[3] S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic debugging.
In Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11’, pages 121–130, New York, NY, USA, 2011.
ACM.

[4] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus. Automatic
repair of buggy if conditions and missing preconditions with smt.
In Proceedings of the 6th International Workshop on Constraints in
Software Testing, Verification, and Analysis, CSTVA 2014, pages 30–
39, New York, NY, USA, 2014. ACM.

[5] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and
M. C. Rinard. Inference and enforcement of data structure consistency
specifications. In Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2006, Portland,
Maine, USA, July 17-20, 2006, pages 233–244, 2006.

[6] B. Demsky and M. C. Rinard. Goal-directed reasoning for
specification-based data structure repair. IEEE Trans. Software Eng.,
32(12):931–951, 2006.

[7] K. Dobolyi and W. Weimer. Changing java’s semantics for handling
null pointer exceptions. In 19th International Symposium on Software
Reliability Engineering (ISSRE 2008), 11-14 November 2008, Seat-
tle/Redmond, WA, USA, pages 47–56, 2008.

[8] T. Durieux, M. Martinez, M. Monperrus, R. Sommerard, and J. Xuan.
Automatic repair of real bugs: An experience report on the defects4j
dataset. CoRR, abs/1505.07002, 2015.

[9] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou, B. Xie, and
H. Mei. Safe memory-leak fixing for c programs. In Proceedings of
the 37th International Conference on Software Engineering - Volume
1, ICSE ’15’, pages 459–470, Piscataway, NJ, USA, 2015. IEEE Press.

[10] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei. Fixing
recurring crash bugs via analyzing Q&A sites. In Proc. of ASE, 2015.

[11] M. Jose and R. Majumdar. Cause clue clauses: Error localization using
maximum satisfiability. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11’, pages 437–446, New York, NY, USA, 2011. ACM.

[12] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13’, pages
802–811. IEEE Press, 2013.

[13] M. Kling, S. Misailovic, M. Carbin, and M. Rinard. Bolt: on-demand
infinite loop escape in unmodified binaries. In Proceedings of the ACM
international conference on Object oriented programming systems
languages and applications, OOPSLA ’12’, pages 431–450. ACM,
2012.

[14] E. Kneuss, M. Koukoutos, and V. Kuncak. Deductive program repair.
In Computer-Aided Verification (CAV), 2015.

[15] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A system-
atic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In Proceedings of the 2012 International Conference on
Software Engineering, ICSE 2012, pages 3–13. IEEE Press, 2012.

[16] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard. Auto-
matic input rectification. ICSE ’12, 2012.

[17] F. Long and M. Rinard. Staged Program Repair in SPR. Technical
Report MIT-CSAIL-TR-2015-008, 2015.

[18] F. Long and M. Rinard. Staged program repair with condition synthe-
sis. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pages 166–178, New York,
NY, USA, 2015. ACM.

[19] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. Rinard. Sound input
filter generation for integer overflow errors. In Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14’, pages 439–452, New York, NY, USA, 2014.
ACM.

[20] F. Long, S. Sidiroglou-Douskos, and M. Rinard. Automatic runtime
error repair and containment via recovery shepherding. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14’, pages 227–238, New York,
NY, USA, 2014. ACM.

[21] M. Martinez and M. Monperrus. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical
Software Engineering, 20(1):176–205, 2015.

[22] M. Monperrus. A critical review of "automatic patch generation
learned from human-written patches": Essay on the problem statement
and the evaluation of automatic software repair. In Proceedings of the
36th International Conference on Software Engineering, ICSE 2014,
pages 234–242, New York, NY, USA, 2014. ACM.

[23] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix:
Program repair via semantic analysis. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13’, pages
772–781, Piscataway, NJ, USA, 2013. IEEE Press.

[24] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller.
Automated fixing of programs with contracts. IEEE Trans. Softw.
Eng., 40(5):427–449, May 2014.

[25] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically patch-
ing errors in deployed software. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, SOSP ’09, pages
87–102. ACM, 2009.

[26] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of random
search on automated program repair. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages
254–265, New York, NY, USA, 2014. ACM.

[27] Z. Qi, F. Long, S. Achour, and M. Rinard. An anlysis of patch plausi-
bility and correctness for generate-and-validate patch generation sys-
tems. In Proceedings of the ACM/SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2015, 2015.

[28] V. Raychev, M. Vechev, and A. Krause. Predicting program properties
from "big code". In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’15’, pages 111–124, New York, NY, USA, 2015. ACM.

[29] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S.
Beebee. Enhancing server availability and security through failure-
oblivious computing. In OSDI, pages 303–316, 2004.

[30] R. Samanta, O. Olivo, and E. A. Emerson. Cost-aware automatic
program repair. In Static Analysis - 21st International Symposium,
SAS 2014, Munich, Germany, September 11-13, 2014. Proceedings,
pages 268–284, 2014.

[31] H. Samimi, M. Schäfer, S. Artzi, T. D. Millstein, F. Tip, and L. J.
Hendren. Automated repair of HTML generation errors in PHP appli-
cations using string constraint solving. In ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, pages 277–287, 2012.

[32] J. Shen. RIFL: A Language with Filtered Iterators. Master’s thesis,
Massachusetts Institute of Technology, 2015.

[33] S. Sidiroglou, E. Lahtinen, F. Long, and M. Rinard. Automatic error
elimination by multi-application code transfer. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2015.

[34] S. Son, K. S. McKinley, and V. Shmatikov. Fix me up: Repairing
access-control bugs in web applications. In NDSS, 2013.

[35] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence
for adaptive program repair: Models and first results. In ASE’13, pages
356–366, 2013.

[36] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically
finding patches using genetic programming. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09’, pages
364–374. IEEE Computer Society, 2009.

[37] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Softw. Eng., 28(2):183–200, Feb. 2002.

