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Abstract
We present and analyze a range of techniques for recovering
from faults in complex hardware and software systems, from
classical techniques that attempt to preserve the abstraction
of perfection in the presence of faults to emerging techniques
that adapt application functionality to transcend faults, over-
come implementation errors in both the hardware and soft-
ware, and adapt to the characteristics of the underlying exe-
cution environment.

Categories and Subject Descriptors D2.5 [Testing and
Debugging]: Error Handling and Recovery

General Terms Recovery, Fault, Error

Keywords Recovery, Fault, Error

1. Abstract
Modern hardware and software systems are the most com-
plex artifacts humans have ever built. Modularity enabled
by digital interfaces that satisfy precise logical specifications
has been a key prerequisite that has enabled us to build such
complex systems. The inevitable presence of faults has al-
ways complicated the construction of modules that can sat-
isfy their specifications in a wide range of environments. The
standard goal has been to confine the effect of each fault
within the module in which it occurs so that clients are obliv-
ious to the fault and the system as a whole continues to exe-
cute without perturbation. We note in passing that (because,
at least, of the basic physical characteristics of the devices
and environments in which the systems are deployed) this
goal is realizable only for some classes of faults. So the goal
has been to obtain modules that satisfies their specification
often enough so that an engineer using a module can produc-
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tively believe that the module satisfies its specification (even
though it may sometimes not).

We start by surveying a range of standard techniques
that developers and engineers have developed for masking
faults. Examples of these techniques include error-correcting
codes, checkpoint followed by rollback and replay [8, 9, 16]
and redundant computation. A critical component of many
of these techniques is the mechanism for detecting faults.
At this point these techniques are well understood, have
been deployed widely in hardware and software systems,
and are critical to ensuring the acceptable operation of these
systems.

We then note that many faults are inherently unmaskable
with traditional techniques. Consider, for example, a system
that must provide output at regular time intervals. If the sys-
tem loses part of the hardware resources that it needs to pro-
duce the result on time, traditional techniques do not aspire
to change the computation so that it can produce the result
with less resources. Another example is a software system
with security vulnerabilities or implementation errors that
are triggered by specific carefully crafted inputs. While it
may be possible to monitor the system to detect the exploit
or error, traditional techniques do not aspire to eliminate the
vulnerability or error, mask the fault, and produce the cor-
rect result. One traditional response to the detection of such
faults has been to stop the system to avoid potentially unan-
ticipated negative consequences of a system that is operating
outside of its anticipated operating envelope.

We next consider a more recent set of emerging tech-
niques for surviving faults. Unlike most classical techniques,
these techniques do not aspire to produce modules or sys-
tems that always satisfy their natural specifications. The goal
is instead to ensure that the system respects key accept-
ability, correctness, or sanity conditions even in the face
of faults that may be inherently unmaskable, unmaskable
with traditional techniques, or even just too impractical or
expensive to mask. Examples of such techniques include
acceptability-oriented computing [17], task skipping [18],
failure-oblivious computing [19], transactional function ter-
mination [21, 22], exiting infinite loops [3], automatic patch
generation [15, 25], software rejuventation [24], recovery-



oriented computing [2], heap overprovisioning [1], input
rectification [11], and data structure repair [5–7, 12, 20, 26].
Because such techniques may have effects that easily propa-
gate across module boundaries, understanding their accept-
ability often requires the adoption of an end-to-end perspec-
tive that takes the larger goals of the complete system into
account.

Finally, we consider the emerging field of approximate
computing. Inspired by the surprising ability that many soft-
ware systems exhibit to tolerate perturbations or even large-
scale changes to their execution (for example, loop per-
foration [13, 23], which simply skips iterations of time-
consuming loops), researchers are now exploring a vari-
ety of techniques that purposefully adapt the functional-
ity that a system provides to obtain benefits such as im-
proved performance, reduced energy consumption, or ro-
bustness [4, 10, 14, 27]. The initial success of these tech-
niques suggests that it may now be possible to move toward
a world in which the dominant software systems exhibit un-
precedented flexibility, malleability, and adaptability with-
out requiring engineers to understand precisely how or why
they are able to do so.
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