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Logistic regression

models;

AUC
2017, were used with caseecontrol matching. PDAC cases were selected using International

Classification of Diseases 9/10 codes and validated with tumour registries.

A data-driven feature selection approach was used to develop neural networks and L2-reg-

ularised logistic regression (LR) models on training data (594 cases, 100,787 controls) and

compared with a published model based on hand-selected diagnoses (‘baseline’). Model per-

formance was validated on an external database (408 cases, 160,185 controls). Three predic-

tion lead times (180, 270 and 365 days) were considered.

Results: The LR model had the best performance, with an area under the curve (AUC) of 0.71

(confidence interval [CI]: 0.67e0.76) for the training set, and AUC 0.68 (CI: 0.65e0.71) for the

validation set, 365 days before diagnosis. Data-driven feature selection improved results over

‘baseline’ (AUC Z 0.55; CI: 0.52e0.58).

The LR model flags 2692 (CI 2592e2791) of 156,485 as high risk, 365 days in advance, iden-

tifying 25 (CI: 16e36) cancer patients. Risk stratification showed that the high-risk group pre-

sented a cancer rate 3 to 5 times the prevalence in our data set.

Conclusion: A simple EHR model, based on diagnoses, can identify high-risk individuals for

PDAC up to one year in advance. This inexpensive, systematic approach may serve as the first

sieve for selection of individuals for PDAC screening programs.

ª 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the third

most lethal cancer in the USA, with annual incidence on

the rise since the 1990s [1]. In the United States alone,

estimates predict 56,770 new cases of pancreatic cancer

and 45,750 deaths in 2019 [2].
Despite significant progress in understanding its

biology [3], PDAC is often diagnosed at an advanced

stage. However, studies have shown that symptoms exist

months to years before diagnosis [4,5]. For example,

new-onset diabetes occurs in up to 50% of patients,

24e36 months before diagnosis [6,7], with weight loss

beginning as early as 12e15 months before diagnosis

[8,9]. In addition, metabolomics studies suggest that
tumour-induced biochemical processes such as lipolysis

[10,11], low-density lipoprotein consumption [12], and

protein breakdown [13] occur during PDAC

development.

Detection of early-stage disease has been shown to be

effective in individuals at high risk for PDAC due to

genetic predisposition. Screening performed in these

patients, resulted in a significantly better three-year
survival for screened patients, than for patients whose

tumours were detected after symptom development

(85% versus 25%, respectively). Detection of lesions in

their high-grade precursor stages resulted in an overall

survival of 100% [14].

The increasing availability of electronic health re-

cords (EHRs) e 9.4% of non-federal acute-care hospi-

tals in the US had basic EHRs in 2008 compared with
83.8% in 2015 [15] e and the varied types of indicators

they provide have increased their use as a data source

for risk prediction models [16].
Our hypothesis is that a simplistic model based on
EHR diagnostic codes can be effective in early identifi-

cation of individuals at increased risk of developing

pancreatic cancer. Prior PDAC risk prediction models

have often focused on specific high-risk subgroups

[17e19], such as diabetics, and use a relatively parsi-

monious set of handcrafted known PDAC-associated

features [17e22]. Only some of these models consider a

prediction time window in which high-risk individuals
can be detected [5,17,18,20]. Previous work has used

diverse data sources such as survey data and

caseecontrol or cohort studies to train their models, but

few use EHR databases [17,18].

In this study, we develop and validate two novel

machine learning PDAC risk models based on patients’

prior diagnoses derived from EHR data, to predict

pancreatic cancer 6e12 months before an eventual
diagnosis date.

2. Methods

This study was exempt from review by the institutional

review board (IRB) of Dana-Farber Cancer Institute
(DFCI). Beth Israel Deaconess Medical Center

(BIDMC) IRB ceded review to DFCI.

2.1. Data source

This study is a retrospective caseecontrol analysis, using

two EHRs data sets: BIDMC data and Partners
HealthCare (PHC) data. BIDMC data were sourced

from the BIDMC Clinical Data Repository (CDR) that

contains data from the hospital emergency department,

inpatient and outpatient medical records (OMR), PHC
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data were sourced from the Partners’ Research Patient

Data Registry (RPDR), which includes data from two

large hospitals, Brigham and Women’s Hospital (BWH)

and Massachusetts General Hospital, as well as com-

munity and speciality hospitals in the Boston area.

2.2. Cohort selection

PDAC patients of all ages were identified by Interna-

tional Classification of Diseases (ICD) 9 157.x and

ICD10 C25.x codes, from July 1997 to December 2017

(BIDMC) and 1979e2017 (PHC). Patients with

pancreatic neuroendocrine tumours (ICD9 code 157.4

and ICD10 code C25.4) were excluded.

To ensure inclusion of patients for whom pathology
was lacking/inconclusive and diagnosis was clinical

(based on tumour blood markers, imaging and/or multi-

disciplinary tumour board agreement) rather than his-

tologic, we chose to utilise ICD codes for case selection

and not pathology reports.

2.3. Cohort validation

To ensure model training on confirmed cases, cancer

patients were cross-checked against the BIDMC tumour

registry: patients with no corresponding registry record

were removed. Based on our experience with the

BIDMC data set, we used the BWH tumour registry

upfront to query the RPDR. Patients without a corre-

sponding PDAC ICD code (essential for index date
determination) were excluded.

2.4. Controls

Patients who interacted with BIDMC between 2005 and

2017, and were never diagnosed with PDAC, were

included in the BIDMC data control group. A PDAC
diagnosis at other sites of care is possible; however, we

assume it is unlikely given the long track history at

BIDMC for the majority of controls.

2.5. Caseecontrol matching

Controls were matched to cases based on sex and age to

limit potential confounding by these factors on other co-

morbidities (i.e. hypertension, diabetes, heart disease).

No other criteria were used for matching to maximise

the ability of machine learning to identify other

discriminating features.

In an attempt to account, at least in part, for the

relative rarity of this disease, approximately 170 age-
and sex- matched controls were sampled for each cancer

patient in the training set. For validation, control pa-

tients in PHC data were sampled by querying RDPR for

individuals who never had a PDAC diagnosis in a

~1:150 ratio to cases.
The first encounter immediately after diagnosis was

defined as the index date, and, hence, age was deter-

mined at the date of diagnosis, with all dates computed

relative to the diagnosis date.

We considered controls’ age as of their latest clinical

interaction and computed all dates relative to this index

date.

2.6. Missing data

Patients from outside practices are often referred after

PDAC diagnosis to BIDMC/BWH as these are large

tertiary-care centres. In line with this, we observed a

significantly higher rate of missing historic data in the

cancer group before PDAC diagnosis. To minimise

potential bias caused by missing information for

referred cases, we excluded patients in both data sets
that did not have an entry in their EHR at least 6

months (or earlier) before the diagnosis date (if cancer)

or the last encounter (if control). This is referred to as

‘heuristic filter’. We assume that the six-month period

immediately adjacent to PDAC diagnosis, likely repre-

sents the cancer workup period (with a safety margin).

2.7. Premature death

Collecting observation data for PDAC patients poses

the challenge of premature death (i.e. the patient dying

early on and providing limited or no observational data

in our data set). To mitigate this risk, we focused our

data collection on a major hospital system which in-

creases the volume of PDAC patients observed and by

the use of the heuristic filter to ensure our patients have

an observable history.

2.8. Prediction time cut-offs

Cut-offs of 180, 270 and 365 days before the index date

were chosen based on the assumption that the tumour

would most likely still be in its precursor or very early

stages (T1a/T1b) in this time frame. We consider pa-

tients’ history earlier than each cut-off date

(Supplementary Figure 1).

2.9. Training and testing

BIDMC data were split into training (80%) and test

(20%) splits. Hyperparameters were tuned over the

training split (see also ‘algorithms’). After choosing the

final hyperparameters, we trained on the full training

split and evaluated on the test split (reported as BIDMC

test). The entire BIDMC data were trained to produce
fully trained models.

To reduce the risk of measurement error which re-

sults from lack of a gold standard tool for comparison,

we evaluated model performance on an external vali-

dation data set: PHC data (reported as PHC test).
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Ten-fold cross-validation (CV) was performed on

PHC data, and the training folds were used to re-learn

model weights for the same diagnosis codes used in the

BIDMC model. The test folds were used for evaluation

(reported as PHC-retrained CV).

2.10. Performance metrics

Similar to previous work [20e23], models were

compared using rea under the receiver operating char-

acteristic curve (AUROC). Model sensitivity and posi-
tive predictive values (PPVs) at different specificity cut-

offs are presented, as well as an analysis of our risk

score, for our external validation.

2.11. Feature selection

In contrast to prior work, we did not predefine the set of

diagnoses used. Any diagnosis observed less than 100

times in the training split of BIDMC data was removed,

resulting in a final set of 4150 diagnosis codes. L2 reg-

ularisation and dropout were used to address possible
overfitting.

2.12. Statistical analysis

95% confidence intervals computed using the empirical

bootstrap are reported, with test observations resampled

1000 times.

AUROCs were pairwise compared using a two-sided

DeLong test, a conservative non-parametric test with

null hypothesis of no difference. A p-value below 0.05
was considered statistically significant. To correct for

multiple comparisons, the conservative Bonferroni

correction was used.

2.13. Modelling

2.13.1. Baseline model

Because we did not predefine the set of diagnoses used,

we assessed if this approach would outperform a manual

feature selection approach, by comparing our model to

a recently published one in which a logistic regression
(LR) was used over expert-identified diagnoses from

Medicare claims [20]. To build our baseline, we used the

ICD9 codes published in the study by Baecker et al.

[20] and automatically extended these with correspond-

ing ICD10 codes where possible. Demographic factors

outlined in the original paper were also included: the

patient gender, five-year age group, and race. This

model was trained on our data sets to perform com-
parisons, and is referred to as clinical LR (baseline).

2.13.2. Risk score

Multiplicative PDAC risk score were computed using

the weights learnt by LR. A patient’s risk score is
defined as the odds implied by his diagnoses and model

coefficients.

Risk groups are based on the distribution of scores in

the test split of BIDMC data, where a low risk score is

below the 75th percentile, an intermediate score is be-

tween the 75th and 99th percentile, and high score is

above the 99th percentile. Thresholds were computed

separately for each censoring period.
For ‘features’, ‘algorithms’ and ‘software, see

supplementary material.

3. Results

From the records of 1,099,321 patients that were

accessible to us from the BIDMC CDR (1997e2017),

after applying the aforementioned exclusion criteria, we

identified 594 eligible cases, and 100,787 eligible age-
and sex- matched controls (Figure 1).

PHC data include diagnoses data for 408 eligible

cases and 160,185 eligible age- and sex- matched con-

trols, from BWH inpatient and outpatient records, used

to externally validate our results (Figure 2).

Demographic and clinical indicators across BIDMC

data (594 cases, 100,787 controls) and PHC data (408

cases, 160,185 controls) are shown in Table 1. Figures 1
and 2 show flow diagrams for BIDMC data and PHC

data, respectively.

3.1. Model performance

The LR model had an area under the curve (AUC) of

0.71 (CI: 0.67e0.76) for the training set, and AUC of

0.68 (CI: 0.65e0.71) for the validation set, 365 days

before diagnosis (Figure 3 and Table 2). LR had a su-

perior performance to both the feed-forward neural
network (NN) and baseline models in AUC, as well as in

sensitivities at different specificities (Supplementary

Table 1) and in PPVs (Supplementary Table 2).

NNs and LR are not significantly different in the

BIDMC test, but the same comparison in PHC test

yields significant differences for the 180 and 365 day cut-

offs (Figure 3 and Table 2).

At the 365 day cut-off, the ‘baseline’ model had an
AUC of 0.55; CI: 0.52e0.58. The average AUC for LR

outperforms the baseline (clinical LR [baseline] in all

experiments. This difference in AUC is statistically sig-

nificant (p-value <0.05) across all cut-offs in the

BIDMC test and PHC test (Figure 3 and Table 2).

3.2. Risk score distribution

The LR model flags 2692 (CI 2592e2791) out of 156,485
individuals as high risk, 365 days in advance, identifying

25 (CI 16e36) cancer patients (Figure 4 and

Supplementary Table 3). Cancer patients’ empirical cu-

mulative distribution function (ECDF) dominates con-

trols’. Risk stratification applied to our external



Fig. 1. The flow diagram for BIDMC data. Cases were initially identified using ICD codes for PDAC. Cases and remaining controls that

did not have data going back further than 6 months from the date of PDAC diagnosis were then excluded (‘heuristic filter’). Only those

cases that were also in the tumour registry were left for analysis. Controls were sex and age matched to those cases. BIDMC, Beth Israel

Deaconess Medical Center; ICD, International Classification of Diseases; PDAC, pancreatic adenocarcinoma.
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validation data set (PHC data) showed that the high-risk

group presented a rate of cancer between three and five

times (e.g. 1.18% at 6 months cut-off), the prevalence in

our data set (0.25%), With censoring of 180, 270, and

365 days, LR identifies as high risk: 2548 (CI

2452e2651) with 30 cases (CI 19e41) out of 160,593

patients; 2634 (CI 2535e2745) with 22 cases (CI 13e32)
out of 158,518 patients; and 2692 (CI 2592e2791) with

25 cases (CI 16e36) out of 156,485 patients, respectively

(Figure 5 and Supplementary Table 3).
3.3. PDAC correlates

Supplementary Table 4 shows the top 20 (of 4150) di-

agnoses based on LR weights when trained on BIDMC

data using 365-day censoring. Diagnoses include known

correlates, such as diabetes, personal history of cancer,
and tobacco use, and novel correlates such as hyper-

tension. Complete model weights for LR can be down-

loaded from https://github.com/ josepablocam/pdac-

diag-model-matched/tree/master/model-weights.
4. Discussion

In this study, we developed a PDAC risk model using

EHR diagnoses and evaluated it on an external data set.

Importantly, we show that high-risk individuals can
be identified 6e12 months before PDAC diagnosis, a

time ‘window’ in which tumour detection would likely

allow for curative resection [24,14]. A time period closer

to the actual diagnosis date would likely be less clinically

meaningful.

Training on a broad set of diagnoses, similar to the

‘data-driven’ approach taken by Barak-Corren et al. [25]

and Razavian et al. [26], rather than on a handcrafted
feature set, as used in other models [20,22], improved

discrimination. Internal validation on the test split of

BIDMC data showed that LR obtained a higher

AUROC (0.71) than clinical LR (0.60) a year befiore

diagnosis, and this discrimination differential general-

ised to a separate patient population (PHC data).

Top diagnoses associated with PDAC incidence

included known correlates such as diabetes mellitus,
obesity, and smoking, but interestingly also previously

unknown correlates, such as certain skin conditions

and hypertension. We believe these factors could serve

https://github.com/%20josepablocam/pdac-diag-model-matched/tree/master/model-weights
https://github.com/%20josepablocam/pdac-diag-model-matched/tree/master/model-weights


Fig. 2. The flow diagram for PHC data. Cases were initially identified using the BWH tumour registry and cross-checked with PDAC ICD

codes. These were matched by age and sex to controls. The ‘heuristic filter’ was applied to cases and controls to exclude referrals. BWH,

Brigham and Women’s Hospital; ICD, International Classification of Diseases; PDAC, pancreatic adenocarcinoma; PHC, Partners

HealthCare.

L. Appelbaum et al. / European Journal of Cancer 143 (2021) 19e3024



Table 1
Patients characteristics.

Stat Value BIDMC

cases

BIDMC

controls

PHC

cases

PHC

controls

Age <50 26 (4.4) 4418 (4.4) 18

(4.4)

12,642

(7.9)

Age 50e60 91 (15.3) 15,443

(15.3)

65

(15.9)

25,377

(15.8)

Age 60e65 63 (10.6) 10,689

(10.6)

63

(15.4)

20,002

(12.5)

Age 65e70 93 (15.7) 15,778

(15.7)

67

(16.4)

22,345

(13.9)

Age 70e75 113

(19.0)

19,167

(19.0)

53

(13.0)

24,173

(15.1)

Age 75e80 80 (13.5) 13,572

(13.5)

71

(17.4)

17,736

(11.1)

Age >80 128

(21.5)

21,720

(21.6)

71

(17.4)

37,910

(23.7)

Gender Female 307

(51.7)

52,089

(51.7)

219

(53.7)

83,997

(52.4)

Gender Male 287

(48.3)

48,698

(48.3)

189

(46.3)

76,188

(47.6)

Race American Indian 1 (0.2) 93 (0.1) 2 (0.5) 220 (0.1)

Race Asian 19 (3.2) 8461 (8.4) 5 (1.2) 3036

(1.9)

Race Black 51 (8.6) 7977 (7.9) 31

(7.6)

8379

(5.2)

Race Latino 14 (2.4) 3485 (3.5) 12

(2.9)

4817

(3.0)

Race Middle Eastern 0 (0.0) 26 (0.0) 0 (0.0) 2 (0.0)

Race Native American 18 (3.0) 6551 (6.5) 3 (0.7) 2421

(1.5)

Race Pacific Islander 2 (0.3) 52 (0.1) 0 (0.0) 77 (0.0)

Race Unknown 30 (5.1) 4176 (4.1) 23

(5.6)

30,756

(19.2)

Race White 459

(77.3)

69,966

(69.4)

332

(81.4)

110,477

(69.0)

Diagnoses Abdominal pain 248

(41.8)

20,477

(20.3)

172

(42.2)

18,029

(11.3)

Diagnoses Angina pectoris 30 (5.1) 6359 (6.3) 17

(4.2)

5140

(3.2)

Diagnoses Asthma 69 (11.6) 7326 (7.3) 33

(8.1)

6086

(3.8)

Diagnoses Atherosclerotic

heart disease

116

(19.5)

12,551

(12.5)

66

(16.2)

12,227

(7.6)

Diagnoses Calculus gallbladder 55 (9.3) 3197 (3.2) 30

(7.4)

2686

(1.7)

Diagnoses Chest pain 114

(19.2)

15,517

(15.4)

130

(31.9)

24,394

(15.2)

Diagnoses Chronic pancreatitis 54 (9.1) 694 (0.7) 27

(6.6)

451 (0.3)

Diagnoses Coronary heart

disease

1 (0.2) 119 (0.1) 0 (0.0) 48 (0.0)

Diagnoses Diabetes mellitus 222

(37.4)

22,474

(22.3)

108

(26.5)

13,518

(8.4)

Diagnoses Emphysema 12 (2.0) 2464 (2.4) 9 (2.2) 2276

(1.4)

Diagnoses Essential

hypertension

382

(64.3)

49,673

(49.3)

196

(48.0)

35,454

(22.1)

Diagnoses Family history

pancreatic cancer

35 (5.9) 5607 (5.6) 16

(3.9)

1842

(1.1)

Diagnoses Jaundice 71 (12.0) 494 (0.5) 75

(18.4)

502 (0.3)

Diagnoses Stroke 42 (7.1) 6842 (6.8) 40

(9.8)

8226

(5.1)

Diagnoses Ulcer 24 (4.0) 2075 (2.1) 19

(4.7)

1287

(0.8)
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as a valuable candidate list for future clinical

investigation.

ICD codes are a systematic list of medical classifica-

tions, compiled by the World Health Organization, and

used in healthcare systems worldwide. These codes

represent a simplification of the patient’s clinical

status and include information on diseases, signs,

symptoms, complaints, abnormal laboratory findings,
and social circumstances (http://www.who.int/

classifications/icd/factsheet/en/).

Models based on ICD codes, such as ours, enable

reproduction and can facilitate inexpensive imple-

mentation [28]. In contrast, previous PDAC models

have focused on data that are less readily available, such

as survey data or previous caseecontrol studies [21,22].

ICD codes are naturally limited: they are influenced
by institutional/country practices, may conflate disease

phenotypes, and are only available for patients that

interact with an institution with appropriate record

keeping. However, numerous risk models have proven

their usefulness [29e31].

To mitigate the impact of ICD codes on our ability to

identify true PDAC cases during data collection, we

validated ICD-coded cases with tumour registries. This
step addressed potential false positives in our training

data. We emphasise that this manual validation is only

required to ensure valid training, but is not required for

end users.

Although our validation on an independent data set

demonstrated generalisation, it was applied only to the

American population. Therefore, additional prospective

validation across a larger range of institutions and
diverse populations is required. In spite of this, we

believe that it may be applicable to at least some of the

European population, as demonstrated by prior work

(18) utilising a similar approach to ours, performed on a

UK population database.

We would also like to point out that the use of

observational healthcare data (e.g. EHR) to learn pre-

dictive models in inevitably affected by the systemic is-
sues prevalent in our healthcare system: in particular the

varying level and quality of access to health care in

vulnerable populations. For our study, we sought to

mitigate this issue by collecting as large a data set as

possible from two different major hospital systems in a

major urban centre, where we had a better chance

observing data for patients in non-White population (a

key group in the USA). However, because published
literature [32] has shown significant differences in PDAC
Counts are performed with the latest values for each patient, without

censoring based on the prediction cut-off date. Percentages are

calculated within each case/control group, as appropriate. Population

characteristics reflect hospital population distribution in the Boston

metropolitan area. BIDMC, Beth Israel Deaconess Medical Center;

PHC, Partners HealthCare.

http://www.who.int/classifications/icd/factsheet/en/
http://www.who.int/classifications/icd/factsheet/en/


Fig. 3. Comparison of performance across models. (a) Comparison of AUC across the three models: clinical LR, LR, and NNs. Clinical

LR refers to a published model using pre-selected features, which we refit to matching diagnostic codes from our data set, with the purpose

of establishing a baseline to which we could compare our models developed using a data-driven approach to manual feature selection. LR

refers to the models developed, validated and retrained using logistic regression. The NN refers to the models using feed-forward neural

networks. The BIDMC test presents performance on the test split of BIDMC data for models trained on the training split of BIDMC data.

The PHC test presents performance when models are trained on all of BIDMC data and evaluated on PHC data. PHC-retrained CV

presents 10-fold CV performance where the training folds are used to relearn weights. Note that LR performs similarly in the BIDMC test

and PHC test, demonstrating that the model can be applied to new data. (b) Statistically significant (p-value <0.05) DeLong tests are

noted with an asterisk. The Delong test is used, given that AUC is computed over the same population. Bonferroni adjustment was

performed. The BIDMC test AUCs for LR and NNs, when compared with those of clinical LR (baseline), are significantly different for all

cut-offs, while they are not significantly different from each other. (c) PHC test AUCs for LR, when compared with those of clinical LR

(baseline), are statistically different for all cut-offs. LR and NN results are significantly different from each other for 180 day and 365 day

cut-offs. AUC, Area under the curve; BIDMC, Beth Israel Deaconess Medical Center; LR, logistic regression; NN, neural network; PHC,

Partners HealthCare.
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Table 2
Summary of AUCs across BIDMC data and PHC data.

Model Cut-

off

BIDMC test PHC test PHC-

retrained

Clinical LR

(baseline)

180 0.61 (0.56

e0.66)

0.56 (0.53

e0.59)

0.59 (0.49

e0.69)

LR 180 0.72 (0.67

e0.77)
0.70 (0.67

e0.73)
0.76 (0.69

e0.84)

NN 180 0.73 (0.69

e0.78)

0.65 (0.63

e0.68)

0.76 (0.69

e0.83)

Clinical LR

(baseline)

270 0.61 (0.56

e0.66)

0.54 (0.51

e0.57)

0.61 (0.52

e0.71)

LR 270 0.72 (0.68

e0.77)

0.68 (0.66

e0.71)

0.76 (0.68

e0.84)

NN 270 0.76 (0.72

e0.80)

0.69 (0.66

e0.72)

0.75 (0.68

e0.82)

Clinical LR

(baseline)

365 0.60 (0.55

e0.65)

0.55 (0.52

e0.58)

0.61 (0.51

e0.71)

LR 365 0.71 (0.67

e0.76)

0.68 (0.65

e0.71)

0.75 (0.68

e0.84)

NN 365 0.76 (0.72

e0.80)

0.60 (0.57

e0.63)

0.74 (0.67

e0.81)

Values in parentheses correspond to 95% confidence intervals esti-

mated by bootstrapping.

BIDMC, Beth Israel Deaconess Medical Center; LR, logistic regres-

sion; NN, neural network; PHC, Partners HealthCare.
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risk for specific groups, this topic should be further

explored in future work.

Furthermore, our observations are limited to a pop-

ulation receiving care in either the hospital outpatient

clinics or as inpatients, where diagnoses’ distributions
Fig. 4. Distribution of risk scores produced by the LR model. (a) Distri

split) and (b) PHC data. As expected, cancer patients’ risk scores domi

in BIDMC data (test split), as LR was trained on BIDMC data. Vi

Deaconess Medical Center; LR, logistic regression; PHC, Partners He
may differ from those interacting with community-based

services only.

PDAC incidence in the general population is low [1].

We attempt to reflect this in our population by using an

imbalance of cases to controls. Although our resulting

prevalence is still higher, it represents a methodological

improvement over most existing PDAC modelling

literature [20e22,27].
Our risk groups are based on distribution percentiles

and are intended exclusively to analyse properties of our

score. Risk stratification for clinical practice can start

with our continuous score, but thresholds should be

context-dependent and appropriately reflect clinical and

cost implications [33].

We did not exploit the longitudinal nature of EHRs,

as our features are summarised by aggregating over
time. Additional clinical indicators, such as lab tests,

may improve performance further but this hypothesis

remains to be tested. We highlight that despite these

opportunities, granular use of EHR has well-known

challenges [16], including data quality [34e36], which

must be addressed.

4.1. Implications for future research and clinical practice

The only existing guidelines for PDAC screening are
limited to patients with an inherited predisposition. The

screening inclusion criteria are set at a fivefold increased

risk relative to the general population (or a 5% absolute

risk) [37]. Overall, prediction of PDAC in the general
bution of risk scores produced by LR model for BIDMC data (test

nate those of control patients’. This difference is more pronounced

rtually all patients’ risk score are in (0, 5]. BIDMC, Beth Israel

althCare.



Fig. 5. The rate of cancer and fraction of population, in PHC data based on risk score stratification. (a) The rate of cancer in the risk group

and (b) The fraction of population in the risk group. Risk score groups are defined using percentile-based thresholds computed from the

test split of BIDMC data. Low is defined as below 75 percentile score, intermediate as between 75th and 99th percentile, and high as above

99th percentile. A total of six comparisons across the three time cut-offs (low versus intermediate, intermediate versus high, and the time

cut-offs) were performed. We used Fisher’s exact test (The null hypothesis is that the count of true cancer/control patients is independent

of the risk group), and adjusted p-values accordingly using Bonferroni adjustment. We use ‘)))’ to note a significance <0.001, ‘))’
<0.01, ‘)’ <0.05, and ‘ns’ when there is no statistical significance. The low/intermediate comparison is always statistically significant, and

the intermediate/high is significant for 180 and 365 days. The intermediate/high comparison is not significant for 270 days after carrying

out the Bonferroni adjustment. PHC, Partners HealthCare.
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population, as opposed to focussing on known risk

groups, is challenging and resulted in a relatively low

AUC. However, we believe that PDAC risk modelling

efforts should aim to provide predictive performance

that matches (or outperforms) that provided by these

inclusion criteria, delivering an inexpensive and sys-

tematic approach to identify patients for further

screening.
We present a first step towards this goal. A two-step

screening approach can be potentially utilised to identify

high-risk patients who would benefit from PDAC

diagnostic workup. First, this model can be imple-

mented in clinical practice at the point of care, as a

decision support system (DSS), embedded into existing

hospital EHR systems. Next, the DSS would alert pri-

mary care physicians of individuals at high risk for
developing PDAC and trigger physician action, such as

additional biomarker or genetic testing. This approach

can be prospectively validated in future work.
5. Conclusion

We propose and externally validate a model that uses

routinely available diagnostic codes to identify in-

dividuals at risk for pancreatic cancer 6e12 months

before diagnosis. Our risk score could potentially be

used as an initial filter, preceding additional biomarkers
or genetic testing, to select patients from the general

population for closer surveillance.
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