
Program Fracture and Recombination for Efficient
Automatic Code Reuse

Peter Amidon
School for Independent Learners

Los Altos, CA 94022

Eli Davis, Stelios Sidiroglou-Douskos, and Martin Rinard
MIT EECS and MIT CSAIL

Cambridge, MA 02139

Abstract—We present a new code transfer technique, program
fracture and recombination, for automatically replacing, delet-
ing, and/or combining code from multiple applications. Benefits
include automatic generation of new applications incorporating
the best or most desirable functionality developed anywhere,
the automatic elimination of errors and security vulnerabilities,
effective software rejuvenation, the automatic elimination of
obsolete or undesirable functionality, and improved performance,
energy efficiency, simplicity, analyzability, and clarity.

The technique may be particularly appropriate for high
performance computing. The field has devoted years of effort to
developing efficient (but complex) implementations of standard
linear algebra operations with good numerical properties. At the
same time these operations also have very simple but inefficient
implementations, often with poor numerical properties. Program
fracture and recombination allows developers to work with the
simple implementation during development and testing, then use
program fracture and recombination to automatically find and
deploy the most appropriate implementation for the hardware
platform at hand. The benefits include reduced implementation
effort, increased code clarity, and the ability to automatically
search for and find efficient implementations with good numerical
properties.

I. INTRODUCTION

We present a new technique, program fracture and recom-
bination, for automatically locating and transferring computa-
tions between multiple applications. This technique promises
to significantly advance our ability to more productively lever-
age the enormous amount of existing software. Even more,
program fracture and recombination holds out the promise
of automatic program improvement and evolution without the
need for any developer or potentially even any human involve-
ment. Starting with multiple programs, program fracture and
recombination operates as follows:

• Fracture: Fracture the programs into shards — pieces
of the programs that implement a computation or func-
tionality. The granularity of the fracture determines
the size of the shards. Potentially useful granularities
include functions, procedures, classes, abstract data
types, modules, loops, and program slices. Program
fracture typically includes the encapsulation of each
shard into its own separately invocable program for
testing, analysis, and exploration.

• Characterization: Characterize the behavior and
characteristics of each shard. Examples include run-
ning the encapsulated shard on automatically gen-
erated inputs to obtain example input/output pairs,

recording input/output pairs for the shard as invoked in
context by executions of the program in which it was
originally embedded, static analyses which partially
or completely characterize the semantics of the shard,
abstractions of the semantics obtained by generalizing
the recorded input/output pairs, and specifications,
either inferred or provided by the developer.

• Shard Matching and Replacement: One potential
application replaces an original shard with a better
replacement shard. There are many axes along which
the replacement shard may be better — it may be more
efficient, have better numerical properties, be simpler
to understand, be endowed with additional capabilities
such as the ability to execute successfully in parallel
or distributed environments, have more error checking
code, be more secure or better preserve privacy, or be
missing undesirable or irrelevant functionality.

• Shard Insertion: Another potential application trans-
fers functionality from one program to another. In this
application a shard is taken from a donor program
and inserted into a recipient. Vertical transfers take
place between different versions of the same project.
Horizontal transfers take place between independent
projects (or independent forks of the same project).
The donor and recipient can even be the same system.
Scenarios include transfering functionality across soft-
ware systems and correcting errors. CodePhage, which
automatically locates and transfers security checks
across multiple applications, implements a form of
shard insertion [1].

• Shard Rejuvenation: Software projects often include
obsolete optimizations for extinct hardware platforms.
The resulting code complexity can defeat optimizing
compilers and hinder the understandability, extensibil-
ity, analyzability, and maintainability of the system.
Shard rejuvenation can replace the complex, obsolete
version of the code with a simpler version.

• Shard Removal: As software evolves, previously
desirable functionality can often become irrelevant.
Potential drawbacks include difficulty analyzing the
program and residual errors and vulnerabilities left
over in the now irrelevant code [2], [3]. Shard removal
can automatically eliminate the now undesirable code
and functionality. It can also eliminate functionality
that should never have been introduced into the appli-
cation at all.



Given the ease of obtaining sample inputs and outputs,
either by automatically generating the input or by recording
inputs presented to shards in context during executions of the
enclosing programs, we expect input/output driven shard iden-
tification and transfer to play a prominent role. Input/output
driven approaches can also promote the replacement of shards
with other shards with different semantics — for example,
the replacement of shards with errors or incomplete imple-
mentations with shards that have fewer errors or implement
more cases. One straightforward approach to implementing
this kind of shard replacement with analysis/semantics-based
approaches would involve a concept of specification ordering
and desirability.

II. CASE STUDIES

We next discuss two case studies that highlight the po-
tential benefits of code fracture and recombination for high
performance computing. These case studies are based on our
LLVM implementation of code fracture and recombination
(our technical report presents two more case studies [4]).

A. Motivation

Many computations have straightforward basic implemen-
tations but very complex maximally efficient implementations.
Particularly prominent examples include sorting, linear alge-
bra, and linear programming. The availability of powerful but
difficult to program hardware such as graphics accelerators
can further increase the distance between basic and maximally
efficient implementations.

Program fracture can enable developers to write a basic
implementation, in some cases by simply copying several
lines from a textbook. Fracturing their program can expose
the basic implementation as one of the shards. Fracturing
other programs can expose replacement shards that implement
the same functionality (or even approximate versions of the
functionality). Replacing the original basic shard with the more
efficient shard can automatically improve the performance
(and, for many numerical computations, properties such as
stability and accuracy) without the need for the developer to
manually investigate the performance, find substitutes, or refine
the implementation.

High performance linear algebra subcomputations com-
prise a particularly compelling application of this basic idea.
The basic matrix multiply computation, for example, can be
expressed as a simple triply nested loop. But the field has
devoted decades of effort to obtaining efficient matrix multiply
implementations. Standard techniques include parallelization,
blocking for multiple levels of the memory hierarchy, and
specialized implementations for GPU platforms.

Program fracture and recombination can provide one way
to automatically search for and find these efficient implemen-
tations. In addition to serving as a code search mechanism, this
approach can reduce the implementation effort and increase the
clarity, conciseness, and maintainability of the source code.

B. Code Fracture and Recombination Implementation

Our current LLVM implementation first instruments the
program to record the values of the parameters passed into

Benchmark Size Original Time Shard Replaced Time Ratio
Matrix Multiply 100x100 0.1 0.1 1
Matrix Multiply 250x250 16.1 11.1 1.45
Matrix Multiply 500x500 167.6 88.7 1.89
Matrix Multiply 750x750 982.7 336.5 2.92
Matrix Multiply 1000x1000 2014.8 794.9 2.53
Linear Solver 100x100 0.4 0.7 0.57
Linear Solver 250x250 6.3 5.3 1.19
Linear Solver 500x500 56.2 36.9 1.52
Linear Solver 750x750 247.1 119 2.08
Linear Solver 1000x1000 784.3 269.4 2.91

TABLE I. PERFORMANCE RESULTS FOR CASE STUDIES. TIMES IN
MILLISECONDS AVERAGED OVER TEN RUNS. NUMBERS COLLECTED ON A

SURFACE PRO 2 512G WITH AN INTEL CORE I5-4300U PROCESSOR (2
CORES, 4 THREADS, 1.9 GHZ PROCESSOR BASE FREQUENCY).

each function on entry and the values of the parameters and the
return value on exit. We also use a modified implementation
of the C memory allocation routines (malloc, calloc, free)
that records the sizes of allocated blocks of memory. The
instrumentation uses these sizes to determine the number of
elements in dynamically allocated memory blocks passed as
parameters to each function. The implementation also records
the type signature of each function.

Our implementation then runs the program on provided
representative inputs and records the resulting parameter values
on function entry and exit. To avoid generating an over-
whelming amount of data, the current implementation caps
the number of recorded calls at five.

The implementation then searches its database of candidate
shards. It first searches the database to find shards with
compatible types for the invoked functions. It then executes
each candidate shard on the recorded parameter values to
determine if the shard is (if desired, approximately) seman-
tically compatible with one of the invoked functions. For each
candidate shard it records timing information and uses that
information to find the shard that performs best on the recorded
inputs.

The final step is to substitute the candidate shard with the
best performance in for the corresponding original function.
Our current implementation supports both shard substitution
at the compilation stage (leaving the source code intact), or
shard substitution that changes the source code to explicitly
invoke the replacement shard. Our current shard library is
populated with shards that invoke implementations of linear
algebra operations from the BLAS and LAPACK libraries.

It is also possible to create an interactive shard selection
tool that would enable the developer to explore properties of
various matching candidate shards, then (if desired) select a
replacement shard. It is also possible to recombine shards
dynamically, with the shard choice driven by dynamic values
such as problem size or other characteristics. It is even possible
to deploy shards speculatively — for example, first trying a
more efficient shard that may handle fewer cases, then backing
off to a less efficient but more reliable shard if the first fails.

C. Matrix Multiply

Matrix multiply is a standard computational kernel in many
scientific computations. The textbook dense matrix multiply
algorithm consists of a simple triply nested loop (Figure 1). But



#define index(M,width,i,j) M[i*width+j]

void multiply(double *A, int nA, int mA, double *B,
int nB, int mB, double *C, int nC, int mC) {

for (int i = 0; i < nA; i++) {
for (int j = 0; j < mB; j++) {

index(C,mC,i,j) = 0;
for (int k = 0; k < mA && k < nB; k++) {

index(C,mC,i,j) +=
index(A,mA,i,k) * index(B,mB,k,j);

}
}

}
}

Fig. 1. Simple Matrix Multiply Source Code

#define index(M,width,i,j) (M[i*width+j])

void mult(double *A, int mA, int nA, double *b,
int nB, int i, double c) {

for (int j = 0; j < nA; j++) {
index(A, nA, i, j) *= c;

}
b[i] *= c;

}

void add_mult(double *A, int mA, int nA, double *b,
int nB, int source, int dest, double mult) {

for (int j = 0; j < nA; j++) {
index(A, nA, dest, j) +=

(index(A, nA, source, j) * mult);
}
b[dest] += b[source] * mult;

}

void solve(double *A, int mA, int nA, double *b,
int nB, double *x, int nX) {

for (int idx = 0; idx < nA; idx++) {
double a = index(A, nA, idx, idx);
int row = idx;
mult(A, mA, nA, b, nB, row, 1.0/a);
for (int i = row + 1; i < mA; i++) {

double f = index(A, nA, i, idx);
add_mult(A, mA, nA, b, nB, row, i, -f);

}
}
for(int idx = nA - 1; idx > 0; idx--) {
for (int i = idx - 1; i >= 0; i--) {

double f = index(A, nA, i, idx);
add_mult(A, mA, nA, b, nB, idx, i, -f);

}
}
for (int i = 0; i < nB; i++) {
x[i] = b[i];

}
}

Fig. 2. Simple Linear Equation Solver Source Code

the field has invested substantial time and effort in developing
complex, heavily optimized matrix multiply implementations.
In this case study we consider reusable shards from the BLAS
and LAPACK linear algebra packages, which include imple-
mentations of a variety of linear algebra operations including
dense matrix multiply.

We start with a program that uses the standard triply
nested matrix multiply loop (source code in Figure 1). Using
two 1000x1000 matrices as input, we apply program fracture
and recombination, which finds the BLAS 3 matrix multiply

implementation and replaces the triply nested loop version with
the BLAS version. Table I presents the performance results
for a variety of matrix sizes. In general, the larger the matrix
size, the larger the performance increase. At larger matrix sizes
the shard replaced version runs over two times faster than the
original version.

We note that the BLAS implementation may not be the
most efficient implementation available (alternative, potentially
more efficient implementations may be obtained, for example,
by autotuning [5]). The goal is to start with a simple but
potentially inefficient implementation, then identify the best
available shard in the shard library (in this case the BLAS im-
plementation). Populating the shard library with more efficient
shards would enable larger performance improvements.

D. Linear Solver

Our linear solver benchmark generates and solves a system
of linear equations determined by a 1000x1000 matrix and
a 1000x1 vector. The original program implements a simple
dense linear solver based on Gaussian elimination without piv-
oting (Figure 2). The replacement shard invokes the LAPACK
linear solver. Table I presents the resulting performance results
for a variety of matrix sizes. In general, the larger the matrix,
the larger the performance increase available via the LAPACK
implementation. The shard replaced version runs over two
times faster than the original version for larger matrix sizes.
Because it is more extensively engineered, the shard replaced
version also exhibits superior numerical properties — we have
found matrices for which the original version generates a
solution vector of NaNs, while the replaced version generates
an accurate solution.

E. Discussion

These two case studies illustrate how code fracture and
recombination can enable performance increases and improve
numerical properties. We are in effect proposing a new code
search mechanism — instead of reading documentation or
typing queries into a search engine, a developer would im-
plement simple versions of the desired computations, then
use code fracture and recombination to automatically find
and replace the simple implementations with more complex
implementations that feature better performance and numerical
properties.

Researchers have spent significant effort developing opti-
mized implementations of linear algebra operations. Specific
techniques include explicit blocking for the cache hierarchy
(with the goal of performing O(N2) computation out of the
cache for O(N) communication between the adjacent levels
of the memory hierarchy) [6], cache-oblivious algorithms that
use divide and conquer algorithms that naturally perform
the majority of the computation out of the cache [7], and
autotuning algorithms that explore an automatically generated
space of implementations to find the one that (empirically)
performs the best on the current hardware platform at hand [5].

Our goal is not to obtain new algorithms with better
performance or other characteristics than algorithms obtained
by these existing means. Our goal is instead to develop a
system that helps programmers automatically find and use such
sophisticated and efficient versions starting from a simple but
inefficient version.



III. POTENTIAL USES

Our case studies emphasize the use of code fracture and
recombination for improving performance (and potentially
numerical properties) of software systems. We next discuss
a variety of other uses for code fracture and recombination.

A. Software Transparency and Simplicity

One drawback of optimized code is its complexity and
opacity — an efficient autotuned implementation of a basic
operation such as FFT can include dynamic code generation
and compilation, exploration of multiple alternatives, and mul-
tilingual implementations [8]. The opacity can make it difficult
to understand the semantics of the code, how it operates,
and the role that it plays in the computation. The complexity
can induce extraneous dependences that impair portability and
the ability to operate on specialized platforms. Systems that
dynamically generate and compile different versions of the
code (autotuners are a prominent example) may require the
presence of a compiler, a significant requirement that not all
computing platforms can satisfy. Appropriate fractures could
automatically find a simpler, more transparent replacement
with fewer dependences. Enhanced code transparency and
portability are but two of the potential benefits.

B. Software Aging and Shard Rejuvenation

Of course, optimization can also become counterproduc-
tive over time — as the characteristics of the computational
platform change, optimizations targeted at previous platforms
often persist in the code even though they have no remaining
purpose. Too often the result is a complex block of code
optimized for an obsolete hardware platform. Another source
of counterproductive software aging is obsolete functionality
that remains (potentially disabled) in the current version of the
software. Like obsolete optimizations, obsolete functionality
can add complexity and obscure the purpose and operation
of the software. Both obsolete optimization and obsolete
functionality are simply examples of how undesirable software
changes accrete over time, increasing software complexity and
making it difficult to understand or modify the software.

This accretion has known negative consequences — as
software systems age, they are known to become increasingly
difficult for human developers to maintain [9]. At some point,
the code becomes so difficult to change that the probability
that a given change will introduce new unacceptable behavior
exceeds the probability that the change will accomplish its
desired goal.

Program fracture and recombination can help promote
software rejuvenation. Identifying more modern, transparent,
and relevant replacement implementations for specific shards,
then replacing the aging original shard with the younger
replacement shard can help extend the useful lifetime of the
system.

C. Error Handling and Corner Case Code

Error handling and corner case code can be notoriously dif-
ficult to develop and get right, in part because the situations in
which the code is relevant can be difficult to envision. Program
fracture and recombination supports a model of development in

which programmers write code that is only designed to handle
the common case and elides the error handling and corner case
code that can obscure the structure, purpose, and operation of
the software. The system can then automatically discover and
replace the original shard with a more elaborately developed
shard that includes error handling and corner case code. It
is also possible to leave the core computation itself in place,
then enhance the computation with automatically located and
transferred checks from other programs [1].

Note that this approach can support quickly engineered
prototype components that are designed to work only in limited
contexts or for limited use cases. A linear program solver
taken directly from a textbook, for example, may work only
for very small linear programs, with phenomena such as
numerical instability crippling the solver for larger problems.
But a textbook linear program solver can define the desired
behavior for small problems, making it possible to identify and
use a more intensively engineered replacement linear program
solver. Given that developing a robust solver can take years
or even decades [10], the potential productivity enhancements
are substantial.

It is even possible to work with shards that implement
only a few hard-coded cases or rely on humans to provide
the desired functionality.

D. Multiple Code Views

One drawback of including error handling and corner case
code is that it obscures the structure and purpose of the
software, making the software more difficult to understand.
One way to attack this problem is to replace the original
complex code with a simpler shard that focuses on the common
case. The concept is to automatically generate simpler, easier to
understand code views with multiple perspectives designed to
support multiple different purposes. Instead of a single mono-
lithic code base that includes all of the code and functionality,
whether relevant or not, this perspective promotes a fluid set
of views designed to satisfy different needs and goals. One
particularly noteworthy aspect is the fluid view of program
semantics and the recognition that technically incorrect or
incomplete programs are, for many purposes, more useful than
more correct or complete programs. We have focused here
on the elimination of potentially confusing error handling or
corner case code as a way to enhance the ability of a developer
to identify and work with the important core functionality
of the program. But excess error handling and corner case
code can also impair performance or introduce undesirable
dependences on other software or system components.

E. Shard Analyzability

Complex code (whether resulting from optimization, aging,
the inclusion of error handling and/or corner case functionality)
can significantly impair the static analyzability of the program.
Replacing this complex code with simpler shards can improve
the analyzability of the program and promote the automatic
extraction of useful information that can provide insight into
the software and its properties. The success of accurate analysis
stubs in enabling the successful information flow analysis of
Android applications provides some indication of the potential
for improved static analyzability that shard replacement can
deliver [11].



One particularly intriguing aspect of program fracture and
recombination is the potential it offers to simplify not just
the code, but also the analysis results. Simpler code can
be easier to analyze, enhancing the precision and scalabil-
ity of the overall analysis. Sound static analyses reflect the
complete semantics of the program. Substituting shards with
simpler semantics can simplify the analysis results and enhance
compositionality and scalability. Devising static analyses that
analyze the program along several different axes (for example,
effects on different parts of the program state and different
aspects of the semantics) and using the axes to place the
resulting analysis result within a projectable space of analysis
results can promote the effective elimination of irrelevant
analysis components. In this way the system can deploy even
sound program analyses and use the analysis results to drive
shard replacement algorithms that work with compatible but
not semantically equivalent shards.

F. Enhanced Capabilities

Like optimization, capabilities such as distribution or the
ability to operate safely in parallel contexts can require signif-
icant development effort. Program fracture and recombination
can enable developers to write simple, less capable versions of
core functionality, then automatically replace this functionality
with more extensively engineered versions that can operate
successfully in new contexts or exploit resources available in
specialized contexts.

G. Functionality Elimination via Shard Removal

Programs may often contain components that have unde-
sirable functionality. Security vulnerabilities [2], the ability to
process a larger than desired set of inputs, logging or error
reporting code that interacts with an obsolete subsystem, or
even certain features such as support for SNMP that may no
longer be desirable [3] can all be seen as undesirable func-
tionality. Replacing the shard that implements the undesirable
functionality with the null shard that does nothing can improve
the program by eliminating the undesirable functionality. It
may also be possible, of course, to find other replacement
shards that implement the desired functionality but not the
undesired functionality.

H. Functionality Enhancement via Shard Insertion

It is also possible to transfer shards directly into programs
to obtain software hybrids with the combined functionality
of both programs. This insertion would take a shard or
shards from a donor and insert them into a recipient at an
appropriate insertion point. There would be no replacement
shard — the new shard or shards would enhance the recipient
with new functionality not present before the insertion of the
shard. CodePhage implements this shard transfer capability [1].
µScalpel transplants developer-identified procedures from a
donor into a host [12].

I. Shards as Specifications and Code Search

Program fracture and recombination promotes the view of
shards as specifications. It is often straightforward to code up
enough of a computation to enable the program fracture and
replacement system to find an appropriate replacement shard.

In this way shards can serve as specifications that enable effec-
tive code search. Our two case studies demonstrate how this
capability can be used to find sophisticated implementations
of standard linear algebra operations.

J. Dependence Elimination

One of the primary goals of program fracture is to obtain
shards that are freed from dependences they may have had on
parts of the original program that should not be transferred
with the shard. One way to realize this goal is to break
the program into shards in such a way that each shard
omits these dependences. In some cases this may require an
intelligent fracture process that explicitly finds dependences
on undesirable parts of the program, then eliminates the code
that creates the dependence. The fracture may simply create a
stub that breaks the dependence while still enabling the rest of
the code with transitive dependences to execute, it may trace
out and remove code that transitively depends on the excised
dependence, or it may employ some combination of the two
techniques.

IV. COMPATIBLE SHARDS AND ADAPTERS

Our current implementation works with compatible shards
that have the same type signatures. There are several ways to
generalize this technique to include more replacement shards.
In general, we expect the automatic generation of adapters and
shims that enable replacement shards that are not immediately
precisely compatible. These techniques can also enable the
automatic insertion of shards into contexts that require some
adaptation before the shard can be automatically inserted [13].

Explicit Polymorphism: Some programming language con-
structs immediately support this kind of replacement. The use
of explicitly polymorphic constructs such as C++ templates,
for example, promotes the construction of specializable shards
that can work in a variety of contexts. The use of parameter or-
der canonicalization (by, for example, defining a total order on
program types and working with adapters that expose the shard
interface in that total order) can enable parameter reordering
adapters that again enable the discovery and replacement of
shards with otherwise incompatible parameter orders.

Data Structure Translators: The next step is data structure
translation adapters. One example is adapters that perform
array index translations to enable replacement shards to work
with different array indexing schemes. One class of adapters
changes the way the arrays are stored in memory, leaving the
indexing code of the replacement shard in place. Another class
leaves the storage scheme in place but statically analyzes and
transforms the code of the replacement shard to work with the
storage scheme of the program into which it is inserted.

It is also possible to leverage abstract data types —
many abstract data types offer implementations of equivalent
semantics with different performance or other tradeoffs. In
some cases the developer may have used only a subset of
the functionality of one abstract data type that could be im-
plemented more efficiently by a less general but more efficient
other abstract data type. In all of these cases the recombination
can use the data structure semantics to recognize compatible
shards from different data structures, with each shard in this
case consisting of subsets of the abstract data types. This



example shows that shards do not need to consist of single
procedures or methods — they can be modules, related groups
of code, or even arbitrary otherwise disconnected pieces of
code extracted from single or multiple applications.

Specification-Based Compatibility: It is also possible to
base compatability on specifications, either provided by the
developer as part of the software development process or
automatically inferred by an analysis (either static or dynamic).
Shards with the same specification are interchangable. Factor-
ing the specifications along different axes, where each axis
captures a different aspect of the behavior of the shard such
as side effects on different parts of the system, input or output
effects, logging effects, or various aspects of the semantic
properties of the shard.

V. EXTERNAL DEPENDENCES

Shards may often have external dependences on function-
ality present in their original context but not present in their
new context. Examples include invoked modules and externally
visible state such as global variables. These dependences may
require importing into the recipient and/or conflict resolution
along with appropriate initialization to operate properly.

It is possible to use program analysis to automatically
identify and extract accessed global variables. The global
variable may be initialized to an appropriate value either
by program analysis or by recording values that appear in
executions of one of the programs. Note that the program
fracture and recombination system may need to pull in data
structures such as hash tables and trees that store auxiliary data
upon which the shard depends. Another approach is to trace the
code in the original program that initializes the global variables
or other state upon which the shard depends, then transfer and
insert that code as well. Note that the process may be recursive
— the initialization code may access files or other external
resources. In that case the program fracture and recombination
system can transfer the files or external resources, simulate the
effect they have on the system via a spoofing or record/replay
system, or even simply record the data structures that are
constructed as a consequence of interacting with the external
resources. In general, there is a chain of dependences from the
resource interaction to the end result on the system, and it is
possible for the program fracture and repair system to intercept
the dependences anywhere along the chain and reconstruct (or
alternatively potentially transitively excise) the effects.

The shard itself may also have a direct dependence on
configuration files, normal files, or other external resources.
It is possible to use the same techniques described above to
deal with these dependences.

A more challenging situation occurs with dependences
mediated via the operating system or some other opaque
system. For example, some packages or system calls require
initialization to operate successfully, but the dependences are
controlled by data structures stored in the operating system
or some other opaque system. Here the program fracture and
recombination system may need some external knowledge of
the dependence relationship so that it can, for example, find
and replay the appropriate initialization calls, synthesize an
appropriate initialization sequence, or do a search to find the
sequence in the original program.

The shard may also have dependences on specific hardware
components unavailable in other contexts or other unmovable
resources. In this case the program fracture and recombination
system can simply excise the dependence. In general, such
dependence excision can be incorporated into arbitrary parts of
the system and not just for hardware dependences. One of the
goals of program fracture and recombination is to free useful
pieces of code from dependences on the original context in
which it appeared. Dependence excision, potentially following
the dependences to completely eliminate the effects when
appropriate, is therefore a key element of program fracture
and recombination.

VI. CONCLUSION

We now have decades of investment in software systems,
with desired functionality often implemented multiple times
at varying levels of quality, performance, and capabilities.
In principle, the vast majority of the functionality that most
programs need has already been implemented. Our ability to
profitably find and combine relevant pieces of functionality, as
opposed to our ability to develop new software, may ideally
become the limiting factor in software development. Program
fracture and recombination promises to significantly enhance
our potential in this critical area.

REFERENCES

[1] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Au-
tomatic error elimination by horizontal code transfer across multiple
applications,” in PLDI, Jun. 2015.

[2] M. Rinard, “Manipulating program functionality to eliminate security
vulnerabilities,” Advances in Information Security, vol. 54, Jul. 2011.

[3] H. H. Nguyen and M. C. Rinard, “Detecting and eliminating memory
leaks using cyclic memory allocation,” in Proceedings of the 6th Inter-
national Symposium on Memory Management, ISMM 2007, Montreal,
Quebec, Canada, October 21-22, 2007, 2007, pp. 15–30.

[4] S. Sidiroglou-Douskos, E. Davis, and M. Rinard, “Horizontal
code transfer via program fracture and recombination,” Tech.
Rep. MIT-CSAIL-TR-2015-012, Apr. 2015. [Online]. Available:
http://hdl.handle.net/1721.1/96585

[5] R. C. Whaley and J. Dongarra, “Automatically tuned linear algebra
software,” in PPSC, 1999.

[6] M. Lam, E. Rothberg, and M. Wolf, “The cache performance and
optimizations of blocked algorithms,” in ASPLOS, Apr. 1991.

[7] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
oblivious algorithms,” in 40th Annual Symposium on Foundations of
Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY,
USA, 1999.

[8] M. Frigo, “A fast fourier transform compiler,” in Proceedings of the
1999 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Atlanta, Georgia, USA, May 1-4, 1999,
1999, pp. 169–180.

[9] L. A. Belady and M. M. Lehman, “A model of large program develop-
ment,” IBM Systems Journal, vol. 15, no. 3, pp. 225–252, 1976.

[10] B. Murtagh and M. Saunders, “MINOS 5.51 user’s guide,” Tech. Rep.
SOL-83-20R, 2003.

[11] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard,
“Information-flow analysis of Android applications in DroidSafe,” in
Proceedings of the 22nd Annual Network and Distributed System
Security Symposium (NDSS’15), 2015.

[12] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in ISSTA, 2015.

[13] F. Long and M. Rinard, “Staged program repair with condition syn-
thesis,” in 10th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, 2015.


