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ABSTRACT

Two operations commute if they generate the same result regardless of the order in
which they execute. Commutativity is an important property | commuting operations
enable signi�cant optimizations in the �elds of parallel computing, optimizing compilers,
parallelizing compilers and database concurrency control. Algorithms that statically
decide if operations commute can be an important component of systems in these �elds
because they enable the automatic application of these optimizations. In this paper
we de�ne the commutativity decision problem and establish its complexity for a variety
of basic instructions and control constructs. Although deciding commutativity is, in
general, undecidable or computationally intractable, we believe that e�cient algorithms
exist that can solve many of the cases that arise in practice.

Keywords: Computational Complexity; Commutativity Analysis; Program Symbolic

Analysis, Parallelizing Compilers.

1. Introduction

Program analysis has been widely used to extract program properties of inter-

est. In this paper we focus on a simple property between two program operations

{ commutativity. We say two operations A and B, each composed of a sequence of

basic instructions, commute if they generate the same result regardless of the order

in which they execute. Knowledge of commuting operations is of practical signi�-

cance. In the context of optimizing compilers, commuting program transformations

can be used to reduce the search space for the optimal program transformation
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sequence, hence reducing the algorithmic complexity of the compiler optimization

algorithms [15]. In the context of parallel computing, commuting operations enable

concurrent execution because they can execute in any order without changing the �-

nal result [17, 16]. Parallelizing compilers that recognize commuting operations can

exploit this property to automatically generate parallel code for computations that

consist only of commuting operations [14]. In the area of databases, exploiting com-

muting operations can improve the performance of concurrency control algorithms

by increasing the amount of concurrency in the transaction schedule [18].

This broad range of applications motivates the design of static analysis tech-

niques capable of automatically detecting commuting operations | commutativity

analysis. In this paper we focus on the theoretical aspects of commutativity analysis.

We identify classes of programs for which commutativity analysis is undecidable,

PSPACE-hard, NP-hard, polynomial, and probabilistically polynomial-time decid-

able (see [6] for de�nitions and motivations). For some cases, the class of programs

is complete for the corresponding complexity class. The results presented here rely

on known complexity results from the area of theoretical computer science. They

serve two purposes. First, they formally establish the complexity of commutativity

analysis. Second, they should make researchers working in more applied areas aware

of the inherent limitations of any commutativity analysis algorithm.

Although we show that commutativity analysis is, in the general case, undecid-

able or computationally intractable, we believe that it is possible to develop algo-

rithms that successfully recognize many of the commuting operations that occur in

practice. It is possible to recognize many common cases with simple algorithms that

execute very quickly. When these algorithms fail, more complex algorithms with

poor worst-case execution times may still execute e�ciently for many of the cases

that occur in practice. We therefore believe that it is feasible to develop e�ective

and practical algorithms that statically detect commuting operations.

The rest of the paper is structured as follows. In Section 2 we formally state the

commutativity problem. In Section 3 we present the complexity results for commu-

tativity analysis. In Section 4 we present practical algorithms that test for speci�c

su�cient conditions for commutativity. A hierarchy of tests is described with vary-

ing degrees of accuracy and run-time complexity. In Section 5 we brie
y describe

the applications of commutativity analysis to the area of parallelizing compilers.

We conclude in Section 6.

2. Problem Formulation

Commutativity analysis is designed primarily for programs written using a pure

object-based paradigm. Such programs structure the computation as a sequence

of operations on objects. Each object implements its state using a set of instance

variables. Each operation consists of a sequence of basic instructions from the

underlying language. Each operation has a receiver object; when the operation

executes, its basic instructions can read or write the instance variables of the receiver

and temporary variables.

De�nition 1 (Object Equivalence) Given two objects R1 and R2 with the same
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instance variables, we say that R1 and R2 have the same state if the value of each

instance variable is the same in both objects.

The complexity of commutativity analysis depends on the instructions used in

the operations. We will use the term S-operation to denote the class of operations

over the set of constructs S. The commutativity problem is thus de�ned for any

two S-operations over a speci�c set S of instructions.

De�nition 2 (S-operation commutativity problem) Given two S-operations

O1 and O2 with the same receiver object, we say that O1 and O2 commute if, for all

starting states of the receiver, the executions of O1 followed by O2 and O2 followed

by O1 either both fail to terminate or both leave the receiver in the same �nal state.

For convenience of the application of theoretical complexity results, we recast

commutativity between two S-operations as the commutativity problem between

two S-programs P1 and P2 de�ned over the same set S of constructs. These pro-

grams, however, make use of two I/O instructions.

De�nition 3 (S-programs) An S-program consists of an input instruction, fol-

lowed by a sequence of non-I/O instructions over the set S, followed by an output

instruction. The �rst instruction is an input statement input(x1; � � � ; xr), where

x1; � � � ; xr are the program input variables. The last instruction is an output state-

ment output(y) where y is one of the program's variables.

The set S of instructions de�nes the expressive power of the S-programs. We

defer the complete de�nition of the non-I/O constructs for each class of S-programs

to Section 3. For the time being, the reader may consider control and arithmetic

constructs such as x x� y, where � is a binary operator, and constructs such as

x 	y, where 	 is a unary operator. Besides the traditional arithmetic operators

like addition and multiplication, we will include in some sets S the following opera-

tors: monus or proper subtraction (denoted by � ), � as rational division, integer

division with truncation (=) and the unary operator sign(x) = 1 if x is positive; else

0. Built-in arithmetic constants include 1 and 0. Other arithmetic constants can be

computed by a �nite sequence of instructions. Input variables assume values over

an input domain D having a null element, the zero value. Possible input domains

include, R - the set of all rational numbers, Z - the set of all integers, and N - the

set of all nonnegative integers.

Each S-program may also use local variables, which are assumed to have intial

value zero. Input variables and local variables constitute the program variables.

We now de�ne what it means for two S-programs to commute. In this de�nition

we use an auxiliary program transformation and an auxiliary variable x that is not

used by any of the two S-programs. This variable x is initialized to the zero value.

De�nition 4 If P is an S-program, P denotes the program (not an S-program)

given by if x = 0 then P ; x 1.

De�nition 5 (S-program commutativity problem) Let P1 and P2 be two S-

programs with input variables x1; : : : ; xr. P1 and P2 commute if P1;P2 is equivalent

to P2;P1 (i.e. for the same input, the two programs either both fail to terminate

or give the same output.) Because the initial value of x is 0, P1;P2 has the same
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behavior as P1 and P2;P1 has the same behavior as P2. P1 and P2 therefore commute

if and only if P1 and P2 are equivalent.

We now show the reduction from the S-program commutativity problem to the

S-operations commutativity problem.

Theorem 1 There is a linear-time algorithm that converts any two S-programs P1
and P2 to S-operations O1 and O2 such that P1 and P2 commute if and only if O1

and O2 commute.

Proof: Given the two S-programs with the same number of input variables x1; � � � ; xr
the transducer generates two operations O1 and O2 over objects with r+2 instance

variables x; x1; � � � ; xr; z. The transducer copies the code from programs P1 and

P2 to the operations O1 and O2, respectively, performing the following transforma-

tions. The input statement (if any) is replaced by a sequence of instructions that

saves the object instance variables x1; � � � ; xr to temporary variables t1; � � � ; tr. The

output statement is replaced by an instruction that assigns y, the S-program output

variable, to z, followed by a sequence that uses the temporary variables to restore

the original values of object instance variables. By construction, the two operations

only modify the instance variables x and z, and x always has the same value (one)

after the execution of the two operations regardless of the execution order. The

transformation preserves the original values of instance variables x1; � � � ; xr after

the operation's execution. It is thus clear that if programs P1 and P2 commute,

then the corresponding operations O1 and O2 commute. On the other hand, if

operations commute, i.e. under both execution orders the instance variable z al-

ways has the same �nal value, then it must be the case that programs P1 and P2
commute. In addition the transformation can be done in linear time with respect

to the length of the input S-programs as the transformation only adds a constant

amount of instructions to the length of the input S-program.

The above discussion assumes that the programs and operations always termi-

nate. By construction, P1;P2 fails to terminate on a given input if and only if

O1;O2 also fails to terminate for the corresponding object state, and similarly for

the other execution order. 2

In view of Theorem 1, in what follows, it is su�cient to investigate only the

commutativity problem between two S-programs P1 and P2.

3. Complexity Results

For each class of S-programs, we de�ne the instruction set S and domain of

program input variable values D for which the result holds. All complexity results

are with respect to the size (i.e., length) of the longer of the two S-programs being

tested for commutativity.

The undecidable/intractable results we present are the best possible we can

prove at present - the programs make use of \very restricted" arithmetic/control

instructions and limited numbers of input and auxiliary variables. The results are

stated without proofs as the proof techniques are similar to the ones used for proving

undecidability/intractability of the equivalence problem for programs cited in the
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references. In Section 3.6 we present a summary of the main complexity results

described in this section.

In this section we will make use of two families of programs, hereafter named

ONE and ZERO. ONEx1;���;xr has r input variables, always outputs the value 1,

and is de�ned as input(x1; � � � ; xr); y  1; output(y). ZEROx1;���;xr has r input

variables, always outputs the value 0, and is de�ned as input(x1; � � � ; xr);

y  0; output(y).

Many of our theorems characterize the complexity of commutativity with aONE

program or a ZERO program. The de�nition of commutativity (De�nition 5) ap-

plies only to two programs with the same input variables. The following de�nitions

establish a notation that we use to simplify the presentation.

De�nition 6 (Commutativity with ONE) An S-program P with input vari-

ables x1; � � � ; xr commutes with ONE if and only if P commutes with ONEx1;���;xr .

De�nition 7 (Commutativity with ZERO) An S-program P with input vari-

ables x1; � � � ; xr commutes with ZERO if and only if P commutes with ZEROx1;���;xr .

3.1. (Un-)decidable Problems

The idea behind the proofs of the undecidability results in this subsection is

an intricate reduction of Hilbert's Tenth Problem to the commutativity problem.

The proofs are similar to the ones in [10] for proving the undecidability of program

equivalence.

Result 1 Let S = fx  1; x  x + y; x  x=yg and input domain D = Z. It is

undecidable to determine, given a S-program P with three input variables and nine

auxiliary variables, whether it commutes with ONE. We say, in this case, that

commutativity with ONE is undecidable. The result holds even if we restrict the

problem to only programs P that compute total 0/1-functions (i.e., programs with

output range f0; 1g that are de�ned for all inputs). The result is also valid when

the input domain D = N , but at present we can only give a proof for the case when

the numbers of input and auxiliary variables are ten and four, respectively.

If, in the above S, x x+y is replaced by x x�y, the number of input vari-

ables of P can be reduced to two (the number of auxiliary variables is nine), and the

result holds for both input domains D = Z and D = N . This is the best possible,

since it can be shown that if S = fx 1; x x+y; x x�y; x x�y; x x=yg,

the commutativity problem for S-programs with one input variable (but unre-

stricted number of auxiliary variables) is decidable.

Result 2 Let S = fx 1; x x�y; x x�y; x x=2g. Over D = Z or D = N ,

commutativity with ONE is undecidable for S-programs with nine input variables

and three auxiliary variables. On the other hand, if S = fx 1; x x+ y;

x  x � y; x  x=d j d � 2g, commutativity with ONE (for programs with unre-

stricted numbers of input and auxiliary variables) is decidable.

Result 3 Let S = fx  1; x  x + y; x  x � y; x  x � y; x  x � yg. Over

D = Z, the commutativity problem is decidable for S-programs that compute total
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functions. When one of the programs being tested for commutativity is an arbitrary

program (i.e., it may or may not be de�ned for all inputs), commutativity with ONE

is undecidable. See the next result.

Result 4 Let S = fx  1; x  x + y; x  x � yg. Over D = Z, commutativity

with ONE is undecidable for S-programs with 28 input variables and three auxiliary

variables. In contrast, and even for S = fx 0; x 1; x x+ y; x x � y;

x x�yg, the commutativity problem for S-programs (with an unrestricted number

of input and auxiliary variables) is decidable when the input domain is D = N . This

latter result is not true when the instruction x  x + y is replaced by x  x � y

since it can be shown that if S = fx 1; x x�y; x x�yg, commutativity with

ONE is undecidable for S-programs with nine input variables and three auxiliary

variables over input domain D = N .

Result 5 Let S = fx  1; x  y; x  x � y; x  x=yg. Over D = N , com-

mutativity of S-programs with two input variables and six auxiliary variables is

undecidable. However, the problem becomes decidable if one of the programs being

considered computes a total function (the programs may have arbitrary numbers of

input and auxiliary variables).

If, in the above, x 1 is replaced by x x+ 1, we get

Result 6 Let S = fx  x + 1; x  y; x  x � y; x  x=yg. Over D = N ,

commutativity with ONE is undecidable for S-programs with two input variables

and seven auxiliary variables. The result holds even if we consider only programs

that compute total 0/1-functions.

Result 7 Let S = fx  1; x  x � y; x  x � yg. Over D = N , commutativ-

ity with ONE is undecidable for S-programs with nine input variables and three

auxiliary variables.

Suppose we are only interested in deciding whether two programs commute

over a limited range of inputs, and not for all inputs. Consider, e.g., the case

when the input domain D = f0g; this is equivalent to saying that all program

variables are initially 0 (i.e., there is no input variable). The problems are now

called commutativity over zero input and commutativity with ONE over zero input.

The following result follows from the undecidability of the halting problem for

2-counter machines which can simulate Turing machines.

Result 8 Let S = fx  0; x  x + 1; x  x � 1; if x = 0 goto tg. Commuta-

tivity with ONE over zero input is undecidable for two-variable S-programs. Here

t denotes a label; note that a program halts if and only if it executes the output

statement, which is the last instruction in the program.

3.2. Nonelementary Recursive Problems

Result 8 relies on the fact that the program being tested for commutativity with

ONE may not halt. Suppose we only consider programs that always halt. Then

the (unique) output can clearly be evaluated; hence, commutativity with ONE

over zero input is decidable. However, its complexity is enormous. The proof of the

next result uses the time hierarchy theorem for Turing machines. Let f1(n), f2(n)

6



and f3(n) be functions on the positive integers de�ned as follows: f1(n) = 2n and

for i = 1; 2 fi+1(n) = f
(n)
i (n) where f

(n)
i is the nth fold composition of fi. Note

that f3(n) � 2
...

2
n

(n levels of 2's) is nonelementary recursive. A function g(n) is

elementary recursive if g(n) � 2
...

2
k

(k levels of 2's for some �xed k).

In the next result the S-programs are allowed to have do loops of the form

do x � � � end. In this context we assume the loop variable x to be bound upon the

loop entrance, hence guaranteeing loop termination.

Result 9 Let S = fx  1; x  x + y; x  x � y; do x � � � endg. There are

rational constants c and d such that the time complexity of testing commutativity

with ONE over zero input for S-programs with no nesting of loops has lower and

upper bounds of f3(cn) and f3(dn), respectively where n is the program length. The

lower bound holds even for �ve-variable programs [12].

If we replace x x+ y and x x � y by simpler constructs, we can show the

following:

Result 10 Let S = fx 0; x x+1; x x � 1; x y; if x = 0 then goto t;

goto t; do x � � � endg. Commutativity over zero input is polynomial-time decidable

for S-programs with no nesting of loops, where t denotes a \forward" label not in

the scope of any do-loop (do-statements however can be labeled) [7].

3.3. PSPACE-Hard Problems

If in result 10 we allow \forward" labels to be inside the do-loops, then the

problem becomes PSPACE-hard. In fact, we can show the following by coding the

computation of a deterministic linear-bounded automaton.

Result 11 Let S = fx 0; x x+ 1; if x = 0 then y  0; if x = 0 then

y  1; do x � � � endg. Commutativity with ONE over zero input is PSPACE-hard

for S-programs with no nesting of loops. This result also holds for S = fx  0;

x x+ 1; x x � 1; if x = 0 then y  1; do x � � � endg [12].

Note that if S = fx 0; x x+ 1; x x � 1; x y; if x = 0 then

y  z; do x � � � endg commutativity over zero input for S-programs with no nesting

of loops is in PSPACE. This follows from the observation that if P is a program

and n is the length of P , then during the execution of P , no variable in P can have

value greater than 2n. Hence the computation of P can be simulated using O(n)

bits of memory.

3.4. NP-Hard Problems

The proofs of the NP-hardness results in this subsection use a rather complex

encoding of the satis�ability problem for Boolean expressions and the fact that this

latter problem is NP-hard.

Result 12 Let S = fx 2x; x x=2; x x+ yg and input domain D = Z. The

commutativity problem for S-programs with one input variable and one auxiliary
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variable is NP-hard. The result also holds when x x+ y is replaced by

x x� y [8].

Commutativity, nevertheless, is decidable. In fact, consider the following set S+

of instructions: S+ = fx 0; x c; x x � c; x x=c; x x+ y;

x  x � y; skip t; if p(x; y) then skip tg where c denotes any positive integer

(di�erent c's can be used in the body of a program), t is any nonnegative integer,

and p(x; y) is a predicate of the form x > y, x � y, x = y, x 6= y, x � y, or

x < y. skip t causes the (t + 1)st instruction following the current instruction to

be executed next. It can be shown that the non-commutativity problem for S+-
programs is in NP [8]. Thus commutativity can be decided in exponential time.

Next, we have

Result 13 Let S = fx 0; x x=2; x x� yg and input domain D = Z. Com-

mutativity with ZERO for S-programs with one input variable and two auxiliary

variables is NP-hard [8].

The above result is the best possible since it can be shown that commutativity

with ZERO is decidable in polynomial time for S-programs with two program

variables (both variables may also be input variables) for S = fx 0; x c;

x �c; x x � c; x x=c; x x+ c; x x� c; x x� yg [8].

Result 14 Let S = fx 1; x x+ y; x x � yg. Over D = N , commutativity

with ZERO is NP-hard for S-programs with one input variable and two auxiliary

variables [9].

One can strengthen this result by requiring the use of only one auxiliary vari-

able, but the instruction set is now S = fx 1; x 2x; x x+ 1; x x+ y;

x x � y; x y � xg. This is true also for the class S = fx 1; x 2x;

x x+ y; x x � y; x sign(x)g.

Considering now commutativity of programs over a limited range of inputs, we

get NP-hardness, even for a very simple class of codes.

Result 15 Let S = fx  1; x  y + z; x  y � z; x  y � zg. Over D = �nite

subset of Z with at least two elements, commutativity with ZERO is NP-hard for

S-programs [13].

Note that the non-commutativity problem for the above programs is clearly in

NP. We also have the following result.

Result 16 Let S = fx  x � c; x  x=2g and input domain D = N . Consider

only S-programs with one program variable, which is also the input/output variable.

Such a program computes a simple arithmetic expression of the form xT1T2 � � �Tk,

where x is an integer variable and each Ti is a multiplication by a positive integer

constant or integer division by 2. It is NP-hard to decide, given two S-programs P1
and P2 and a positive integer m, whether P1 and P2 commute for all non-negative

integer values of x < m [11].

In this result, the complexity is with respect to the maximum of the length of

P1, length of P2 , and length of the binary representation of m. In contrast, and

rather counter-intuitive, when we do not restrict the range of the inputs for checking

commutativity, we have:
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Result 17 Let S = fx  x � c; x  x=2g and input domain D = N . There is a

polynomial-time algorithm to decide, given two S-programs P1 and P2 whether P1
and P2 commute [11].

3.5. Probabilistic Polynomial-Time Problems

If in result 15, D is the set of all integers or the set of all rational numbers,

commutativity is probabilistically decidable in polynomial time. This means that

there is a polynomial-time algorithm which uses a random number generator to

decide if two given programs P1 and P2 commute. If the algorithm outputs yes,

then P1 and P2 probably commute with probability of error � 1=2. If the algorithm

outputs no, then P1 and P2 do not commute for sure. Clearly, a probability of error

� 1=2k may be obtained by running the algorithm k times. Since it is conjectured

that no NP-hard problem can be solved in probabilistic polynomial time, this result

contrasts that of result 15 and has the same 
avor as result 17.

Result 18 Let S = fx  1; x  y + z; x  y � z; x  y � zg. Over D = Z

or D = R, the commutativity problem for S-programs is decidable in probabilistic

polynomial time [13].

One can show that, if in result 15, D has exactly one element, then the commu-

tativity problem is probabilistically decidable in polynomial time [13].

3.6. Summary of Results

Table 1 summarizes the main complexity results presented in this section. The

�rst two columns de�ne the restrictions imposed on the S-programs. The third

column describes the speci�c commutativity problem. The fourth column states the

complexity result and the last column gives the proof technique and/or reduction

to a known problem.

4. Practical Algorithms for Commutativity Analysis

Despite the undecidable/intractable results presented in the previous section,

we believe it is possible to develop algorithms that can recognize many of the com-

muting operations that occur in practice. In this section we present several of these

algorithms, each designed to recognize a speci�c case that we have identi�ed. We

expect software systems such as parallelizing compilers that recognize commuting

operations to combine these algorithms to recognize many of the cases that occur in

practice. These algorithms can be organized into a hierarchy, with fast, relatively

simple algorithms used �rst and the less e�cient, more complex algorithms used

only if the simple algorithms fail.

4.1. Identical Operations

If both operations are the same, they commute because they are indistinguish-

able. In practice this case arises in graph traversal algorithms.
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Value Program Commutativity Complexity Prof Technique/
Domain Constructs Problem Result Problem

x 1 Commutativity Undecidability Hilbert's
Z x x+ y with ONE (Result 1) Tenth

x x=y Problem
x 1 Commutativity Decidable Time

Z x x+ y with ONE (Result 9) Hierarchy
x x � y Theorem for
do x � � � end TMs

x 0 Commutativity PSPACE-HARD Coding of the
x x+ 1 for any two (Result 11) Computation of

Z if x = 0 then y 0 S-programs Linear
if x = 0 then y 1 without nesting Bounded

do x � � � end of loops Automaton
Subset of x 1 Commutativity NP-hard Satis�ability
Z with x y + z with ZERO (Result 15) Problem
at least x y � z (3-SAT)

2 elements x y � z
x x � c Commutativity Polynomial

N x x=2 for any two Time Analysis
S-programs (Result 17)

x 1 Commutativity Probabilistic Probabilistic
R x y + z for any two Polynomial Analysis and

x y � z S-programs Time Distribution
x y � z (Result 18) of Primes

Table 1. Summary of Complexity Results for Commutativity Testing

4.2. Independent Operations

Two operations are independent if no operation writes an instance variable that

the other accesses. If two operations are independent then they obviously commute.

For straight-line codes it is simple to test in polynomial time if two operations

are independent. The algorithm constructs for each method two sets of instance

variables, the read set and the write set. The read set consists of the instance

variables the method reads; the write set consists of the instance variables the

method writes. If neither method writes an instance variable the other method

either reads or writes, the method are independent. Clearly this algorithm can be

implemented in polynomial time with respect to both the method's length and the

number of instance variables using set representation techniques [1].

4.3. Reduction

A common operation in many applications is to reduce many values into one

accumulator variable by applying a commutative and associative operator such as

+ or �. The code that computes these reductions contains assignment statements

of the form x = x + e where e is an expression denoting the accumulated value.

Two operations that reduce values into the same accumulator variable commute

if neither value depends on the order in which the operations execute. If the two

operations meet the following condition then they commute:

� The only assignments are of the form x = x + e, where e is an arbitrary

expression. Furthermore, there is no data dependence between any variable x
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that either operation modi�es and the accumulated expression e.

4.4. Symbolic Execution

It is possible to increase the ability to detect commuting operations by using a

more sophisticated symbolic analysis algorithm. This algorithm symbolically exe-

cutes the operations A and B in both execution orders to construct two expressions

for each instance variable. Each of these two expressions denotes the variable's �nal

value in one of the execution orders. The algorithm then checks if the corresponding

expressions denote the same value. If so, the operations commute. This algorithm

�rst applies a set of rewrite rules designed to simplify the expressions. These rules

apply standard algebraic properties such as distributivity and associativity. The

expression comparison algorithm simply applies a recursive isomorphism test. It

is theoretically possible for the application of distributive rewrite rules to gener-

ate an exponential increase in the size of the expressions. Despite this worst-case

scenario we, do not expect the analysis to exhibit this exponential behavior in prac-

tice. Other research that uses related symbolic analysis techniques supports this

hypothesis [4].

4.4.1. Straight-line Codes

For straight-line codes, the algorithm constructs the instance variable expres-

sions by symbolically executing each statement. At each point in the program each

variable is bound to an expression denoting its value at that point. To symboli-

cally execute a statement, the algorithm uses the current set of variable bindings to

compute the expression denoting the new value of the assigned variable. When the

symbolic execution completes, each variable is bound to an expression that denotes

its �nal value after the execution of both operations.

4.4.2. Conditional Constructs

It is possible to integrate conditional constructs into the symbolic execution

framework. When an instance variable's value depends on the 
ow of control

through the operation, the expressions representing its new values contain con-

ditionals. A conditional of the form if(cx; ex1; ex2) denotes the expression ex1 if

cx is true and ex2 if cx is false. The expression equivalence algorithm for two ex-

pressions that contain conditionals is more elaborate than the algorithm described

in the previous section. The algorithm builds a condition table for each expression.

This table enables the equality testing algorithm to use a simple isomorphism test

even for expressions containing conditionals. Each condition table contains the max-

imal conditional-free subexpressions of the original expression. Each subexpression

is stored under an index which consists of a conjunction of basic terms. If a subex-

pression is stored under a given index, it denotes the value of the original expression

when all of the basic terms in the index are true. The algorithm builds the table

by recursively traversing the outer conditional expressions to identify the minimal

conjunctions of basic terms that select each maximal conditional-free subexpression
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as the value of the original expression. It is possible to further simplify the table

using logic minimization techniques as proposed in [5].

To compare two expressions for equality the algorithm performs a simple re-

cursive isomorphism test. The algorithm checks that the condition tables have the

same indexes and that corresponding subexpressions in the table are isomorphic.

4.4.3. Array Variables

It is possible to integrate array variables in the symbolic execution framework.

An array expression consists of a variable followed by a list of updates. Each update

contains an index and a new value and corresponds to an assignment to an array

position. For instance, the assignment a[e1] = e2 generates the symbolic update

expression a[e1!e2]. Multiple assignments generate multiple array updates. The

array simpli�cation algorithm applies a rule that eliminates redundant updates and

two rules that simplify array accesses; Figure 1 presents these rules.

ax[ex1!ex2] � � � [ex3!ex4] = ax � � � [ex3!ex4] if ex1 = ex3
ax[ex1!ex2][ex3] = ex2 if ex1 = ex3
ax[ex1!ex2][ex3] = ax[ex3] if ex1 6= ex3

Figure 1: Array Expression Simpli�cation Rules

The array simpli�cation algorithm also attempts to sort the update list, using

the indexes as the sort key and an arbitrary, recursively de�ned total order on

expressions as the sort order. The following observation is the foundation of the

update sorting algorithm:

Observation 1 ax[ex1!ex2][ex3!ex4] = ax[ex5!ex6][ex7!ex8] if

� ex1 = ex3 implies ex3 = ex7; ex5 = ex7; ex4 = ex8 and

� ex1 6= ex3 implies either ex3 = ex7; ex1 = ex5; ex2 = ex6; ex4 = ex8 or

ex3 = ex5; ex1 = ex7; ex2 = ex8; ex4 = ex6

Given two array expressions in the form speci�ed by Observation 1 to check for

equality, the algorithm �rst assumes that ex1 = ex3, then attempts to check that

ex3 = ex7; ex5 = ex7, and ex4 = ex8 under this assumption. Before checking the

equality conditions, the algorithm �rst applies any array expression simpli�cation

rules enabled by the assumption. It goes through a similar process when it checks

the second condition and assumes that ex1 6= ex3.

The update sorting algorithm attempts to replace adjacent updates whose in-

dexes are not in the sort order with updates whose indexes are in the sort order.

The algorithm can replace the updates with any two updates that meet the condi-

tions in Observation 1. Because each update is generated by an assignment to an

array element, the algorithm constructs the updates that correspond to executing

the assignments in the reverse order. If the assignments commute, the updates meet
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the conditions in Observation 1 and the algorithm can replace the original unsorted

pair of updates with the new sorted pair.

Given an array expression ax[ex1!ex2][ex3!ex4] whose indexes ex1 and ex3 are

unsorted, the algorithm generates the new array expression ax[ex5!ex6] [ex7!ex8],

where ex3 = ex5, ex1 = ex7, ex6 = ex4[ax=ax[ex1!ex2]] and

ex8 = ex2[ax[ex5!ex6]=ax]. It then checks if ax[ex1!ex2][ex3!ex4] and

ax[ex5!ex6] [ex7!ex8] meet the conditions in Observation 1. If so, it replaces the

original pair of updates with the new pair. When the algorithm cannot reorder

any pair of updates without violating the conditions in Observation 1, we say that

the array expression is maximally ordered. The array expression simpli�cation

algorithm replaces pairs of updates until the array expression is maximally ordered.

The array expression simpli�cation rules in Figure 1 also compare expressions for

inequality. The inequality comparison algorithm is currently very simple. It merely

checks that the two expressions are equal to two expressions that it has already

assumed (as a result of applying the conditions in Observation 1) to be unequal.

5. Applications in Parallelizing Compilers

We have studied and analyzed complete applications whose computations per-

form multiple commuting updates to the underlying data structures. These appli-

cations include the Barnes-Hut [2] hierarchical N-body algorithm and the molecular

dynamics code Water 1.

In the Barnes-Hut application, the algorithm maintains and performs multiple

traversals on a spatial pointer-based tree data structure. Each such traversal reads

data from nodes in the tree and generates commuting updates to the body nodes

at the leaves. The Water application evaluates forces and potentials in a system of

water molecules in the liquid state. The molecules are organized in an array data

structure. The algorithm computes all pairs of interactions between the molecules.

Each intermolecular interaction performs an accumulation of values in each of the

intervening molecule data structures.

Detecting the commuting operations in these applications exposes a substantial

amount of concurrency. A compiler using commutativity analysis can exploit these

opportunities to automatically and e�ectively parallelize such applications.

6. Conclusions

In this paper we have established the complexity of commutativity analysis. We

have shown that, in general, the commutativity problem is undecidable or com-

putationally intractable. Despite this negative general result, we believe that it is

possible to develop algorithms that successfully recognize many of the commuting

operations that occur in practice. We have outlined several such algorithms. We

therefore believe that it is feasible to develop e�ective practical algorithms that

statically detect commuting operations.

1A FORTRAN language variant of the Water code used in our analysis can be found in the
PERFECT Benchmark [3] set of applications under the name of MDG.
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