
Abstract
Jade is a data-oriented language for exploiting coarse-grain parallelism.
A Jade programmer simply augments a serial program with assertions
specifying how the program accesses data. The Jade implementation dy-
namically interprets these assertions, using them to execute the program
concurrently while enforcing the program’s data dependence constraints.
Jade has been implemented as extensions to C, FORTRAN, and C++, and
currently runs on the Encore Multimax, Silicon Graphics IRIS 4D/240S,
and the Stanford DASH multiprocessors. In this paper, we show how Jade
programmers can naturally express hierarchical concurrency patterns by
specifying how a program uses hierarchically structured data.

1 Introduction

Jade is a data-oriented language for expressing coarse-grain concurrency. Instead of us-

ing explicit control constructs to express the concurrency available in a program, a Jade

programmer augments a serial program with Jade constructs that declare how the vari-

ous sections of the program access data. The Jade implementation uses this information

to execute the program concurrently while enforcing the program’s underlying data de-

pendence constraints. Jade programmers therefore create coarse-grain parallel programs

that preserve the semantics of the original serial programs.

A Jade programmer first divides a sequential program up into tasks. Tasks interact

This research was supported in part by DARPA contract N00014-87-K-0828.

through accesses to shared objects. The programmer summarizes each task’s accesses by

specifying which shared objects the task will read or write. The Jade implementation uses

this information to relax the program’s serial execution order; tasks without conflicting

accesses can execute concurrently. Because each task’s access specification is determined

dynamically, Jade programs can exploit data-dependent concurrency available only at

run time.

We may contrast Jade’s data-oriented approach to concurrency with the control-

oriented approach provided by many parallel programming languages [1, 2, 3, 5]. Control-

oriented languages typically provide low-level constructs for creating and synchronizing

parallel tasks. These constructs provide fine control over the concurrent behavior of a

program. However, it can be difficult to create and maintain parallel programs which

contain such a low-level specification of the concurrency structure. Programmers using

these low-level constructs must often establish explicit synchronization connections be-

tween logically unrelated modules which access the same data. These connections violate

the modular structure of the original serial program, making the parallel program much

harder to understand and modify.

Jade, with its data-oriented constructs, provides a less familiar but conceptually

higher-level approach to concurrency. Jade programs only contain local information

about the pieces of data that tasks read and write. The Jade implementation, not the

programmer, extracts and enforces the global concurrency pattern implicit in the pro-

gram’s data dependence constraints. By requiring only local data usage information,

Jade promotes modularity in parallel programs.

Jade’s data-oriented approach to concurrency means that the design of a program’s

data structures determines its concurrency pattern. Programs with simple data struc-

tures often have simple concurrency patterns such as dynamic task graphs and pipelin-

ing [4]. This paper shows how programs which use hierarchical data structures have more

sophisticated concurrency patterns with nested levels of parallelism. For example, the

Jade implementation can generate a parallel tree traversal from a specification of how a

program accesses nodes and subtrees. A Jade program that accesses a matrix hierarchi-

cally as a collection of columns may create a task to perform a matrix operation, which

in turn creates tasks to perform the operation on each of the columns in the matrix.

The organization of this paper is as follows. We first briefly review the basic concepts

of Jade: the shared objects and the language constructs. We then demonstrate how the

use of hierarchical data structures in Jade programs leads to hierarchical concurrency

patterns. We also illustrate how the structure of the data hierarchy can be used to incre-

mentally refine tasks’ specified accesses. Finally, we show that hierarchical concurrency

makes the generation of concurrency in a Jade program more efficient.

2 Shared Objects

Each Jade task contains a section of code declaring which shared objects the task will read

or write. The programmer uses a synchronization abstraction called tokens to express

how the task will access data. The programmer first decides on the granularity at which

tasks will access each piece of data, then associates a token with each piece of data at

that level of granularity. To declare that a task will access a given piece of data, the

programmer uses an access specification operation applied to the corresponding token.

Each token has the rd and wr access specification operations, specifying, respectively,

a read access and a write access. Two access specifications conflict if they refer to the

same token and at least one of them specifies a write access. Tasks with conflicting access

specifications must execute in the original serial execution order to maintain the serial

semantics of a program.

Jade programmers usually encapsulate data and the tokens which represent the data

as an object. (We use the C++ class notation below to make this encapsulation more

apparent.) Each such object provides its own access specification interface, implement-

ing its access specification operations internally using its private tokens. In the simplest

such use of tokens, the programmer associates one token with each object and augments

the object’s interface with the appropriate access specification operations. The following

SharedMatrix class illustrates such a use. This class directly translates its access spec-

ification operations to access operations on its private token. (We describe the df rd,

df wr, no rd and no wr access operations in sections 4.1 and 4.2.)

class SharedMatrix {
token token;

double elements[N][N];

public:

void read matrix() { token.rd(); };
void write matrix() { token.wr(); };
void df read matrix() { token.df rd(); };
void df write matrix() { token.df wr(); };
void no read matrix() { token.no rd(); };
void no write matrix() { token.no wr(); };
. . .

}

This practice of associating one token with each object works well for data that is

created and accessed as a unit. In section 5 we will show how a Jade programmer

can create token hierarchies that correspond to the hierarchical structure of the data.

These token hierarchies allow the programmer to specify naturally how tasks manipulate

hierarchically structured shared objects.

3 Jade Constructs

Jade is a language for declaratively expressing data usage information; the names of the

Jade constructs reflect this declarative perspective. The Jade implementation assigns an

operational meaning to Jade programs by using this data usage information to create

concurrency and synchronization. In this section we present the Jade constructs, giving

both the declarative and operational meanings.

3.1 Basic Constructs

Jade programmers use the withonly construct to declare how a section of code will

access shared objects:

withonly { access specification } do (parameters) {
task body

}

The Jade implementation creates a task when it executes a withonly construct. The

task body contains the serial code to be executed when the task runs. The access

specification section declares how the task will access shared objects. This section is

an arbitrary piece of code containing access specification operations. The implementation

executes this piece of code when the task is created to determine which shared objects

the task will read and/or write. This section may contain dynamically resolved variable

references and control flow constructs such as conditionals, loops and function calls. The

programmer may therefore use information available only at run time when declaring

how a task will access data.

The parameters section contains a list of variables from the enclosing environment.

The implementation copies values of these parameters into the task’s context when it is

created. The task can reference these parameters when it runs.

The withonly construct indicates that the task body will execute with only the

accesses declared in the access specification section. The Jade implementation uses the

access specification to determine when two tasks can execute concurrently. Tasks whose

access specifications do not conflict are free to execute concurrently. Conversely, tasks

with conflicting access specifications must execute in the original serial execution order.

To enforce this restriction, the Jade implementation does not allow a task to execute

until all earlier tasks (in the underlying sequential execution order) with conflicting access

specifications have completed.

We illustrate the use of the withonly construct with a simple example. The following

Update routine creates a task to update a SharedMatrix:

void Update(SharedMatrix *M) {

withonly { M->write matrix(); } do (SharedMatrix *M;) {
/* code to update the matrix */

}
}

The created task can run concurrently with tasks accessing other shared objects, but must

execute serially with respect to other tasks which access M. For example, the following

code fragment takes pointers to two SharedMatrixes A and B, and either updates A twice

or updates both A and B:

Update(A);

if (flag > 0)

Update(B);

else Update(A);

When flag is positive, the two Update tasks can execute concurrently because they

modify different matrices. If flag is not positive, then both Updates operate on the

matrix A. The Jade implementation will therefore serialize the tasks because their access

specifications conflict.

The withonly construct and the rd and wr access operations described so far support

a simple model of parallel computation in which synchronization takes place only at task

boundaries. A task can run only when it acquires all of the shared data objects it will

access; it releases the acquired objects only upon termination.

Although many parallel applications only need to synchronize at task boundaries,

some applications have more complex concurrency patterns requiring periodic inter-task

synchronization. To express these more complex synchronization patterns, Jade provides

constructs that allow the programmer to precisely specify when a task will actually access

shared objects. We next show how Jade programmers can use these advanced constructs

to express concurrency patterns with periodic inter-task synchronization.

4 Advanced Constructs

Allowing tasks to synchronize only at task boundaries can unnecessarily serialize com-

putation in two cases: when a task’s last access to a shared object occurs long before

the task completes, and and when a task’s first access to a shared object occurs long

after the task starts running. The following code fragment provides a concrete example

of both forms of unnecessary serialization:

void Combine(SharedMatrix *L, *M, *N) {
withonly {

L->read matrix(); M->read matrix();

N->read matrix(); N->write matrix();

} do (L, M, N) {
/* code initializing N to L */

/* code combining N with M */

}
}

Combine(A,B,C); Update(A);

Combine(B,A,D);

This code fragment generates three tasks. The tasks must execute sequentially to

preserve the serial semantics. The first unnecessary serialization comes from the fact

that Combine(A,B,C) never accesses A after it uses A to initialize C. Therefore, the code

that combines C and B should be able to execute concurrently with the Update(A) task.

The second unnecessary serialization comes from the fact that Combine(B,A,D) does

not access A until it finishes the initialization of D to B. Therefore, this initialization

should be able to execute concurrently with the Update(A) task.

One way to achieve full concurrency is to make the Combine routine generate two

tasks. This solution is inferior because the modification is not motivated by examining

the code of the second task itself. The need to manage the two new serial tasks may also

cause extra overhead. The solution presented below bypasses these problems by allowing

the Combine tasks to more precisely specify when they will actually access A and B.

4.1 Completed Accesses

To eliminate the first unnecessary serialization, the programmer must be able to express

the fact that once the Combine(A,B,C) task has initialized C to A, the rest of the task

will no longer access A. A programmer can express this fact using the with construct,

which allows a programmer to dynamically modify a task’s access specification so that

it more accurately reflects the task’s future behavior:

with { access specification } continue;

As in the withonly construct, the access specification section is an arbitrary piece

of code containing access specification operations. Programmers use the no rd (no future

read) and no wr (no future write) access operations in this section to declare that a task

will no longer access the corresponding shared object:

void Combine(SharedMatrix *L, *M, *N) {
withonly {

L->read matrix(); M->read matrix();

N->read matrix(); N->write matrix();

} do (L, M, N) {
/* code initializing N to L */

if (L != M) with { L->no read matrix(); } continue;
/* code combining N with M */

}
}

The combination of a with construct and no rd and/or no wr access operations allows

the programmer to dynamically reduce a task’s access specification. This reduction may

eliminate conflicts between the task executing the with and other tasks occurring later in

the sequential execution order. The later tasks may therefore be able to execute as soon

as the with completes. In the absence of the with these tasks would have had to wait

until the first task finished. In our example the with construct allows the combination

of C with B to execute concurrently with the Update(A) task.

4.2 Deferred Accesses

To eliminate the second unnecessary serialization, the programmer must be able to ex-

press the fact that the Combine(B,A,D) task will not access A until it has finished the

initialization of D to B. In this case we say that the task’s access to A is deferred because

the task does not access A until long after it starts running. The programmer can express

such deferred accesses at task creation time using the df rd (deferred read) and df wr

(deferred write) access specification operations. The programmer indicates when the task

will actually access the shared object using the with construct. We say that such a with

construct converts the deferred access to an immediate access.

void Combine(SharedMatrix *L, *M, *N) {
withonly {

L->read matrix(); M->df read matrix();

N->read matrix(); N->write matrix();

} do (L, M, N) {
/* code initializing N to L */

if (L != M) with {
L->no read matrix();

M->read matrix();

} continue;
/* code combining N with M */

}
}

A task with a deferred access to a shared object can run even if previous tasks have

yet to complete conflicting accesses to that object. The task will wait for the previous

tasks to complete their accesses when it executes a with statement which converts the

deferred access to an immediate access. Deferred accesses allow the Jade implementation

to concurrently execute the non-conflicting parts of tasks with access conflicts. In our

example deferred accesses allow the code that combines D with A to execute concurrently

with the Update(A) task.

5 Hierarchical Shared Objects

Programmers frequently organize the data of an object in a hierarchical fashion, as a

method of hiding complexity, structuring access to the data, and promoting modularity.

Different parts of the program may access the data at different levels of the hierarchy.

Because Jade adopts a data-oriented approach to concurrency, it is natural for the con-

currency pattern of a Jade program to assume the same hierarchical structure as the data

on which it operates. A Jade program may therefore preserve the complexity hiding and

modularity advantages of the original serial program. In this section we show how the

programmer uses hierarchical access specifications to create concurrency patterns that

match the hierarchical structure of the data.

Let us reconsider the matrix update routine described above. Suppose that the pro-

grammer can decompose the matrix update into a set of independent column updates. To

exploit the concurrency available between column updates, the programmer must be able

to express the Update operation’s column-oriented data usage pattern. The programmer

therefore creates a token for each column:

class SharedColumnMatrix {
token token;

token column token[N];

double elements[N][N];

public:

SharedColumnMatrix();

void read column(int i) { column token[i].rd(); };
void write column(int i) { column token[i].wr(); };
. . .

}

Because the column tokens’ data are part of matrix token’s data, there is a hierarchical

relationship between the column tokens and the matrix token. The programmer declares

this hierarchical relationship when the matrix is created using the token’s sub token

operation:

SharedColumnMatrix :: SharedColumnMatrix() {
/* Other matrix initialization code */

for (int i = 0; i < N; i++) {
column token[i].sub token(token);

}
}

We say that the column tokens are sub-tokens of the matrix token, and the matrix token

is their super-token. Any token that is part of a token hierarchy is called a hierarchical

token.

The matrix is now expressed as a hierarchical shared object which may be viewed

either as a single shared object (the matrix), or as a collection of lower-level shared objects

(the columns). Because the matrix has been decomposed in this way, the programmer can

implement an update operation which exploits concurrency between column operations

on the same matrix. The new update task can perform the column updates concurrently:

void Update(SharedColumnMatrix *M) {
withonly { M->df write matrix(); } do (SharedColumnMatrix *M;) {

for (int i = 0; i < N; i++) {
withonly { M->write column(i); }

(SharedColumnMatrix *M; int i;) {
/* code to update column i */

}
}

}
}

This example contains three hierarchies: a data hierarchy (i.e., the matrix is decom-

posed into columns), a token hierarchy (which is an abstraction of the data hierarchy),

and a task hierarchy (i.e., the Update task is hierarchically decomposed into column up-

date tasks). The match between the data and token hierarchies allows the programmer

to express naturally the available concurrency of the Update operation. In addition, the

use of the token hierarchy is a natural data hiding technique: it allows a high-level task

to specify its accesses at a high level. The task’s access specification need not change if

the lower-level decomposition of the data changes.

The Jade implementation correctly synchronizes accesses at different levels of the

hierarchy. For example, the Jade implementation will serialize two tasks if one declares

a column access and the other declares a conflicting matrix access. As the preceding

example demonstrates, programmers can specify a deferred access at one level of the

hierarchy and then specify an immediate access at a lower level.

We have shown how Jade programmers exploit concurrency within a shared object’s

operation. Jade’s data-oriented approach to hierarchical concurrency, however, also al-

lows the programmer to express the concurrency available across operations. The follow-

ing example, which applies several Update operations to SharedColumnMatrixes, exploits

concurrency between matrix operations (the Update operations on A and B run com-

pletely in parallel) and concurrency within a matrix operation (operations on different

columns of the same matrix run in parallel).

Update(A);

Update(B);

Update(A);

This example contains yet another form of concurrency - concurrency between the two

Updates of A. As each column task of the first update of A completes, the corresponding

column task of the second update of A can execute. The second column update task does

not depend on the progress of any other column update task.

The synchronization between the individual column update tasks necessary to exploit

this concurrency is difficult to express in control-oriented parallel languages. A program-

mer using such a language would typically not attempt to exploit all of the concurrency

available between separate matrix updates. Instead, the programmer would ensure that

successive column updates occur serially by using a full barrier between successive ma-

trix updates. This barrier would waste available concurrency by unnecessarily serializing

updates to different columns. In contrast, the Jade implementation only enforces the

serializations required to correctly preserve the serial semantics. Figure 1 illustrates the

concurrency pattern of the preceding matrix update example.

6 Refining Access Specifications

The preceding SharedColumnMatrix example demonstrates how programmers use token

hierarchies to create task hierarchies. Jade programmers can also use hierarchical tokens

to refine incrementally a single task’s access specification. It is sometimes impossible

to determine the exact set of shared objects that a task will access at the start of the

task. A token hierarchy allows a task to refine its access specification as more information

becomes available. When it is created, the task declares a deferred access to a hierarchical

token representing all the possible objects that the task might access. As the task runs,

the set of potentially accessed objects becomes smaller. The task can then refine its access

specification by specifying an access to a token lower in the hierarchy and cancelling the

access to the higher-level token. This refinement of an access specification is most useful

Figure 1: Concurrency Structure of UpdateBoth

if a large amount of computation is required to determine exactly which shared objects

the task will access.

As an example, suppose a program manipulates a SharedColumnMatrix, and the

ProcessUpdates operation on the matrix executes a sequence of updates to individual

columns of the matrix. ProcessUpdates is passed an array that provides information

on the updates to be processed, but it still requires a lengthy computation (represented

below by the function ComputeWhichColumn) to determine the exact column to update.

The simplest implementation of ProcessUpdates creates a task to do a column update

only after determining the exact column to update. Such an implementation reduces the

potential concurrency by serializing all of the calls to ComputeWhichColumn. On the

other hand, if the programmer includes the ComputeWhichColumn computation in each

task, then it is impossible to determine exactly which column the task will update at

task creation time. The programmer therefore uses the hierarchical relationship between

the matrix token and the column tokens to refine the access specification of the task in

two stages. The task first declares a deferred write access to the entire matrix using the

matrix token. When the task determines the exact column to update, it refines the task’s

access specification to indicate the exact column that it will updated:

void ProcessUpdates(SharedColumnMatrix *M,

UpdateInfo UpdateList[], int UpdateLength)

{
for (int i = 0; i < UpdateLength; i++) {

UpdateInfo& update;

update = UpdateList[i];

withonly {
M->write matrix();

} do (SharedColumnMatrix *M; UpdateInfo& update;) {
int column;

column = ComputeWhichColumn(update);

with { M->write column(column);

nv M->write matrix(); } cont;
M->UpdateColumn(column, update);

}
}

}

This process of refining a task’s access specification as information becomes available

is useful for creating concurrent tasks as early as possible. In this case each task’s initial

access specification is highly imprecise, but still provides the information that the task

will only touch columns in the indicated matrix. Therefore, later tasks that do not access

the matrix can execute concurrently with the update task. However, a subsequent update

task which modifies a column of the same matrix will be held up. This task can execute

only after the first task declares the column access and cancels its access to the entire

matrix. If the tasks modify different columns, they can then execute concurrently. If the

tasks modify the same column, they must execute serially.

7 Efficient Generation of Concurrency

In the preceding sections, we have described how programmers use hierarchical tokens to

express the concurrency within and across operations on hierarchical data structures. In

this section, we describe how Jade extracts the concurrency pattern dynamically during

the program execution. In particular, we will show how hierarchical concurrency makes

the parallelization more efficient.

As described above, the access specification sections of Jade constructs are exe-

cutable pieces of code which dynamically compute how tasks will access shared objects.

Thus, a Jade program can exploit concurrency which can only be discovered while the

program is running. However, because the access specifications are computed at run-

time, the Jade implementation must dynamically determine the inter-task dependences

as the program executes. The execution of a Jade program may therefore be viewed as

a process of dynamically creating and executing a task graph.

Consider the simple case in which the program serially creates tasks which only declare

immediate accesses. Each new task’s predecessors in the task graph are exactly those

earlier tasks whose access specifications conflict with the access specification of the new

task. To correctly execute this task graph, all of a task’s predecessors must complete

before the task itself can execute. However, a task cannot possibly execute until it

has been created and added to the task graph. Therefore, the speed with which the

implementation builds the graph may limit the amount of expoitable concurrency.

Let us illustrate the issues related to Jade’s dynamic generation of concurrency with

an example. Below we give a “flat” version of the Update operation which creates the

column update tasks directly, rather than creating a task which in turn creates the column

tasks:

void Update(SharedColumnMatrix *M;) {
for (int i = 0; i < N; i++) {

withonly { M->write column(i); }
do (SharedColumnMatrix *M; int i;) {
/* code to update column i */

}
}

}
In this flat version, all of the tasks are created serially in the main thread of control that

calls the Update operation. Thus, the use of the flat Update may delay the generation

and exploitation of concurrency available in code following the call to Update.

Suppose the programmer wishes to Update two distinct matrices. First, all of the tasks

are created serially in the main thread of control that calls the Update operations. Even

if all the tasks generated by a single invocation of the Update Amdahl’s Law indicates

that a serial task creation bottleneck could significantly limit the exploitable concurrency

in the program. Second, the tasks which update the first matrix are all created before

the tasks which update the second matrix. Thus, the concurrency available between

operations on the two matrices cannot be exploited until the implementation creates all

of the tasks which update the first matrix.

Hierarchical concurrency provides a natural solution to reduce the serial task creation

overhead. Consider the update of two distinct matrices using the hierarchical version of

Update given in Section 5. Because the Update of the first matrix immediately creates a

task to create the individual column update tasks, the main thread of control immediately

proceeds to the Update of the second task. This enables the concurrent creation of the

column update tasks from both Update operations. In fact, the column update tasks from

the second Update operation can execute before the implementation creates all of the

tasks from the first Update operation. This is possible because the access specification

of each parent Update task accurately summarizes the access specifications of its column

update tasks. Thus, hierarchical concurrency parallelizes the task creation overhead and

relaxes the task creation order to expose concurrency early.

Let us now consider the case where the parent tasks operate on the same data, as in the

function UpdateBoth defined in Section 5. Figure 2 displays the process of generating

the concurrency in UpdateBoth. The shaded area within each task box indicates the

work performed by the parent task to create that task. The shaded lines indicate serial

execution within a task. For example, the main thread of control follows a path through

the shaded areas of the three main Update tasks, indicating that its only work is to create

these three tasks. Each of the main Update tasks, in turn, serially creates the column

update tasks for that invocation of Update. The sub-task creation threads can all execute

concurrently.

However, unlike the updates to B, the column update tasks of the second update to

A cannot execute immediately after being created. Since the top-level task of the first

update to A has declared a deferred access to the entire matrix A and may potentially

access A, tasks of the second update to A must at least wait until the first parent task

has completed. (We depict this dependence with edges between the top-level task of

the first update of A and the sub-tasks of the second update of A.) The parent task

completes when it has created all the sub-tasks; it need not wait for its children to

complete. In this way, parallelism between sub-tasks of the first and second updates to A

is exposed as soon as all the sub-tasks of the first update are created. This process may

be thought of again in terms of refinement. While the sub-tasks have not yet all been

created, the withonly-do task declares a deferred access that includes all the possible

accesses of sub-tasks. As the sub-tasks are created, they refine the access specification

by indicating which task has accesses which data. When all the sub-tasks have been

created and the access specifications have been fully refined, the deferred access to the

entire matrix declared by the withonly is no longer needed, and naturally goes away

when the withonly task completes.

8 Conclusion

Jade is a language for parallelizing programs written in imperative programming lan-

guages. The key insight behind Jade is that concurrency is best expressed indirectly

with data usage information. In this paper we have demonstrated the usefulness of

Jade’s data-oriented approach for expressing the concurrency available in programs that

manipulate hierarchical data structures.

Jade programmers can create token hierarchies which match the hierarchical struc-

ture of the data. Such token hierarchies allow the programmer to express tasks’ accesses

at different levels, corresponding to how the tasks access the data. In this way, the pro-

grammer can express a task’s accesses at the most appropriate level for that task. Token

hierarchies can also be useful for refining the access specification of a task which incre-

Figure 2: Dynamic Generation of Concurrency in UpdateBoth

mentally narrows down the set of data it can potentially access. When a programmer

expresses how tasks access data in this hierarchical manner, the Jade implementation can

fully exploit the natural concurrency available within and among operations on hierar-

chically structured data. The resulting hierarchical concurrency patterns also naturally

make more efficient the generation of the dynamic task graph in a Jade program.

References

[1] N. Carriero and D. Gelernter. How to Write Parallel Programs: A Guide to the

Perplexed. ACM Computing Surveys, 21(3):323–357, September 1989.

[2] J. J. Dongarra and D. C. Sorenson. A portable environment for developing parallel

FORTRAN programs. Parallel Computing, 5(1 & 2):175–186, 1987.

[3] Inmos Ltd. Occam Programming Manual. Prentice-Hall, Englewood Cliffs, N.J., 1984.

[4] M. S. Lam and M. C. Rinard. Coarse-grain parallel programming in Jade. In Proceed-

ings of the Third ACM/SIGPLAN Symposium on Principles and Practice of Parallel

Programming, April 1991.

[5] United States Department of Defense. Reference Manual for the Ada programming

language. DoD, Washington, D.C., January 1983. ANSI/MIL-STD-1815A.

