
Missing the Point(er):
On the Effectiveness of Code Pointer Integrity1

Isaac Evans∗, Sam Fingeret†, Julián González†, Ulziibayar Otgonbaatar†, Tiffany Tang†,
Howard Shrobe†, Stelios Sidiroglou-Douskos†, Martin Rinard†, Hamed Okhravi∗

†MIT CSAIL, Cambridge, MA
Email: {samfin, jugonz97, ulziibay, fable, hes, stelios, rinard}@csail.mit.edu

∗MIT Lincoln Laboratory, Lexington, MA
Email: {isaac.evans, hamed.okhravi}@ll.mit.edu

Abstract—Memory corruption attacks continue to be a major
vector of attack for compromising modern systems. Numerous
defenses have been proposed against memory corruption attacks,
but they all have their limitations and weaknesses. Stronger
defenses such as complete memory safety for legacy languages
(C/C++) incur a large overhead, while weaker ones such as
practical control flow integrity have been shown to be ineffective.
A recent technique called code pointer integrity (CPI) promises
to balance security and performance by focusing memory safety
on code pointers thus preventing most control-hijacking attacks
while maintaining low overhead. CPI protects access to code
pointers by storing them in a safe region that is protected by
instruction level isolation. On x86-32, this isolation is enforced
by hardware; on x86-64 and ARM, isolation is enforced by
information hiding. We show that, for architectures that do
not support segmentation in which CPI relies on information
hiding, CPI’s safe region can be leaked and then maliciously
modified by using data pointer overwrites. We implement a proof-
of-concept exploit against Nginx and successfully bypass CPI
implementations that rely on information hiding in 6 seconds with
13 observed crashes. We also present an attack that generates
no crashes and is able to bypass CPI in 98 hours. Our attack
demonstrates the importance of adequately protecting secrets in
security mechanisms and the dangers of relying on difficulty of
guessing without guaranteeing the absence of memory leaks.

I. INTRODUCTION

Despite considerable effort, memory corruption bugs and
the subsequent security vulnerabilities that they enable remain
a significant concern for unmanaged languages such as C/C++.
They form the basis for attacks [14] on modern systems in the
form of code injection [40] and code reuse [49, 14].

The power that unmanaged languages provide, such as
low-level memory control, explicit memory management and
direct access to the underlying hardware, make them ideal
for systems development. However, this level of control
comes at a significant cost, namely lack of memory safety.
Rewriting systems code with managed languages has had
limited success [24] due to the perceived loss of control that
mechanisms such as garbage collection may impose, and the
fact that millions of lines of existing C/C++ code would need
to be ported to provide similar functionality. Unfortunately,

1This work is sponsored by the Assistant Secretary of Defense for Research
& Engineering under Air Force Contract #FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author and
are not necessarily endorsed by the United States Government.

retrofitting memory safety into C/C++ applications can cause
significant overhead (up to 4x slowdown) [36] or may require
annotations [37, 28].

In response to these perceived shortcomings, research has
focused on alternative techniques that can reduce the risk
of code injection and code reuse attacks without significant
performance overhead and usability constraints. One such
technique is Data Execution Prevention (DEP). DEP enables
a system to use memory protection to mark pages as non-
executable, which can limit the introduction of new executable
code during execution. Unfortunately, DEP can be defeated
using code reuse attacks such as return-oriented program-
ming [11, 17], jump-oriented programming [10] and return-
into-libc attacks [56].

Randomization-based techniques, such as Address Space
Layout Randomization (ASLR) [43] and its medium- [30], and
fine-grained variants [57] randomize the location of code and
data segments thus providing probabilistic guarantees against
code reuse attacks. Unfortunately, recent attacks demonstrate
that even fine-grained memory randomization techniques may
be vulnerable to memory disclosure attacks [52]. Memory dis-
closure may take the form of direct memory leakage [53] (i.e.,
as part of the system output), or it can take the form of indirect
memory leakage, where fault or timing side-channel analysis
attacks are used to leak the contents of memory [9, 47]. Other
forms of randomization-based techniques include instruction
set randomization (ISR) [8] or the multicompiler techniques
[26]. Unfortunately, they are also vulnerable to information
leakage attacks [53, 47].

Control flow integrity (CFI) is a widely researched runtime
enforcement technique that can provide practical protection
against code injection and code reuse attacks [3, 61, 62].
CFI provides runtime enforcement of the intended control
flow transfers by disallowing transfers that are not present in
the application’s control flow graph (CFG). However, precise
enforcement of CFI can have a large overhead [3]. This has
motivated the development of more practical variants of CFI
that have lower performance overhead but enforce weaker
restrictions [61, 62]. For example, control transfer checks are
relaxed to allow transfers to any valid jump targets as opposed
to the correct target. Unfortunately, these implementations
have been shown to be ineffective because they allow enough

valid transfers to enable an attacker to build a malicious
payload [21].

A recent survey of protection mechanisms [55] shows
that most available solutions are either (a) incomplete, (b)
bypassable using known attacks, (c) require source code
modifications or (d) impose significant performance overhead.

Recently a new technique, code pointer integrity (CPI),
promises to bridge the gap between security guarantees and
performance/usability. CPI enforces selective memory safety
on code pointers (i.e., it does not protect data pointers) without
requiring any source code modifications. The key idea behind
CPI is to isolate and protect code pointers in a separate safe
region and provide runtime checks that verify the code pointer
correctness on each control transfer. Since modification of a
code pointer is necessary to implement a control hijacking
attack, the authors of CPI argue that it is effective against
the most malicious types of memory corruption attacks. As
code pointers represent a small fraction of all pointers, CPI
is significantly more efficient than established techniques for
enforcing complete memory safety (average 2.9% for C, 8.4%
for C/C++) [31].

In this paper, we present an attack on CPI that uses a
data pointer vulnerability to launch a timing side-channel that
leaks information about the protected safe region. Our attack
takes advantage of two design weaknesses in CPI. First, on
architectures that do not support segmentation protection, such
as x86-64 and ARM, CPI uses information hiding to protect
the safe region. Second, to achieve the low performance
overhead, CPI focuses protection on code pointers. Since the
safe region is kept in the same memory space as the code it
is protecting, to avoid expensive context switches, it is also
subject to leakage and overwrite attacks. We show that an
attacker can disclose the location of the safe region using
a timing side-channel attack. Once the location of a code
pointer in the safe region is known, the metadata of the
pointer is modified to allow the location of a ROP chain.
Then the pointer is modified to point to a ROP chain that
can successfully complete the hijacking attack.

In our evaluation of CPIs implementation, we discovered a
number of implementation flaws that can facilitate an attack
against CPI. In this paper, we focus on an attack that exploits
a flaw in the use of information hiding to protect the safe
region for architectures that do not provide hardware isolation
(e.g., x86-64 and ARM). In other words, for the x86-64
and ARM architectures, we assume the weakest assumptions
for the attacker. In fact, the only assumption necessary for
an attacker to break CPI is control of the stack, which is
consistent with other code reuse attacks and defenses in the
literature [49, 23, 57]. For the remainder of the paper, when
referring to CPI, we are referring to the information-hiding
based implementations of CPI.

At a high level our attack works as follows. First, by
controlling the stack, we use a data pointer overwrite to
redirect a data pointer to a random location in memory map
(mmap) which is used by CPI. Using a timing side-channel
attack, we leak large parts of the safe region. We then use

a data-pointer overwrite attack to modify the safe region and
tamper with base and bounds information for a code pointer
that we need for the actual payload. This can be summarized
in the following steps:

1) Launch Timing Side-channel Attack: A data-pointer
overwrite vulnerability is used to control a data pointer
that is subsequently used to affect control flow (e.g.,
number of loop iterations) is used to reveal the contents
of the pointer under control (i.e., byte values). The data
pointer can be overwritten to point to a return address on
the stack, revealing where code is located, or a location
in the code segment, revealing what code is located
there.

2) Data Collection: Using the data pointer vulnerability,
we measure round-trip response times to our attack
application in order to collect the timing samples. We
create a mapping between the smallest cumulative delay
slope and byte 0, and the largest slope and byte 255. We
use these two mappings to interpolate cumulative delay
slopes for all possible byte values (0-255). This enables
us to read the contents of specific memory locations with
high accuracy.

3) Locate Safe Region: Using information about the
possible location of the safe region with respect to the
randomized location of mmap, we launch a search that
starts at a reliably mapped location within the safe region
and traverse the safe region until we discover a sequence
of bytes that indicates the location of a known library
(e.g., the base of libc). Under the current implementation
of CPI, discovering the base of libc allows us to trivially
compute the base address of the safe region. Up to this
point, the attack is completely transparent to CPI and
may not cause any crash or detectable side effect.

4) Attack Safe Region: Using the safe region table
address, we can compute the address of any code pointer
stored in the safe region. At this point, we can change
a code pointer and any associate metadata to enable a
control hijacking attack (e.g., a ROP gadget). CPI does
not detect the redirection as a violation because we have
already modified its safe region to accept the new base
and bound for the code pointer.

In the CPI paper, the authors argue that leaking large parts of
memory or brute-forcing the safe region causes a large number
of crashes that can be detected using other means [31]. We
show that this assumption is incorrect and in fact leaking large
parts of the safe region can happen without causing any crash
in the target process. Another assumption in CPI is that if there
is no pointer into the safe region, its location cannot be leaked.
We show that this assumption is also incorrect. By jumping
into a randomly selected location in mmap, the attack can start
leaking the safe region without requiring any pointer to it.

To evaluate our attack, we construct a proof-of-concept at-
tack on a CPI-protected version on Nginx [45]. Our evaluation
shows that in Ubuntu Linux with ASLR, it takes 6 seconds
to bypass CPI with 13 crashes. Our analysis also shows

that an attack can be completed without any crashes in ∼98
hours for the most performant and complete implementation
of CPI. This implementation relies on ASLR support from the
operating system.

A. Contributions

This paper make the following contributions:
• Attack on CPI: We show that an attacker can defeat

CPI, on x86-64 architectures, assuming only control of
the stack. Specifically, we show how to reveal the location
of the safe region using a data-pointer overwrite without
causing any crashes, which was assumed to be impossible
by the CPI authors.

• Proof of Concept Attack on Nginx: We implement a
proof-of-concept attack on a CPI protected version of the
popular Nginx web server. We demonstrate that our attack
is accurate and efficient (it takes 6 seconds to complete
with only 13 crashes).

• Experimental Results: We present experimental results
that demonstrate the ability of our attack to leak the safe
region using a timing side-channel attack.

• Countermeasures: We present several possible improve-
ments to CPI and analyze their susceptibility to different
types of attacks.

Next, Section II describes our threat model which is con-
sistent with CPI’s threat model. Section III provides a brief
background on CPI and the side-channel attacks necessary
for understanding the rest of the paper. Section IV describes
our attack procedure and its details. Section V presents the
results of our attack. Section VI describes a few of CPI’s
implementation flaws. Section VII provides some insights into
the root cause of the problems in CPI and discusses possible
patch fixes and their implications. Section VIII describes
the possible countermeasures against our attack. Section IX
reviews the related work and Section X concludes the paper.

II. THREAT MODEL

In this paper, we assume a realistic threat model that is
both consistent with prior work and the threat model assumed
by CPI [31]. For the attacker, we assume that there exists
a vulnerability that provides control of the stack (i.e., the
attacker can create and modify arbitrary values on the stack).
We also assume that the attacker cannot modify code in
memory (e.g., memory is protected by DEP [41]). We also
assume the presence of ASLR [43]. As the above assumptions
prevent code injection, the attacker would be required to
construct a code reuse attack to be successful.

We also assume that CPI is properly configured and cor-
rectly implemented. As we will discuss later, CPI has other
implementation flaws that make it more vulnerable to attack,
but for this paper we focus on its design decision to use
information hiding to protect the safe region.

III. BACKGROUND

This section presents the necessary background informa-
tion required to understand our attack on CPI. Specifically,

the section begins with an overview of CPI and continues
with information about remote leakage attacks. For additional
information, we refer the reader to the CPI paper [31] and a
recent remote leakage attack paper [47].

A. CPI Overview

CPI consists of three major components: static analysis,
instrumentation, and safe region isolation.

1) Static Analysis: CPI uses type-based static analysis to
determine the set of sensitive pointers to be protected. CPI
treats all pointers to functions, composite types (e.g., arrays
or structs containing sensitive types), universal pointers
(e.g., void* and char*), and pointers to sensitive types
as sensitive types (note the recursive definition). CPI protects
against the redirection of sensitive pointers that can result in
control-hijacking attacks. The notion of sensitivity is dynamic
in nature: at runtime, a pointer may point to a benign integer
value (non-sensitive) and it may also point to a function
pointer (sensitive) at some other part of the execution. Using
the results of the static analysis, CPI stores the metadata for
checking the validity of code pointers in its safe region. The
metadata includes the value of the pointer and its lower and
upper thresholds. An identifier is also stored to check for
temporal safety, but this feature is not used in the current
implementation of CPI. Note that static analysis has its own
limitations and inaccuracies [33] the discussion of which is
beyond the scope of this paper.

2) Instrumentation: CPI adds instrumentation that propa-
gates metadata along pointer operations (e.g. pointer arithmetic
or assignment). Instrumentation is also used to ensure that
only CPI intrinsic instructions can manipulate the safe region
and that no pointer in the code can directly reference the safe
region. This is to prevent any code pointers from disclosing the
location of the safe region using a memory disclosure attack
(on code pointers).

3) Safe Region Isolation: On the x86-32 architecture CPI
relies on segmentation protection to isolate the safe region.
On architectures that do not support segmentation protection,
such as x86-64 and ARM, CPI uses information hiding to
protect the safe region. There are two major weaknesses in
CPI’s approach to safe region isolation in x86. First, the x86-
32 architecture is slowly phased out as systems migrate to
64-bit architectures and mobile architectures. Second, as we
show in our evaluation, weaknesses in the implementation of
the segmentation protection in CPI makes it bypassable. For
protection in the x86-64 architecture, CPI relies on the size of
the safe region (242 bytes), randomization and sparsity of its
safe region, and the fact that there are no direct pointers to its
safe region. We show that these are weak assumptions at best.

CPI authors also present a weaker but more efficient version
of CPI called Code Pointer Separation (CPS). CPS enforces
safety for code pointers, but not pointers to code pointers.
Because the CPI authors present CPI as providing the strongest
security guarantees, we do not discuss CPS and the additional
safe stack feature further. Interested readers can refer to the

original publication for more in-depth description of these
features.

B. Side Channels via Memory Corruption

Side channel attacks using memory corruption come in two
broad flavors: fault and timing analysis. They typically use
a memory corruption vulnerability (e.g., a buffer overflow) as
the basis from which to leak information about the contents of
memory. They are significantly more versatile than traditional
memory disclosure attacks [54] as they can limit crashes, they
can disclose information about a large section of memory,
and they only require a single exploit to defeat code-reuse
protection mechanisms.

Blind ROP (BROP) [9] is an example of a fault analysis
attack that uses the fault output of the application to leak
information about memory content (i.e., using application
crashes or freezes). BROP intentionally uses crashes to leak
information and can therefore be potentially detected by
mechanisms that monitor for an abnormal number of program
crashes.

Seibert, et al. [47] describe a variety of timing- and fault-
analysis attacks. In this paper, we focus on using timing
channel attacks via data-pointer overwrites. This type of
timing attack can prevent unwanted crashes by focusing timing
analysis on allocated pages (e.g., the large memory region
allocated as part of the safe region).

Consider the code sequence below. If ptr can be over-
written by an attacker to point to a location in memory, the
execution time of the while loop will be correlated with the
byte value to which ptr is pointing. For example, if ptr is
stored on the stack, a simple buffer overflow can corrupt its
value to point to an arbitrary location in memory. This delay
is small (on the order of nanoseconds); however, by making
numerous queries over the network and keeping the fastest
samples (cumulative delay analysis), an attacker can get an
accurate estimate of the byte values [47, 16]. In our attack,
we show that this type of attack is a practical technique for
disclosing CPI’s safe region.

1 i = 0;
2 while (i < ptr->value)
3 i++;

C. Memory Entropy

One of the arguments made by the authors of the CPI
technique is that the enormous size of virtual memory makes
guessing or brute force attacks difficult if not impossible.
Specifically, they mention that the 48 bits of addressable space
in x86-64 is very hard to brute force. We show that in practice
this assumption is incorrect. First, the entropy faced by an
attacker is not 48 bits but rather 28 bits: the entropy for the
base address of the mmap, where CPI’s safe region is stored,
is 28 bits [39]. Second, an attacker does not need to know
the exact start address of mmap. The attacker only needs to
redirect the data pointer to any valid location inside mmap.
Since large parts of the mmap are used by libraries and the

CPI safe region, an attacker can land inside an allocated mmap
page with high probability. In our evaluation we show that
this probability is as high as 1 for the average case. In other
words, since the size of the mmap region is much larger than
the entropy in its start address, an attacker can effectively land
in a valid location inside mmap without causing crashes.

IV. ATTACK METHODOLOGY

This section presents a methodology for performing attacks
on applications protected with CPI. As outlined in Section II,
the attacks on CPI assume an attacker with identical capa-
bilities as outlined in the CPI paper [31]. The section begins
with a high-level description of the attack methodology and
then proceeds to describe a detailed attack against Nginx [45]
using the approach.

At a high level, our attack takes advantage of two design
weaknesses in CPI. First, on architectures that do not support
segmentation protection, such as x86-64 and ARM, CPI uses
information hiding to protect the safe region. Second, to
achieve low performance overhead, CPI focuses protection
on code pointers (i.e., it does not protect data pointers).
This section demonstrates that these design decisions can be
exploited to bypass CPI.

Intuitively, our attack exploits the lack of data pointer
protection in CPI to perform a timing side channel attack that
can leak the location of the safe region. Once the location of
a code pointer in the safe region is known, the code pointer,
along with its metadata, is modified to point to a ROP chain
that completes the hijacking attack. We note that using a data-
pointer overwrite to launch a timing channel to leak the safe
region location can be completely transparent to CPI and may
avoid any detectable side-effects (i.e., it does not cause the
application to crash).

The attack performs the following steps:
1) Find data pointer vulnerability
2) Gather data

• Identify statistically unique memory sequences
• Collect timing data on data pointer vulnerability

3) Locate safe region
4) Attack safe region
Next, we describe each of these steps in detail.

A. Vulnerability

The first requirement to launch an attack on CPI is to
discover a data pointer overwrite vulnerability in the CPI-
protected application. Data pointers are not protected by CPI;
CPI only protects code pointers.

The data pointer overwrite vulnerability is used to launch
a timing side-channel attack [47], which, in turn, can leak
information about the safe region. In more detail, the data
pointer overwrite vulnerability is used to control a data pointer
that is subsequently used to affect control flow (in our case,
the number of iterations of a loop) and can be used to
reveal the contents of the pointer (i.e., byte values) via timing
information. For example, if the data pointer is stored on the

stack, it can be overwritten using a stack overflow attack; if it
is stored in heap, it can be overwritten via a heap corruption
attack.

In the absence of complete memory safety, we assume that
such vulnerabilities will exist. This assumption is consistent
with the related work in the area [50, 12]. In our proof-of-
concept exploit, we use a stack buffer overflow vulnerability
similar to previous vulnerabilities [1] to redirect a data pointer
in Nginx.

B. Data Collection

Given a data-pointer vulnerability, the next step is collect
enough data to accurately launch a timing side-channel attack
that will reveal the location of the safe region.

The first step is to generate a request that redirects the vul-
nerable data pointer to a carefully chosen address in memory
(see Section IV-C). Next, we need to collect enough informa-
tion to accurately estimate the byte value that is dereferenced
by the selected address. To estimate the byte value, we use
the cumulative delay analysis described in Equation 1.

byte = c

s∑
i=1

(di − baseline) (1)

In the above equation, baseline represents the average
round trip time (RTT) that the server takes to process requests
for a byte value of zero. di represents the delay sample RTT for
a nonzero byte value, and s represents the number of samples
taken.

Once we set byte = 0, the above equation simplifies to:

baseline =

∑
di
s

Due to additional delays introduced by networking condi-
tions, it is important to establish an accurate baseline. In a
sense, the baseline acts as a band-pass filter. In other words,
we subtract the baseline from di in Eq. 1 so that we are
only measuring the cumulative differential delay caused by
our chosen loop.

We then use the set of delay samples collected for byte
255 to calculate the constant c. Once we set byte = 255, the
equation is as follows:

c =
255

s∑
i=1

(di)− s ∗ baseline

Once we obtain c, which provides of the ratio between the
byte value and cumulative differential delay, we are able to
estimate byte values.

stack
higher memory addresses

lower memory addresses

stack gap (at least 128MB)

max mmap_base

random mmap_base

linked libraries

min mmap_base =
max-2^28*PAGE_SIZE

min mmap_base -
size of linked libraries

max mmap_base - 2^42 -
size of linked libraries

safe region
2^42 bytes always allocated

dynamically loaded
libraries,

any heap allocations
backed by mmap

end of mmap region

Fig. 1. Safe Region Memory Layout.

C. Locate Safe Region

Figure 1 illustrates the memory layout of a CPI-protected
application on the x86-64 architecture. The stack is located
at the top of the virtual address space and grows downwards
(towards lower memory addresses) and it is followed by the
stack gap. Following the stack gap is the base of the mmap
region (mmap base), where shared libraries (e.g., libc) and
other regions created by the mmap() system call reside. In
systems protected by ASLR, the location of mmap base
is randomly selected to be between max mmap base (lo-
cated immediately after the stack gap) and min mmap base.
min mmap base is computed as:

min mmap base =

max mmap base− aslr entropy ∗ page size

where aslr entropy is 228 in 64-bit systems, and the
page size is specified as an operating system parameter
(typically 4KB). The safe region is allocated directly after any
linked libraries are loaded on mmap base and is 242 bytes.
Immediately after the safe region lies the region in memory
where any dynamically loaded libraries and any mmap-based
heap allocations are made.

Given that the safe region is allocated directly after all
linked libraries are loaded, and that the linked libraries are
linked deterministically, the location of the safe region can

be computed by discovering a known location in the linked
libraries (e.g., the base of libc) and subtracting the size of
the safe region (242) from the address of the linked library.
A disclosure of any libc address or an address in another
linked library trivially reveals the location of the safe region
in the current CPI implementation. Our attack works even if
countermeasures are employed to allocate the safe region in a
randomized location as we discuss later.

To discover the location of a known library, such as the
base of libc, the attack needs to scan every address starting
at min mmap base, and using the timing channel attack
described above, search for a signature of bytes that uniquely
identify the location.

The space of possible locations to search may require
aslr entropy∗page size scans in the worst case. As the base
address of mmap is page aligned, one obvious optimization is
to scan addresses that are multiples of page size, thus greatly
reducing the number of addresses that need to be scanned to:

(aslr entropy ∗ page size)/page size

In fact, this attack can be made even more efficient. In the
x86-64 architecture, CPI protects the safe region by allocating
a large region (242 bytes) that is very sparsely populated with
pointer metadata. As a result, the vast majority of bytes inside
the safe region are zero bytes. This enables us to determine
with high probability whether we are inside the safe region or a
linked library by sampling bytes for zero/nonzero values (i.e.,
without requiring accurate byte estimation). Since we start in
the safe region and libc is allocated before the safe region,
if we go back in memory by the size of libc, we can avoid
crashing the application. This is because any location inside
the safe region has at least the size of libc allocated memory
on top of it. As a result, the improved attack procedure is as
follows:

1) Redirect a data pointer into the always allocated part of
the safe region (see Fig. 1).

2) Go back in memory by the size of libc.
3) Scan some bytes. If the bytes are all zero, goto step 2.

Else, scan more bytes to decide where we are in libc.
4) Done.
Note that discovery of a page that resides in libc directly

reveals the location of the safe region.
Using this procedure, the number of scans can be reduced

to:

(aslr entropy ∗ page size)/libc size

Here libc size, in our experiments, is approximately 221. In
other words, the estimated number of memory scans is: 228 ∗
212/221 = 219. This non-crashing scan strategy is depicted on
the left side of Fig. 2.

We can further reduce the number of memory scans if we
are willing to tolerate crashes due to dereferencing an address
not mapped to a readable page. Because the pages above
mmap base are not mapped, dereferencing an address above

0 10 20 30 40 50
Number of tolerated crashes

0

50

100

150

200

Nu
m

be
r o

f r
ea

ds

Fig. 3. Tolerated Number of Crashes

mmap base may crash the application. If the application
restarts after a crash without rerandomizing its address space,
then we can use this information to perform a search with the
goal of finding an address x such that x can be dereferenced
safely but x + libc size causes a crash. This implies that x
lies inside the linked library region, thus if we subtract the
size of all linked libraries from x, we will obtain an address
in the safe region that is near libc and can reduce to the case
above. Note that it is not guaranteed that x is located at the
top of the linked library region: within this region there are
pages which are not allocated and there are also pages which
do not have read permissions which would cause crashes if
dereferenced.

To find such an address x, the binary search proceeds
as follows: if we crash, our guessed address was too high,
otherwise our guess was too low. Put another way, we maintain
the invariant that the high address in our range will cause
a crash while the lower address is safe, and we terminate
when the difference reaches the threshold of libc size. This
approach would only require at most log2 2

19 = 19 reads and
will crash at most 19 times (9.5 times on average).

More generally, given that T crashes are allowed for our
scanning, we would like to characterize the minimum number
of page reads needed to locate a crashing boundary under the
optimum scanning strategy. A reason for doing that is when
T < 19, our binary search method is not guaranteed to find a
crashing boundary in the worst case.

We use dynamic programming to find the optimum scanning
strategy for a given T . Let f(i, j) be the maximum amount of
memory an optimum scanning strategy can cover, incurring
up to i crashes, and performing j page reads. Note that to
cause a crash, you need to perform a read. Thus, we have the
recursion

f(i, j) = f(i, j − 1) + f(i− 1, j − 1) + 1

This recursion holds because in the optimum strategy for
f(i, j), the first page read will either cause a crash or not.

4th page scan

5th page scan

…

…

libc

safe region

First dereference loc.
1st page scan

Si
ze

 L

2nd page scan

3rd page scan

Nth page scan
libc found!

…

L

L

L

L

L

4th page scan

5th page scan

First dereference loc.
1st page scan

2nd page scan

3rd page scan

Kth page scan
 libc found!

…

MMAP base

…

Crash!

Crash!

…

libc

safe region

MMAP base

Non-crashing scan strategy Crashing scan strategy

Fig. 2. Non-Crashing and Crashing Scan Strategies.

When a crash happens, it means that libc is below the first
page we read, thus the amount of memory we have to search
is reduced to a value that is at most f(i − 1, j − 1). As for
the latter case, the amount we have to search is reduced to a
value that is at most f(i, j − 1).

Having calculated a table of values from our recursion, we
can use it to inform us about the scanning strategy that incurs
at most T crashes. Fig. 3 shows the number of reads performed
by this strategy for different T values.

Because we know the layout of the library region in
advance, when we find a crash boundary we know that
subtracting 8 ∗ libc size from x will guarantee an address
in the safe region because this amount is greater than the size
of all linked libraries combined. Thus, at most 8 more reads
will be needed to locate an address in libc. The crashing scan
strategy is depicted on the right side of Fig. 2.

We can still obtain a significant improvement even if the
application does rerandomize its address space when it restarts
after a crash. Suppose that we can tolerate T crashes on
average. Rather than begin our scan at address:

min mmap base =

max mmap base− aslr entropy ∗ page size (2)

we begin at:

max mmap base− 1

T + 1
(aslr entropy ∗ page size)

With probability 1
T+1 , it will be the case that mmap base

is above this address and we will not crash, and the number

of reads will be reduced by a factor of 1
T+1 . With probability

1 − 1
T+1 , this will crash the application immediately and we

will have to try again. In expectation, this strategy will crash
T times before succeeding.

Note that in the rerandomization case, any optimal strategy
will choose a starting address based on how many crashes
can be tolerated and if this first scan does not crash, then
the difference between consecutive addresses scanned will be
at most libc size. If the difference is ever larger than this
number, then it may be the case that libc is jumped over,
causing a crash, and all knowledge about the safe region is
lost due to the rerandomization. If the difference between
consecutive addresses x, y satisfies y − x > libc size, then
replacing x by y− libc size and shifting all addresses before
x by y− libc size−x yields a superior strategy since the risk
of crashing is moved to the first scan while maintaining the
same probability of success.

Once the base address of mmap is discovered using the
timing side channel, the address of the safe region table can
be computed as follows:

table address = libc base− 242

D. Attack Safe Region

Using the safe region table address, the address of a
code pointer of interest in the CPI protected application,
ptr_address, can be computed by masking with the
cpi_addr_mask, which is 0x00fffffffff8, and then
multiplying by the size of the table entry, which is 4.

Armed with the exact address of a code pointer in the safe
region, the value of that pointer can be hijacked to point to a
library function or the start of a ROP chain to complete the
attack.

E. Attack Optimizations

A stronger implementation of CPI might pick an arbitrary
address for its safe region chosen randomly between the
bottom of the linked libraries and the end of the mmap region.
Our attack still works against such an implementation and can
be further optimized.

We know that the safe region has a size of 242 bytes.
Therefore, there are 248/242 = 26 = 64 possibilities for
where we need to search. In fact, in a real world system
like Ubuntu 14.04 there are only 246.5 addresses available to
mmap on Ubuntu x86-64 –thus there is a 1

25 chance of getting
the right one, even with the most extreme randomization
assumptions. Furthermore, heap and dynamic library address
disclosures will increase this chance. We note that CPI has
a unique signature of a pointer value followed by an empty
slot, followed by the lower and upper bounds, which will make
it simple for an attacker to verify that the address they have
reached is indeed in the safe region. Once an address within
the safe region has been identified, it is merely a matter of
time before the attacker is able to identify the offset of the safe
address relative to the table base. There are many options to
dramatically decrease the number of reads to identify exactly
where in the safe region we have landed. For instance, we
might profile a local application’s safe region and find the most
frequently populated addresses modulo the system’s page size
(since the base of the safe region must be page-aligned), then
search across the safe region in intervals of the page size at
that offset. Additionally, we can immediately find the offset if
we land on any value that is unique within the safe region by
comparing it to our local reference copy.

We can now make some general observations about choos-
ing the variable of interest to target during the search. We
would be able to search the fastest if we could choose a pointer
from the largest set of pointers in a program that has the same
addresses modulo the page size. For instance, if there are 100
pointers in the program that have addresses that are 1 modulo
the page size, we greatly increase our chances of finding one
of them early during the scan of the safe region.

Additionally, the leakage of any locations of other libraries
(making the strong randomization assumption) will help iden-
tify the location of the safe region. Note that leaking all other
libraries is within the threat model of CPI.

V. MEASUREMENTS AND RESULTS

We next present experimental results for the attack described
in Section IV on Nginx 1.6.2, a popular web server. We
compile Nginx with clang/CPI 0.2 and the -flto -fcpi
flags. Nginx is connected to the attacker via a 1Gbit wired
LAN connection. We perform all tests on a server with a quad-
core Intel i5 processor with 4 GB RAM.

A. Vulnerability

We patch Nginx to introduce a stack buffer overflow vul-
nerability allowing the user to gain control of a parameter
used as the upper loop bound in the Nginx logging system.
This is similar to the effect that an attacker can achieve with
(CVE-2013-2028) seen in previous Nginx versions [1]. The
vulnerability enables an attacker to place arbitrary values on
the stack in line with the threat model assumed by CPI (see
Section II). We launch the vulnerability over a wired LAN
connection, but as shown in prior work, the attack is also
possible over wireless networks [47].

Using the vulnerability, we modify a data pointer in
the Nginx logging module to point to a carefully chosen
address. The relevant loop can be found in the source code
in nginx_http_parse.c.

for (i = 0; i < headers->nelts; i++)

The data pointer vulnerability enables control over the
number of iterations executed in the loop. Using the timing
analysis presented in Section IV, we can distinguish between
zero pages and nonzero pages. This optimization enables the
attack to efficiently identify the end of the safe region, where
nonzero pages indicate the start of the linked library region.

B. Timing Attack

We begin the timing side channel attack by measuring the
HTTP request round trip time (RTT) for a static web page
(0.6 KB) using Nginx. We collect 10,000 samples to establish
the average baseline delay. For our experiments, the average
RTT is 3.2ms. Figure 4 and 5 show the results of our byte
estimation experiments. The figures show that byte estimation
using cumulative differential delay is accurate to within 2%
(±20).

0 20 40 60 80 100
Sample Number

0

200

400

600

800

1000

1200

1400

1600

1800

Cu
m

m
ul

at
iv

e
Di

ffe
re

nt
ia

l D
el

ay
 (m

s) byte0
byte50
byte100
byte150
byte200
byte250

Fig. 4. Timing Measurement for Nginx 1.6.2 over Wired LAN

0 50 100 150 200 250
Actual Byte

0

50

100

150

200

250

300

Es
tim

at
ed

 B
yt

e

Fig. 5. Observed Byte Estimation

C. Locate Safe Region

After we determine the average baseline delay, we redi-
rect the nelts pointer to the region between address
0x7bfff73b9000 and 0x7efff73b9000. As mentioned
in the memory analysis, this is the range of the CPI safe region
we know is guaranteed to be allocated, despite ASLR being
enabled. We pick the the top of this region as the first value
of our pointer.

A key component of our attack is the ability to quickly
determine whether a given page lies inside the safe region or
inside the linked libraries by sampling the page for zero bytes.
Even if we hit a nonzero address inside the safe region, which
will trigger the search for a known signature within libc, the
nearby bytes we scan will not yield a valid libc signature and
we can identify the false positive. In our tests, every byte read
from the high address space of the safe region yielded zero.
In other words, we observed no false positives.

One problematic scenario occurs if we sample zero bytes
values while inside libc. In this case, if we mistakenly interpret
this address as part of the safe region, we will skip over
libc and the attack will fail. We can mitigate this probability
by choosing the byte offset per page we scan intelligently.
Because we know the memory layout of libc in advance,
we can identify page offsets that have a large proportion of
nonzero bytes, so if we choose a random page of libc and read
the byte at that offset, we will likely read a nonzero value.

In our experiments, page offset 4048 yielded the highest
proportion of non-zero values, with 414 out of the 443 pages
of libc having a nonzero byte at that offset. This would give
our strategy an error rate of 1 − 414/443 = 6.5%. We note
that we can reduce this number to 0 by scanning two bytes per
page instead at offsets of our choice. In our experiments, if we
scan the bytes at offsets 1272 and 1672 in any page of libc,
one of these values is guaranteed to be nonzero. This reduces

our false positive rate at the cost of a factor of 2 in speed.
In our experiments, we found that scanning 5 extra bytes in
addition to the two signature bytes can yield 100% accuracy
using 30 samples per byte and considering the error in byte
estimation. Figure 6 illustrates the sum of the chosen offsets
for our scan of zero pages leading up to libc. Note that we
jump by the size of libc until we hit a non-zero page. The dot
on the upper-right corner of the figure shows the first non-zero
page.

In short, we scan 30∗7 = 210 bytes per size of libc to decide
whether we are in libc or the safe region. Table I summarizes
the number of false positives, i.e. the number of pages we
estimate as nonzero, which are in fact 0. The number of data
samples and estimation samples, and their respective fastest
percentile used for calculation all affect the accuracy. Scanning
5 extra bytes (in addition to the two signature bytes for a page)
and sampling 30 times per bytes yields an accuracy of 100% in
our setup. As a result, the attack requires (2+ 5) ∗ 219 ∗ 30 =
7 ∗ 219 ∗ 30 = 110, 100, 480 scans on average, which takes
about 97 hours with our attack setup.

Once we have a pointer to a nonzero page in libc, we send
more requests to read additional bytes with high accuracy
to determine which page of libc we have found. Figure 7
illustrates that we can achieve high accuracy by sending
10, 000 samples per byte.

Despite the high accuracy, we have to account for errors
in estimation. For this, we have developed a fuzzy n−gram
matching algorithm that, given a sequence of noisy bytes, tells
us the libc offset at which those bytes are located by comparing
the estimated bytes with a local copy of libc. In determining
zero and nonzero pages, we only collect 30 samples per byte as
we do not need very accurate measurements. After landing in a
nonzero page in libc, we do need more accurate measurements
to identify our likely location. Our measurements show that
10, 000 samples are necessary to estimate each byte to within
20. We also determine that reading 70 bytes starting at
page offset 3333 reliably is enough for the fuzzy n−gram
matching algorithm to determine where exactly we are in libc.
This offset was computed by looking at all contiguous byte
sequences for every page of libc and choosing the one which
required the fewest bytes to guarantee a unique match. This
orientation inside libc incurs additional 70∗10, 000 = 700, 000
requests, which adds another hour to the total time of the attack
for a total of 98 hours.

After identifying our exact location in libc, we know the
exact base address of the safe region:

safe region address = libc base− 242

D. Fast Attack with Crashes

We can make the above attack faster by tolerating 12 crashes
on average. The improved attack uses binary search as opposed
to linear search to find libc after landing in the safe region as
described in section IV-C. We also use an alternative strategy
for discovering the base of libc. Instead of sampling individual
pages, we continue the traversal until we observe a crash that

TABLE I
ERROR RATIO IN ESTIMATION OF 100 ZERO PAGES USING OFFSETS 1, 2, 3,

4, 5, 1272, 1672

Data samples # Estimation samples False positive ratio
(%-tile used) (%-tile used)
1,000 (10%) 1,000 (10%) 0%
10,000 (1%) 1,000 (10%) 0%
1,000 (10%) 100 (10%) 0%
10,000 (1%) 100 (10%) 0%
1,000 (10%) 50 (20%) 0%
10,000 (1%) 50 (20%) 3%
1,000 (10%) 30 (33%) 2%
10,000 (1%) 30 (33%) 0%
1,000 (10%) 20 (50%) 5%
10,000 (1%) 20 (50%) 13%
1,000 (10%) 10 (100%) 91%
10,000 (1%) 10 (100%) 92%
1,000 (10%) 5 (100%) 68%
10,000 (1%) 5 (100%) 86%
1,000 (10%) 1 (100%) 54%
10,000 (1%) 1 (100%) 52%

40000 30000 20000 10000 0
Page offset from LIBC_BASE

0

20

40

60

80

100

120

140

Su
m

 o
f e

st
im

at
es

 a
t c

ho
se

n
of

fs
et

s

Fig. 6. Estimation of Zero Pages in Safe Region.

indicates the location of the non-readable section of libc. This
reveals the exact address of libc. In our setup, the binary search
caused 11 crashes; discovering the base of libc required an
additional 2 crashes.

E. Attack Safe Region

After finding the safe region, we then use the same data
pointer overwrite to change the read_handler entry of the
safe region. We then modify the base and bound of the code
pointer to hold the location of the system call (sysenter).
Since we can control what system call sysenter invokes by
setting the proper values in the registers, finding sysenter
allows us to implement a variety of practical payloads. After
this, the attack can proceed simply by redirecting the code
pointer to the start of a ROP chain that uses the system call.
CPI does not prevent the redirection because its entry for the
code pointer is already maliciously modified to accept the ROP
chain.

The entire crashing attack takes 6 seconds to complete.

0 5 10 15 20
First 20 bytes of page 0x7ffff73b9000

0

50

100

150

200

250

By
te

 v
al

ue

Estimated Actual

Fig. 7. Actual Bytes Estimation of a Nonzero Page in LIBC.

F. Summary

In summary, we show a practical attack on a version of
Nginx protected with CPI, ASLR and DEP. The attack uses a
data pointer overwrite vulnerability to launch a timing side
channel attack that can leak the safe region in 6 seconds
with 13 observed crashes. Alternatively, this attack can be
completed in 98 hours without any crashes.

VI. IMPLEMENTATION FLAWS OF CPI

The published implementation (simpletable) of CPI uses
a fixed address for the table for all supported architectures,
providing no protection in its default configuration. We assume
this is due to the fact that the version of CPI we evaluated is
still in “early preview.” We kept this in mind throughout our
evaluation, and focused primarily on fundamental problems
with the use of information hiding in CPI. Having said that,
we found that as currently implemented there was almost no
focus on protecting the location of the safe region.

The two alternate implementations left in the source,
hashtable and lookuptable, use mmap directly without a fixed
address, which is an improvement but is of course relying on
mmap for randomization. This provides no protection against
an ASLR disclosure, which is within the threat model of the
CPI paper. We further note that the safe stack implementation
also allocates pages using mmap without a fixed address, thus
making it similarly vulnerable to an ASLR disclosure. This
vulnerability makes the safe stack weaker than the protection
offered by a stack canary, as any ASLR disclosure will allow
the safe stack location to be determined, whereas a stack
canary needs a more targeted disclosure (although it can be
bypassed in other ways).

In the default implementation (simpletable), the
location of the table is stored in a static variable

(__llvm__cpi_table) which is not zeroed after its
value is moved into the segment register. Thus, it is trivially
available to an attacker by reading a fixed offset in the data
segment. In the two alternate implementations, the location
of the table is not zeroed because it is never protected by
storage in the segment registers at all. Instead it is stored as
a local variable. Once again, this is trivially vulnerable to
an attack who can read process memory, and once disclosed
will immediately compromise the CPI guarantees. Note that
zeroing memory or registers is often difficult to perform
correctly in C in the presence of optimizing compilers [44].

We note that CPI’s performance numbers rely on support
for superpages (referred to as huge pages on Linux). In the
configurations used for performance evaluation, ASLR was not
enabled (FreeBSD does not currently have support for ASLR,
and as of Linux kernel 3.13, the base for huge table allocations
in mmap is not randomized, although a patch adding support
has since been added). We note this to point out a difference
between CPI performance tests and a real world environment,
although we have no immediate reason to suspect a large
performance penalty from ASLR being enabled.

It is unclear exactly how the published CPI implementation
intends to use the segment registers on 32-bit systems. The
simpletable implementation, which uses the %gs register,
warns that it is not supported on x86, although it compiles.
We note that using the segment registers may conflict in
Linux with thread-local storage (TLS), which uses the %gs
register on x86-32 and the %fs register on x86-64 [18]. As
mentioned, the default implementation, simpletable, does not
support 32-bit systems, and the other implementations do not
use the segment registers at all, a flaw noted previously, so
currently this flaw is not easily exposed. A quick search of
32-bit libc, however, found almost 3000 instructions using the
%gs register. Presumably this could be fixed by using the %fs
register on 32-bit systems; however, we note that this may
cause compatibility issues with applications expecting the %fs
register to be free, such as Wine (which is explicitly noted in
the Linux kernel source) [2].

Additionally, the usage of the %gs and %fs segment
registers might cause conflicts if CPI were applied to protect
kernel-mode code, a stated goal of the CPI approach. The
Linux and Windows kernels both have special usages for these
registers.

VII. DISCUSSION

In this section we discuss some of the problematic CPI
design assumptions and discuss possible fixes.

A. Design Assumptions

1) Enforcement Mechanisms: First, the authors of CPI
focus on extraction and enforcement of safety checks, but
they do not provide enough protection for their enforcement
mechanisms. This is arguably a hard problem in security, but
the effectiveness of defenses rely on such protections. In the
published CPI implementation, protection of the safe region is
very basic, relying on segmentation in the 32-bit architecture

and the size of the safe region in the 64-bit one. However, since
the safe region is stored in the same address space to avoid
performance expensive context switches, these protections are
not enough and as illustrated in our attacks they are easy
to bypass. Note that the motivation for techniques such as
CPI is the fact that existing memory protection defenses such
as ASLR are broken. Ironically, CPI itself relies on these
defenses to protect its enforcement. For example, relying on
randomization of locations to hide the safe region has many
of the weaknesses of ASLR that we have illustrated.

2) Detecting Crashes: Second, it is assumed that leaking
large parts of memory requires causing numerous crashes
which can be detected using other mechanisms. This in fact is
not correct. Although attacks such as Blind ROP [9] and brute
force [51] do cause numerous crashes, it is also possible on
current CPI implementations to avoid such crashes using side-
channel attacks. The main reason for this is that in practice
large number of pages are allocated and in fact, the entropy
in the start address of a region is much smaller than its
size. This allows an attacker to land correctly inside allocated
space which makes the attack non-crashing. In fact, CPI’s
implementation exacerbates this problem by allocating a very
large mmap region.

3) Memory Disclosure: Third, it is also implicitly assumed
that large parts of memory cannot leak. Direct memory dis-
closure techniques may have some limitations. For example,
they may be terminated by zero bytes or may be limited to
areas adjacent to a buffer [54]. However, indirect leaks using
dangling data pointers and timing or fault analysis attacks do
not have these limitations and they can leak large parts of
memory.

4) Memory Isolation: Fourth, the assumption that the safe
region cannot leak because there is no pointer to it is incorrect.
As we show in our attacks, random searching of the mmap
region can be used to leak the safe region without requiring
an explicit pointer into that region.

To summarize, the main weakness of CPI is its reliance
on secrets which are kept in the same space as the process
being protected. Arguably, this problem has contributed to the
weaknesses of many other defenses as well [59, 51, 54, 47].

B. Patching CPI

Our attacks may immediately bring to mind a number
of patch fixes to improve CPI. We considered several of
these fixes here and discuss their effectiveness and limitations.
Such fixes will increase the number of crashes necessary for
successful attacks, but they cannot completely prevent attacks
on architectures lacking segmentation (x86-64 and ARM).

1) Increase Safe Region Size: The first immediate idea is
to randomize the location of the safe region base within an
even larger mmap- allocated region. However, this provides no
benefit: the safe region base address must be strictly greater
than the beginning of the returned mmap region, effectively
increasing the amount of wasted data in the large region but
not preventing our side channel attack from simply continuing
to scan until it finds the safe region. Moreover, an additional

register must be used to hide the offset and then additional
instructions must be used to load the value from that register,
add it to the safe region segment register, and then add the
actual table offset. This can negatively impact performance.

2) Randomize Safe Region Location: The second fix can
be to specify a fixed random address for the mmap allocation
using mmap_fixed. This has the advantage that there will
be much larger portions of non-mapped memory, raising the
probability that an attack might scan through one of these
regions and trigger a crash. However, without changing the
size of the safe region an attacker will only need a small num-
ber of crashes in order to discover the randomized location.
Moreover, this approach may pose portability problems; as the
mmap man page states, “the availability of a specific address
range cannot be guaranteed, in general.” Platform-dependent
ASLR techniques could exacerbate these problems. There are
a number of other plausible attacks on this countermeasure:

• Unless the table spans a smaller range of virtual memory,
attacks are still possible based on leaking the offsets and
knowing the absolute minimum and maximum possible
mmap_fixed addresses, which decrease the entropy of
the safe region.

• Induce numerous heap allocations (at the threshold caus-
ing them to be backed by mmap) and leak their ad-
dresses. When the addresses jump by the size of the
safe region, there is a high probability it has been found.
This is similar to heap spraying techniques and would be
particularly effective on systems employing strong heap
randomization.

• Leak the addresses of any dynamically loaded libraries.
If the new dynamically loaded library address increases
over the previous dynamic library address by the size of
the safe region, there is a high probability the region has
been found.

3) Use Hash Function for Safe Region: The third fix can
be to use the segment register as a key for a hash function into
the safe region. This could introduce prohibitive performance
penalties. It is also still vulnerable to attack as a fast hash
function will not be cryptographically secure. This idea is
similar to using cryptography mechanisms to secure CFI [35].

4) Reduce Safe Region Size: The fourth fix can be to make
the safe region smaller. This is plausible, but note that if mmap
is still contiguous an attacker can start from a mapped library
and scan until they find the safe region, so this fix must be
combined with a non-contiguous mmap. Moreover, making the
safe region compact will also result in additional performance
overhead (for example, if a hashtable is being used, there will
be more hashtable collisions). A smaller safe region also runs a
higher risk of running out of space to store “sensitive” pointers
more easily.

In order to evaluate the viability of this proposed fix, we
compiled and ran the C and C++ SPECint and SPECfp 2006
benchmarks [22] with several sizes of CPI hashtables on an
Ubuntu 14.04.1 machine with 4GB RAM. All C benchmarks
were compiled using the -std=gnu89 flag (clang requires

this flag for 400.perlbench to run). In our setup, no bench-
mark compiled with the CPI hashtable produced correct output
on 400.perlbench, 403.gcc and 483.xalancbmk.

Table II lists the overhead results for SPECint. NT in the
table denotes “Not terminated after 8 hours”. In this table, we
have listed the performance of the default CPI hashtable size
(233). Using a hashtable size of 226, CPI reports that it has run
out of space in its hashtable (i.e. it has exceed a linear probing
maximum limit) for 471.omnetpp and 473.astar. Using
a hashtable size of 220, CPI runs out of space in the safe region
for those tests, as well as 445.gobmk and 464.h264ref.
The other tests incurred an average overhead of 17% with
the worst case overhead of 131% for 471.omnetpp. While
in general decreasing the CPI hashtable size leads to a small
performance increase, these performance overheads can still
be impractically high for some real-world applications, partic-
ularly C++ applications like 471.omnetpp.

Table III lists the overhead results for SPECfp. IR in
the table denotes “Incorrect results.” For SPECfp and a
CPI hashtable size of 226, two benchmarks run out of
space: 433.milc and 447.dealII. In addition, two
other benchmarks return incorrect results: 450.soplex and
453.povray. The 453.povray benchmark also returns
incorrect results with CPI’s default hashtable size.

TABLE II
SPECINT 2006 BENCHMARK PERFORMANCE BY CPI FLAVOR

Benchmark No CPI CPI simpletable CPI hashtable
401.bzip2 848 sec 860 (1.42%) 845 (-0.35%)
429.mcf 519 sec 485 (-6.55%) 501 (-3.47%)
445.gobmk 712 sec 730 (2.53%) 722 (1.40%)
456.hmmer 673 sec 687 (2.08%) 680 (1.04%)
458.sjeng 808 sec 850 (5.20%) 811 (0.37%)
462.libquantum 636 sec 713 (12.11%) 706 (11.01%)
464.h264ref 830 sec 963 (16.02%) 950 (14.46%)
471.omnetpp 582 sec 1133 (94.67%) 1345 (131.10%)
473.astar 632 sec 685 (8.39%) 636 (0.63%)
400.perlbench 570 sec NT NT
403.gcc 485 sec 830 (5.99%) NT
483.xalancbmk 423 sec 709 (67.61%) NT

TABLE III
SPECFP 2006 BENCHMARK PERFORMANCE BY CPI FLAVOR

Benchmark No CPI CPI simpletable CPI hashtable
433.milc 696 sec 695 (-0.14%) 786 (12.9%)
444.namd 557 sec 571 (2.51%) 574 (3.05%)
447.dealII 435 sec 539 (23.9%) 540 (24.1%)
450.soplex 394 sec 403 (2.28%) 419 (6.34%)
453.povray 250 sec IR IR
470.lbm 668 sec 708 (5.98%) 705 (5.53%)
482.sphinx3 863 sec 832 (-3.59%) 852 (-1.27%)

To evaluate the effectiveness of a scheme which might
dynamically expand and reduce the hashtable size to reduce
the attack surface at the cost of an unknown performance
penalty and loss of some real-time guarantees, we also ran the
SPEC benchmarks over an instrumented hashtable implemen-
tation to discover the maximum number of keys concurrently

resident in the hashtable; our analysis showed this number to
be 223 entries, consuming 228 bytes. However, some tests did
not complete correctly unless the hashtable size was at least
228 entries, consuming 233 bytes. Without any other mmap
allocations claiming address space, we expect 246

228 = 218

crashes with an expectation of 217, or 246

233 = 213 crashes with
an expectation of 212. This seems to be a weak guarantee of
the security of CPI on programs with large numbers of code
pointers. For instance, a program with 2GB of memory in
which only 10% of pointers are found to be sensitive using a
CPI hashtable with a load factor of 25% would have a safe
region of size (2 ∗ 109/8 ∗ 8% ∗ 4 ∗ 32 bytes). The expected
number of crashes before identifying this region would be only
slightly more than 214. This number means that the hashtable
implementation of CPI is not effective for protecting against a
local attacker and puts into question the guarantees it provides
on any remote system that is not monitored by non-local
logging. As a comparison, it is within an order of magnitude
of the number of crashes incurred in the Blind ROP [9] attack.

5) Use Non Contiguous Randomized mmap: Finally, the
fifth fix can be to use a non-contiguous, per-allocation random-
ized mmap. Such non-contiguous allocations are currently only
available using customized kernels such as PaX [43]. However,
even with non-contiguous allocations, the use of super pages
for virtual memory can still create weaknesses. An attacker
can force heap allocation of large objects, which use mmap
directly to generate entries that reduce total entropy. Moreover,
knowing the location of other libraries further reduces the
entropy of the safe region because of its large size. As a
result, such a technique must be combined with a reduction
in safe region size to be viable. More accurate evaluation of
the security and performance of such a fix would require an
actual implementation which we leave to future work.

The lookuptable implementation of CPI (which was non-
functional at the time of our evaluation) could support this
approach by a design which randomly allocates the address of
each subtable at runtime. This would result in a randomized
scattering of the much smaller subtables across memory. There
are, however, only 246

32∗222entries = 219 slots for the lookup
table’s subtable locations. The expectation for finding one of
these is 219

2K crashes, where K is the number of new code
pointers introduced that cause a separate subtable table to be
allocated. If there are 25 such pointers (which would be the
case for a 1GB process with at least one pointer across the
address space), that number goes to 213 crashes in expectation,
which as previously argued does not provide strong security
guarantees.

We argue that we can identify a subtable because of
the recognizable CPI structure, and search it via direct/side-
channel attacks. While we cannot modify any arbitrary code
pointer, we believe that it is only a matter of time until an
attacker discovers a code pointer that enables remote code
execution.

VIII. POSSIBLE COUNTERMEASURES

In this section we discuss possible countermeasures against
control hijacking attacks that use timing side channels for
memory disclosure.

a) Memory Safety: Complete memory safety can defend
against all control hijacking attacks, including the attack
outline in this paper. Softbound with the CETS extensions [36]
enforces complete spatial and temporal pointer safety albeit at
a significant cost (up to 4x slowdown).

On the other hand, experience has shown that low overhead
mechanisms that trade off security guarantees for performance
(e.g., approximate [48] or partial [5] memory safety) eventu-
ally get bypassed [9, 52, 21, 11, 17].

Fortunately, hardware support can make complete memory-
safety practical. For instance, Intel memory protection ex-
tensions (MPX) [25] can facilitate better enforcement of
memory safety checks. Secondly, the fat-pointer scheme shows
that hardware-based approaches can enforce spatial memory
safety at very low overhead [32]. Tagged architectures and
capability-based systems can also provide a possible direction
for mitigating such attacks [58].

b) Randomization: One possible defense against timing
channel attacks, such as the one outlined in this paper, is to
continuously rerandomize the safe region and ASLR, before
an attacker can disclose enough information about the memory
layout to make an attack practical. One simple strategy is to
use a worker pool model that is periodically re-randomized
(i.e., not just on crashes) by restarting worker processes.
Another approach is to perform runtime rerandomization [20]
by migrating running process state.

Randomization techniques provide probabilistic guarantees
that are significantly weaker than complete memory safety
at low overhead. We note that any security mechanism that
trades security guarantees for performance may be vulnerable
to future attacks. This short term optimization for the sake of
practicality is one reason for the numerous attacks on security
systems [9, 52, 21, 11, 17].

c) Timing Side Channel Defense: One way to defeat
attacks that use side channels to disclose memory is to remove
execution timing differences. For example, timing channels
can be removed by causing every execution (or path) to take
the same amount of time. The obvious disadvantage of this
approach is that average-case execution time now becomes
worst-case execution time. This change in expected latency
might be too costly for many systems. We note here that
adding random delays to program execution cannot effectively
protect against side channel attacks [19].

IX. RELATED WORK

Memory corruption attacks have been used since the early
70’s [6] and they still pose significant threats in modern
environments [14]. Memory unsafe languages such as C/C++
are vulnerable to such attacks.

Complete memory safety techniques such as the SoftBound
technique with its CETS extension [36] can mitigate mem-
ory corruption attacks, but they incur large overhead to the

execution (up to 4x slowdown). “fat-pointer” techniques such
as CCured [37] and Cyclone [28] have also been proposed
to provide spatial pointer safety, but they are not compatible
with existing C codebases. Other efforts such as Cling [4],
Memcheck [38], and AddressSanitizer [48] only provide tem-
poral pointer safety to prevent dangling pointer bugs such as
use-after-free. A number of hardware-enforced memory safety
techniques have also been proposed including the Low-Fat
pointer technique [32] and CHERI [58] which minimize the
overhead of memory safety checks.

The high overhead of software-based complete memory
safety has motivated weaker memory defenses that can be
categorized into enforcement-based and randomization-based
defenses. In enforcement-based defenses, certain correct code
behavior that is usually extracted at compile-time is enforced
at runtime to prevent memory corruption. In randomization-
based defenses different aspects of the code or the execution
environment are randomized to make successful attacks more
difficult.

The randomization-based category includes address space
layout randomization (ASLR) [43] and its medium-grained
[30] and fine-grained variants [57]. Different ASLR imple-
mentations randomize the location of a subset of stack,
heap, executable, and linked libraries at load time. Medium-
grained ASLR techniques such as Address Space Layout
Permutation [30] permutes the location of functions within
libraries as well. Fine-grained forms of ASLR such as Binary
Stirring [57] randomize the location of basic blocks within
code. Other randomization-based defenses include in-place
instruction rewriting such as ILR [23], code diversification
using a randomizing compiler such as the multi-compiler
technique [27], or Smashing the Gadgets technique [42].
Unfortunately, these defenses are vulnerable to information
leakage (memory disclosure) attacks [54]. It has been shown
that even one such vulnerability can be used repeatedly by an
attacker to bypass even fine-grained forms of randomization
[52]. Other randomization-based techniques include Genesis
[60], Minestrone [29], or RISE [8] implement instruction set
randomization using an emulation, instrumentation, or binary
translation layer such as Valgrind [38], Strata [46], or Intel
PIN [34] which in itself incurs a large overhead, sometimes
as high as multiple times slowdown to the applications.

In the enforcement-based category, control flow integrity
(CFI) [3] techniques are the most prominent ones. They
enforce a compile-time extracted control flow graph (CFG) at
runtime to prevent control hijacking attacks. Weaker forms of
CFI have been implemented in CCFIR [61] and bin-CFI [62]
which allow control transfers to any valid target as opposed
to the exact ones, but such defenses have been shown to
be vulnerable to carefully crafted control hijacking attacks
that use those targets to implement their malicious intent
[21]. The technique proposed by Backes et al. [7] prevents
memory disclosure attacks by marking executable pages as
non-readable. A recent technique [15] combines aspects of
enforcement (non-readable memory) and randomization (fine-
grained code randomization) to prevent memory disclosure

attacks.
On the attack side, direct memory disclosure attacks have

been known for many years [54]. Indirect memory leakage
such as fault analysis attacks (using crash, non-crash signal)
[9] or in general other forms of fault and timing analysis
attacks [47] have more recently been studied.

Non-control data attacks [13], not prevented by CPI, can
also be very strong in violating many security properties;
however, since they are not within the threat model of CPI
we leave their evaluation to future work.

X. CONCLUSION

We present an attack on the recently proposed CPI tech-
nique. We show that the use of information hiding to protect
the safe region is problematic and can be used to violate the
security of CPI. Specifically, we show how a data pointer
overwrite attack can be used to launch a timing side channel
attack that discloses the location of the safe region on x86-
64. We evaluate the attack using a proof-of-concept exploit
on a version of the Nginx web server that is protected with
CPI, ASLR and DEP. We show that the most performant
and complete implementation of CPI (simpletable) can be
bypassed in 98 hours without crashes, and 6 seconds if a small
number of crashes (13) can be tolerated. We also evaluate
the work factor required to bypass other implementations
of CPI including a number of possible fixes to the initial
implementation. We show that information hiding is a weak
paradigm that often leads to vulnerable defenses.

XI. ACKNOWLEDGMENT

This works is sponsored by the Office of Naval Research
under the Award #N00014-14-1-0006, entitled Defeating Code
Reuse Attacks Using Minimal Hardware Modifications and
DARPA (Grant FA8650-11-C-7192). The opinions, interpre-
tations, conclusions and recommendations are those of the
authors and do not reflect official policy or position of the
Office of Naval Research or the United States Government.

The authors would like to sincerely thank Dr. William
Streilein, Fan Long, the CPI team, Prof. David Evans, and
Prof. Greg Morrisett for their support and insightful comments
and suggestions.

REFERENCES

[1] Vulnerability summary for cve-2013-2028, 2013.
[2] Linux cross reference, 2014.
[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In Proceedings of the 12th ACM
conference on Computer and communications security,
pages 340–353. ACM, 2005.

[4] P. Akritidis. Cling: A memory allocator to mitigate
dangling pointers. In USENIX Security Symposium, pages
177–192, 2010.

[5] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Cas-
tro. Preventing memory error exploits with wit. In
Security and Privacy, 2008. SP 2008. IEEE Symposium
on, pages 263–277. IEEE, 2008.

[6] J. P. Anderson. Computer security technology planning
study. volume 2. Technical report, DTIC Document,
1972.

[7] M. Backes, T. Holz, B. Kollenda, P. Koppe,
S. Nürnberger, and J. Pewny. You can run but
you can’t read: Preventing disclosure exploits in
executable code. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1342–1353. ACM, 2014.

[8] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Ste-
fanovic, and D. D. Zovi. Randomized instruction set
emulation to disrupt binary code injection attacks. In
Proceedings of the 10th ACM Conference on Computer
and Communications Security, CCS ’03, pages 281–289,
New York, NY, USA, 2003. ACM.

[9] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and
D. Boneh. Hacking blind. In Proceedings of the 35th
IEEE Symposium on Security and Privacy, 2014.

[10] T. Bletsch, X. Jiang, V. Freeh, and Z. Liang. Jump-
oriented programming: A new class of code-reuse attack.
In Proc. of the 6th ACM Symposium on Info., Computer
and Comm. Security, pages 30–40, 2011.

[11] N. Carlini and D. Wagner. Rop is still dangerous: Break-
ing modern defenses. In USENIX Security Symposium,
2014.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented program-
ming without returns. In Proc. of the 17th ACM CCS,
pages 559–572, 2010.

[13] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer.
Non-control-data attacks are realistic threats. In Usenix
Security, volume 5, 2005.

[14] X. Chen, D. Caselden, and M. Scott. New zero-day
exploit targeting internet explorer versions 9 through 11
identified in targeted attacks, 2014.

[15] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen,
A.-R. Sadeghi, S. Brunthaler, and M. Franz. Readactor:
Practical code randomization resilient to memory disclo-
sure. In IEEE Symposium on Security and Privacy, 2015.

[16] S. A. Crosby, D. S. Wallach, and R. H. Riedi. Opportu-
nities and limits of remote timing attacks. ACM Trans-
actions on Information and System Security (TISSEC),
12(3):17, 2009.

[17] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose.
Stitching the gadgets: On the ineffectiveness of coarse-
grained control-flow integrity protection. In USENIX
Security Symposium, 2014.

[18] U. Drepper. Elf handling for thread-local storage, 2013.
[19] F. Durvaux, M. Renauld, F.-X. Standaert, L. v. O. tot

Oldenzeel, and N. Veyrat-Charvillon. Efficient removal of
random delays from embedded software implementations
using hidden markov models. Springer, 2013.

[20] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. En-
hanced operating system security through efficient and
fine-grained address space randomization. In USENIX
Security Symposium, pages 475–490, 2012.

[21] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portoka-
lidis. Out of control: Overcoming control-flow integrity.
In IEEE S&P, 2014.

[22] J. L. Henning. Spec cpu2006 benchmark descrip-
tions. SIGARCH Comput. Archit. News, 34(4):1–17, Sept.
2006.

[23] J. Hiser, A. Nguyen, M. Co, M. Hall, and J. Davidson.
Ilr: Where’d my gadgets go. In IEEE Symposium on
Security and Privacy, 2012.

[24] G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham,
M. Fähndrich, C. Hawblitzel, O. Hodson, S. Levi,
N. Murphy, et al. An overview of the singularity project.
2005.

[25] intel. Introduction to intel memory protection extensions,
2013.

[26] T. Jackson, A. Homescu, S. Crane, P. Larsen, S. Brun-
thaler, and M. Franz. Diversifying the software stack
using randomized nop insertion. In Moving Target
Defense, pages 151–173. 2013.

[27] T. Jackson, B. Salamat, A. Homescu, K. Manivannan,
G. Wagner, A. Gal, S. Brunthaler, C. Wimmer, and
M. Franz. Compiler-generated software diversity. Moving
Target Defense, pages 77–98, 2011.

[28] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of c. In
USENIX Annual Technical Conference, General Track,
pages 275–288, 2002.

[29] A. D. Keromytis, S. J. Stolfo, J. Yang, A. Stavrou,
A. Ghosh, D. Engler, M. Dacier, M. Elder, and D. Kien-
zle. The minestrone architecture combining static and
dynamic analysis techniques for software security. In
SysSec Workshop (SysSec), 2011 First, pages 53–56.
IEEE, 2011.

[30] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address
space layout permutation (aslp): Towards fine-grained
randomization of commodity software. In Proc. of
ACSAC’06, pages 339–348. Ieee, 2006.

[31] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song. Code-pointer integrity. 2014.

[32] A. Kwon, U. Dhawan, J. Smith, T. Knight, and A. Dehon.
Low-fat pointers: compact encoding and efficient gate-
level implementation of fat pointers for spatial safety and
capability-based security. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security, pages 721–732. ACM, 2013.

[33] W. Landi. Undecidability of static analysis. ACM Letters
on Programming Languages and Systems (LOPLAS),
1(4):323–337, 1992.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with dy-
namic instrumentation. ACM Sigplan Notices, 40(6):190–
200, 2005.

[35] A. J. Mashtizadeh, A. Bittau, D. Mazieres, and D. Boneh.
Cryptographically enforced control flow integrity. arXiv
preprint arXiv:1408.1451, 2014.

[36] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
Cets: compiler enforced temporal safety for c. In ACM
Sigplan Notices, volume 45, pages 31–40. ACM, 2010.

[37] G. C. Necula, S. McPeak, and W. Weimer. Ccured: Type-
safe retrofitting of legacy code. ACM SIGPLAN Notices,
37(1):128–139, 2002.

[38] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In ACM
Sigplan Notices, volume 42, pages 89–100. ACM, 2007.

[39] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein.
Finding focus in the blur of moving-target techniques.
IEEE Security & Privacy, 12(2):16–26, Mar 2014.

[40] A. One. Smashing the stack for fun and profit. Phrack
magazine, 7(49):14–16, 1996.

[41] OpenBSD. Openbsd 3.3, 2003.
[42] V. Pappas, M. Polychronakis, and A. D. Keromytis.

Smashing the gadgets: Hindering return-oriented pro-
gramming using in-place code randomization. In IEEE
Symposium on Security and Privacy, 2012.

[43] PaX. Pax address space layout randomization, 2003.
[44] C. Percival. How to zero a buffer, Sept. 2014.
[45] W. Reese. Nginx: the high-performance web server and

reverse proxy. Linux Journal, 2008(173):2, 2008.
[46] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W.

Davidson, and M. L. Soffa. Retargetable and reconfig-
urable software dynamic translation. In Proceedings of
the international symposium on Code generation and op-
timization: feedback-directed and runtime optimization,
pages 36–47. IEEE Computer Society, 2003.

[47] J. Seibert, H. Okhravi, and E. Soderstrom. Information
Leaks Without Memory Disclosures: Remote Side Chan-
nel Attacks on Diversified Code. In Proceedings of the
21st ACM Conference on Computer and Communications
Security (CCS), Nov 2014.

[48] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. Addresssanitizer: A fast address sanity
checker. In USENIX Annual Technical Conference, pages
309–318, 2012.

[49] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM conference on
Computer and communications security, pages 552–561.
ACM, 2007.

[50] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
Proc. of ACM CCS, pages 552–561, 2007.

[51] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. In Proc. of ACM CCS, pages 298–307,
2004.

[52] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-in-time code reuse:
On the effectiveness of fine-grained address space layout
randomization. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 574–588. IEEE, 2013.

[53] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,

S. Lachmund, and T. Walter. Breaking the memory
secrecy assumption. In Proc. of EuroSec’09, pages 1–
8, 2009.

[54] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,
S. Lachmund, and T. Walter. Breaking the memory
secrecy assumption. In Proceedings of EuroSec ’09,
2009.

[55] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal
war in memory. In Proc. of IEEE Symposium on Security
and Privacy, 2013.

[56] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh,
and P. Ning. On the expressiveness of return-into-libc
attacks. In Proc. of RAID’11, pages 121–141, 2011.

[57] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
stirring: Self-randomizing instruction addresses of legacy
x86 binary code. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 157–168. ACM, 2012.

[58] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. Dave, B. Davis, B. Laurie,
S. J. Murdoch, R. Norton, M. Roe, S. Son, M. Vadera,
and K. Gudka. Cheri: A hybrid capability-system archi-
tecture for scalable software compartmentalization. In
IEEE Symposium on Security and Privacy, 2015.

[59] Y. Weiss and E. G. Barrantes. Known/chosen key
attacks against software instruction set randomization.
In Computer Security Applications Conference, 2006.
ACSAC’06. 22nd Annual, pages 349–360. IEEE, 2006.

[60] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C.
Knight, and A. Nguyen-Tuong. Security through diver-
sity: Leveraging virtual machine technology. Security &
Privacy, IEEE, 7(1):26–33, 2009.

[61] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou. Practical control
flow integrity and randomization for binary executables.
In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 559–573. IEEE, 2013.

[62] M. Zhang and R. Sekar. Control flow integrity for cots
binaries. In USENIX Security, pages 337–352, 2013.

