
Verified Integrity Properties for Safe
Approximate Program Transformations

Michael Carbin Deokhwan Kim Sasa Misailovic Martin C. Rinard
MIT CSAIL

{mcarbin, dkim, misailo, rinard}@csail.mit.edu

Abstract
Approximate computations (for example, video, audio, and im-
age processing, machine learning, and many scientific computa-
tions) have the freedom to generate a range of acceptable results.
Approximate program transformations (for example, task skipping
and loop perforation) exploit this freedom to produce computations
that can execute at a variety of points in an underlying accuracy
versus performance trade-off space. One potential concern is that
these transformations may change the semantics of the program
and therefore cause the program to crash, perform an illegal opera-
tion, or otherwise violate its integrity.

We investigate how verifying integrity properties – key correct-
ness properties that the transformed computation must respect –
can enable the safe application of approximate program transfor-
mations. We present experimental results from a compiler that ver-
ifies integrity properties of perforated loops to enable the safe ap-
plication of loop perforation.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.4 [Programming Lan-
guages]: Processors—Optimization; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program Analysis

Keywords Approximate Computing, Integrity Properties, Loop
Perforation, Relaxed Programs

1. Introduction
In recent years researchers have developed a range of approxi-
mate program transformations (e.g, task skipping [14, 15], loop
perforation [11, 12, 17], function substitution [3, 4, 9, 18], ap-
proximate memoization [7], approximate memory regions [16], and
racy-parallelization [10]). These transformations can significantly
reduce the computational resources (e.g., time or energy) required
to produce an acceptable result. But because they may change the
semantics of the computation, they may, if inappropriately applied,
cause the computation to crash, perform an out of bounds access, or
otherwise violate its integrity. We therefore investigate an approach
in which the program transformation system verifies that a potential
transformation will not violate the integrity of the computation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’13, January 21–22, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1842-6/13/01. . . $15.00

We define the integrity of a computation as its set of integrity
properties, which we group into two categories:

• Internal Integrity Properties: Internal integrity properties
characterize internal aspects of a transformed computation. The
goal is to ensure that the transformed computation itself does
not crash, perform an illegal operation such as an out of bounds
array access or null pointer dereference, or violate the precon-
dition of an invoked component.

• External Integrity Properties: A transformed computation
typically produces a result that its client then uses. External
integrity properties state constraints that the result must satisfy
to preserve the integrity of the computation’s client.

In this paper we present our experience building a compilation
system that reasons about the effects of a single approximate trans-
formation, loop perforation [8], on a single universal internal in-
tegrity property, pointer safety, and several external integrity prop-
erties describing the sign and/or range (upper and/or lower bounds)
of the result that the transformed computation must produce for
its client. Our compilation system statically verifies these integrity
properties to enable the safe application of loop perforation.

Loop Perforation Strategies. Loop perforation increases perfor-
mance by skipping iterations of time-consuming loops. In previ-
ous work, we have explored a variety of perforation transforma-
tions [11, 12, 17] — truncation perforation (which executes a pre-
fix of the original loop iterations), interleaving perforation (which
deterministically skips iterations at a given rate), and random perfo-
ration (which chooses a random subset of the iterations to execute).
Our compilation system implements internal and external integrity
verifiers that together determine how to use these transformations
to produce one of the following perforation strategies:

• Full: If both the internal and external integrity verifiers suc-
ceed, then executing any subset of the original loop iterations
preserves the full integrity of the computation. The system can
therefore apply any perforation transformation.

• Truncate: If only the external integrity verifier succeeds, then
the system can only apply truncation perforation. Truncation
perforation naturally preserves internal integrity because all of
the iterations in the perforated loop also execute in the original
loop. Therefore, if the original loop satisfies its internal integrity
properties, then so does the perforated loop.

• Adapt: The external integrity verifier succeeds, but only if it as-
sumes that the external integrity property holds upon loop entry.
In other words, the system can prove that an external integrity
property is loop invariant provided that it holds initially, but is
unable to prove that the property is established for all potential
invocations of the loop.

In this case the system can apply adaptive perforation — the
transformed loop initially executes without perforation. At each
iteration, the loop dynamically checks if the external integrity
property holds. Once the property holds, it can then perforate
the loop using either full or truncation perforation (depending
on the result of the internal integrity verifier).

This selection of perforation strategies maximizes the ability
of the verification and transformation systems to work together to
safely exploit a range of perforation opportunities.

Relative Internal Integrity. A key aspect of our analysis ap-
proach is the use of relative internal integrity to simplify the veri-
fication of internal integrity. Instead of attempting to verify that all
executions of the perforated loop are safe, we verify that if the per-
forated loop violates an internal integrity property, then the original
loop also violates that property [6]. Following this reasoning, if an
integrity property holds in the original loop then it must also hold
in the perforated loop.

Verifying relative internal integrity significantly simplifies the
analysis by enabling the modular verification of computations that
use pointers and offsets that are initialized outside the analyzed
computation. It also makes it possible to successfully verify com-
plex pointer or array index expressions whose absolute pointer
safety may be difficult or impossible to verify statically.

Case Studies. We applied our compilation system to 25 loops
in 7 applications drawn from the PARSEC Benchmark Suite [5],
which contains emerging computational workloads such as ma-
chine learning, machine vision, financial applications, and video
processing. In addition to pointer safety (i.e., internal integrity), we
also identified and specified external integrity properties that con-
strain the sign and/or range of each loop’s outputs and ensure that
each loop’s client can successfully use the result.

Our compilation system was able to find at least one safe per-
foration strategy for 16 of the 25 total loops. For 7 of the verified
loops, the system’s relative internal integrity analysis identified that
it was possible to apply full perforation. For 6 of the verified loops,
the system identified that truncation perforation is safe only if it is
applied adaptively. For the remaining 3 loops the system verified
the safety of truncation perforation.

Contributions. This paper makes the following contributions:
• Conceptual Framework. We define the integrity of a compu-

tation by its set of internal and external integrity properties. An
approximate program transformation is therefore safe to apply
to a computation if it preserves these properties.

• Compilation System. We present a compilation system that
enables safe perforation. This system includes 1) a specification
language that developers can use to identify a perforatable loop
and specify its external integrity properties and 2) analyses to
verify the integrity of a perforated loop.

• Integrity Property Verification. We present the analyses we
have implemented to verify the integrity of a perforated loop.
Our system uses relative internal integrity analysis and an ex-
ternal integrity analysis that verifies simple properties such as
the non-negativity or positivity of a loop’s results. Remarkably,
these simple properties are enough to ensure the integrity of the
majority of the loops in our case studies.

• Experimental Results. We present the results of applying our
compilation system to 25 loops in 7 applications drawn from the
PARSEC Benchmark Suite. In general, we find that loop perfo-
ration typically works well when loops are largely decoupled
from their clients (as reflected in the simplicity of the external
integrity properties). This decoupling gives approximate trans-
formations substantial latitude in changing the result that the
loop computes while preserving the integrity of the client.

/* perforate
input nonnegative result;
output nonnegative result;

*/
for (int i = 0; i < dim; i++) {
float temp = p1.coord[i] - p2.coord[i];
result += temp * temp;

}

Figure 1. Perforatable Distance Computation in Streamcluster

Approximate transformations can deliver significant perfor-
mance, energy reduction, and adaptation benefits. Establishing the
integrity of transformed computations can eliminate a key concern
that would otherwise inhibit the widespread adoption of approx-
imate transformations and deny users the significant benefits that
they can deliver.

2. Example
Figure 1 presents a frequently-executed loop from the Streamclus-
ter application in the PARSEC Benchmark Suite [5]. Streamclus-
ter implements an online clustering algorithm that takes as input a
stream of data points and computes the set of clusters observed in
the stream thus far. This loop computes the distance between two
points p1 and p2. Each point has a field coord that corresponds to
the vector of features of the data point. This particular implementa-
tion of the loop computes the squared Euclidean distance between
two dim-dimensional vectors.

Internal Integrity. Pointer safety (i.e., that accesses to p1.coord
and p2.coord remain within bounds) is the only property required
to ensure the internal integrity of this loop. We use a novel relative
pointer safety analysis (see Section 3) to verify that loop perforation
preserves this property. Conceptually, the analysis verifies that the
set of memory locations that the perforated loop accesses is a
subset of the locations that the original loop accesses and, therefore,
perforation does not introduce any new pointer safety violations.
Because this relative approach enables the analysis to, in effect,
leverage the assumed validity of references in the original loop, we
have been able to develop an effective local analysis that analyzes
only the transformed computation. Standard absolute pointer safety
analyses, in contrast, must typically use complex global analyses to
verify the validity of pointer expressions and reason about the size
of accessed arrays.

External Integrity. The client is coded to work with any plausible
(i.e., non-negative) distance as it clusters the points. The essential
external integrity property is therefore that the computed result
must be greater than or equal to zero.

Our compilation system provides a specification language that
a developer uses to identify perforation targets, specify the pre-
conditions that inputs to the perforated loop satisfy, and spec-
ify the external integrity properties that the loop’s outputs must
satisfy (and therefore the compilation system must verify). The
perforate annotation in Figure 1 illustrates how a developer
writes annotations in the specification language. The annota-
tion itself indicates to the compilation system that the loop that
follows should be considered as a potential target for perfora-
tion. The input nonnegative result annotation indicates that
result is non-negative on entry into the loop. The annotation
output nonnegative result indicates that the external in-
tegrity constraint is that the loop modifies only the result variable
and that result must be non-negative upon loop exit.

Our external integrity verifier consists of several program anal-
yses, including a custom sign analysis, a custom effect analysis,
and an off-the-shelf verification condition generator that uses an

Application Function External Integrity Properties Perforation Strategy
streamcluster dist non-negativity full

x264
x264 me search ref non-negativity, range checks truncate
pixel satd wxh (2) non-negativity full
x264 pixel sad wxh (2) non-negativity full

bodytrack

IntersectingCylinders (2) — truncate
InsideError (2) positivity truncate (adapt)
ImageErrorInside (2) positivity truncate (adapt)
ImageErrorEdge (2) positivity truncate (adapt)

canneal swap cost (2) non-negativity full

Table 1. Perforation Results

SMT solver to discharge the generated verification conditions. For
this loop, the verifier uses the sign analysis to verify that if result
is non-negative upon loop entry, then it is non-negative upon loop
exit. It then uses the effect analysis to verify that the loop modifies
only result.

3. Analysis Algorithms
Our approach to verifying internal integrity uses the concept of rel-
ative integrity: if the original program executes without error, then
the transformed program executes without error. To make this con-
cept more precise, let us consider a programming language that
includes a labeled assert statement assert` e. The relation →
denotes the programming language’s small-step execution seman-
tics, which relates configurations of statements and program states
〈s, σ〉 to configurations 〈s′, σ′〉 that result after one step of exe-
cution (→∗ denotes the reflexive transitive closure of this relation).
T [s] denotes the transformed statement that results from applying
an approximate program transformation T to a statement s. We de-
fine relative integrity for an arbitrary property e of the program state
(as specified by an assertion statement assert` e) as follows:

Definition 1 (Relative Internal Integrity).
If 〈T [s], σ〉 →∗ 〈assert` e ; ·, σ′t〉

then ∃σ′o · 〈s, σ〉 →∗ 〈assert` e ; ·, σ′o〉 ∧
∀x ∈ free(e) · σ′t(x) = σ′o(x)

Relative integrity is a simulation relation between a transformed
program and its original semantics that makes it possible to trans-
fer a developer’s reasoning about the original program to the trans-
formed program. Specifically, if the transformed program executes
an assert statement, then there must exist an execution in the orig-
inal program that executes the same assert statement with the
same value for the condition. Therefore, if the assert statement
is valid in the original program (i.e., its condition always evaluates
to true), then it must also be valid in the transformed program.

Our compilation system adapts this fully general relative in-
tegrity definition to verify pointer safety by checking the following
properties of each pointer dereference in a loop:

Guaranteed Execution. If a perforated loop dereferences a pointer,
then there must exist an execution of the dereference in the original
loop. Our analysis verifies this by checking that there is no control
flow that allows the loop to skip the dereference or exit early.

History Independence. If a perforated loop dereferences a pointer,
then the value of that pointer must be history independent in that
its value can be computed solely as a function of the current value
of the loop’s iteration variable and the state of the program before
execution of the loop. A history independent pointer value has the
same value in both the original and perforated versions of the loop
at any given iteration because its value is independent of the com-
putations performed in previous, potentially skipped iterations. Our
system uses induction variable analysis and loop invariance analy-
sis to verify that a pointer is history independent.

These two properties work together to establish relative in-
tegrity. Guaranteed execution ensures that the original loop exe-
cutes each pointer dereference. History independence then ensures
that the pointer value is the same as in the original loop.

In contrast to our internal integrity analysis, our external in-
tegrity analyses are fairly standard: our sign analysis is a forward
dataflow analysis; for more complex constraints involving vari-
able ranges we integrate with the Frama-C verification platform [1]
through a source-to-source translation from our specification lan-
guage to the annotations that Frama-C supports.

Implementation. Our compilation system supports programs
written in C. We have implemented our system on top of the pyc-
parser C AST generator [2] and the C Intermediate Language (CIL)
program analysis infrastructure [13].

4. Case Studies
We next present a number of case studies in which we analyze the
integrity of 25 perforated loops in 7 applications using our system.

We selected applications from the PARSEC Benchmark Suite [5]
that have been explored in previous work on loop perforation [8, 11,
17]. Specifically, we selected the loops by using quality-of-service
profiling, which speculatively applies loop perforation to the most
time-consuming loops in an application and suggests as candidates
for loop perforation those loops that effectively trade accuracy of
their results for performance [17].

Experimental Results. Our system identified successful perfora-
tion strategies for 16 of the 25 analyzed loops. These 16 loops range
in size between 4 and 131 lines of code. Perforating each individual
loop produces full application speedups of between 7% and 42%
while typically changing the output of the application by less than
10% (see previous publications [8, 11, 17] for more detailed per-
formance and accuracy numbers).

Table 1 presents a summary of the perforation results for the 16
loops. Column 1 presents the application. Column 2 presents the
function in which each perforatable loop resides. It also presents the
number of perforatable loops in each function (if it is greater than
one). Column 3 presents each loop’s external integrity properties.
We found that many of the loops in our benchmark suite shared
a common set of remarkably simple external integrity properties,
specifically non-negativity (applicable to 14 loops) and positivity
(applicable to 6 loops). One loop (x264 me search ref) has a
more complex integrity property involving range checks.

Column 4 presents which perforation strategies the compilation
system verified can be applied and still preserve the internal and
external integrity properties of the loop. If an entry contains the
word “full”, then the system verified that all perforation strategies
preserve both the internal integrity of the loop (i.e, do not violate
pointer safety) and its listed external integrity properties.

If an entry contains the word “truncate” this indicates that the
compilation system was only able to verify that truncation perfo-
ration preserves both the internal and external integrity properties
of the loop — i.e., other perforation strategies do not satisfy the

relative integrity property. For example, fully perforating the loops
in IntersectingCylinders does not satisfy the relative integrity
property because the loops’ control flow structures allow them to
terminate before executing all potential iterations. Therefore, if per-
forated versions of these loops skip an iteration on which the orig-
inal loops terminate, then the perforated versions can continue on
to access an invalid pointer whereas the original loops would not.

If a perforation strategy contains an additional “adapt” in paren-
theses (i.e., six of the bodytrack loops), then the system verified
that adaptively applying the strategy preserves the loop’s exter-
nal integrity whereas normal perforation may not. The bodytrack
loops each have a positivity constraint on a variable that counts the
number of samples that have been taken as they iterate over a set
of objects. The loops increment the number of samples when in-
specting an object only if an object satisfies a given property; this
counter variable is then later used as the divisor in a division op-
eration and therefore must be non-zero for the program to avoid
a divide-by-zero error. Because the counter begins at zero and the
object property is non-trivial, it is not straightforward to verify that
perforation preserves the positivity constraint. However, adaptive
perforation makes it possible to reason about these loops — our
compilation system verifies that if we enable perforation only after
the counter becomes positive, then the counter remains positive.

Remaining Loops. Verifying the integrity of the nine remaining
loops is beyond the reach of our current system, typically because
of complex external integrity properties that involve updates to
data structures such as vectors and arrays. Our current system only
supports external integrity properties that involve scalar variables.

This situation motivates the development of a more sophisti-
cated reasoning system — in particular, we envision a system that
can handle more complex data structures and use relative reason-
ing to verify complex external integrity properties. But it also high-
lights the remarkable simplicity of the reasoning required to safely
perforate many loops — our current system, which focuses on a rel-
atively simple set of integrity properties, is able to safely perforate
16 of the 25 perforatable loops in PARSEC (and verify the integrity
of fully perforating 7 of these 16 loops).

5. Related Work
Our previous work on Relaxed Programs [6] provides a general
programming methodology and verification framework for stati-
cally reasoning about transformations that change the semantics
of a program. The framework allows a developer to specify arbi-
trary integrity properties along with more complex properties that
relate the semantics of a relaxed program to its original semantics.
The framework provides a program logic and Coq formalization
with which a developer can manually prove the desired properties
for programs written in a small imperative language. The work we
present in this paper is complementary in that it provides a checker
with which developers can automatically verify a set of target in-
tegrity properties for general C programs.

EnerJ’s type system allows developers to separate approximate
from non-approximate computation via a non-interference guaran-
tee [16]. Our work differs in that our compiler can verify semantic
integrity properties in cases where non-interference does not hold.

In addition to their essential integrity properties, approximately
transformed programs also have essential accuracy properties,
which characterize the acceptable differences between the outputs
of the original program and the transformed. An accuracy prop-
erty may for example state that a developer is willing to accept
any output that differs by at most 10% from the original output
according a specified metric. In previous work we have investi-
gated how to specify, verify, and select transformations that satisfy
accuracy properties using empirical methods (e.g., testing and pro-
filing [8, 9, 11, 17], synthesis [18], and formal verification [6, 12]).

These techniques are complementary to the approach we present
in this paper in that approximately transformed computations must
satisfy both their accuracy and integrity properties.

6. Conclusion
Approximate program transformations promise to deliver signifi-
cant performance and resource consumption improvements at the
cost of small accuracy losses. Most previous research in this area,
however, has relied on purely empirical testing approaches to val-
idate the integrity of the transformed approximate computations.
Our results provide encouraging evidence that compilers can verify
integrity properties to safely apply approximate transformations,
specifically by verifying that the transformed computations respect
the specified integrity properties.

Acknowledgments. This research was supported in part by the
National Science Foundation (Grants CCF-0811397, CCF-0905244,
CCF-1036241, and IIS-0835652), DARPA (Grants FA8650-11-C-
7192 and FA8750-12-2-0110), and the United States Department
of Energy (Grant DE-SC0005288).

References
[1] Frama-C. http://frama-c.com/.
[2] pycparser. http://code.google.com/p/pycparser/.
[3] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,

and S. Amarasinghe. PetaBricks: A language and compiler for algo-
rithmic choice. PLDI, 2009.

[4] W. Baek and T. M. Chilimbi. Green: A framework for support-
ing energy-conscious programming using controlled approximation.
PLDI, 2010.

[5] C. Bienia, S. Kumar, J. Pal Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. PACT, 2008.

[6] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Proving accept-
ability properties of relaxed nondeterministic approximate programs.
PLDI, 2012.

[7] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving
programs robust. FSE, 2011.

[8] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Ri-
nard. Using code perforation to improve performance, reduce energy
consumption, and respond to failures. Technical Report MIT-CSAIL-
TR-2009-042, MIT, 2009.

[9] H. Hoffmann, Sidiroglou S. Carbin M. Misailovic S. Agarwal A. and
M. Rinard. Dynamic knobs for responsive power-aware computing.
ASPLOS, 2011.

[10] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential pro-
grams with statistical accuracy tests. Technical Report MIT-CSAIL-
TR-2010-038, MIT, 2010.

[11] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. ICSE, 2010.

[12] S. Misailovic, D. Roy, and M. Rinard. Probabilistically accurate
program transformations. SAS, 2011.

[13] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermedi-
ate language and tools for analysis and transformation of C programs.
CC, 2002.

[14] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computa-
tions that discard tasks. ICS, 2006.

[15] M. Rinard. Using early phase termination to eliminate load imbalances
at barrier synchronization points. OOPSLA, 2007.

[16] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: Approximate data types for safe and general
low-power computation. PLDI, 2011.

[17] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing
performance vs. accuracy trade-offs with loop perforation. FSE, 2011.

[18] Z. Zhu, S. Misailovic, J. Kelner, and M. Rinard. Randomized
accuracy-aware program transformations for efficient approximate
computations. POPL, 2012.

