
37

Bayesian Synthesis of Probabilistic Programs for Automatic

Data Modeling

FERAS A. SAAD,Massachusetts Institute of Technology, USA

MARCO F. CUSUMANO-TOWNER,Massachusetts Institute of Technology, USA

ULRICH SCHAECHTLE,Massachusetts Institute of Technology, USA

MARTIN C. RINARD,Massachusetts Institute of Technology, USA

VIKASH K. MANSINGHKA,Massachusetts Institute of Technology, USA

We present new techniques for automatically constructing probabilistic programs for data analysis, interpreta-
tion, and prediction. These techniques work with probabilistic domain-specific data modeling languages that
capture key properties of a broad class of data generating processes, using Bayesian inference to synthesize
probabilistic programs in these modeling languages given observed data. We provide a precise formulation
of Bayesian synthesis for automatic data modeling that identifies sufficient conditions for the resulting syn-
thesis procedure to be sound. We also derive a general class of synthesis algorithms for domain-specific
languages specified by probabilistic context-free grammars and establish the soundness of our approach for
these languages. We apply the techniques to automatically synthesize probabilistic programs for time series
data and multivariate tabular data. We show how to analyze the structure of the synthesized programs to
compute, for key qualitative properties of interest, the probability that the underlying data generating process
exhibits each of these properties. Second, we translate probabilistic programs in the domain-specific language
into probabilistic programs in Venture, a general-purpose probabilistic programming system. The translated
Venture programs are then executed to obtain predictions of new time series data and new multivariate data
records. Experimental results show that our techniques can accurately infer qualitative structure in multiple
real-world data sets and outperform standard data analysis methods in forecasting and predicting new data.

CCS Concepts: • Mathematics of computing→ Probability and statistics; Bayesian computation; Markov-

chain Monte Carlo methods; Time series analysis; Multivariate statistics; • Software and its engineering →
Domain specific languages; • Theory of computation→ Probabilistic computation; Bayesian analysis; Data
modeling; Denotational semantics; • Computing methodologies→ Machine learning;

Additional Key Words and Phrases: probabilistic programming, Bayesian inference, synthesis, model discovery

ACM Reference Format:

Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K. Mansinghka.
2019. Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling. Proc. ACM Program. Lang. 3,
POPL, Article 37 (January 2019), 32 pages. https://doi.org/10.1145/3290350

1 INTRODUCTION

Data analysis is an important and longstanding activity in many areas of natural science, social
science, and engineering [Tukey 1977; Gelman and Hill 2007]. Within this field, probabilistic ap-
proaches that enable users to more accurately analyze, interpret, and predict underlying phenomena
behind their data are rising in importance and prominence [Murphy 2012].

A primary goal of modern data modeling techniques is to obtain an artifact that explains the data.
With current practice, this artifact takes the form of either a set of parameters for a fixed model

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART37

https://doi.org/10.1145/3290350

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3290350
https://doi.org/10.1145/3290350

37:2 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

[Nie 1975; Spiegelhalter et al. 1996; Plummer 2003; Cody and Smith 2005; Hyndman and Khandakar
2008; Rasmussen and Nickisch 2010; Seabold and Perktold 2010; Pedregosa et al. 2011; James et al.
2013] or a set of parameters for a fixed probabilistic program structure [Pfeffer 2001; Milch et al.
2005; Goodman et al. 2008; McCallum et al. 2009; Wood et al. 2014; Goodman and Stuhlmüller
2014; Carpenter et al. 2017; Pfeffer 2016; Salvatier et al. 2016; Tran et al. 2017; Ge et al. 2018]. With
this approach, users manually iterate over multiple increasingly refined models before obtaining
satisfactory results. Drawbacks of this approach include the need for users to manually select the
model or program structure, the need for significant modeling expertise, limited modeling capacity,
and the potential for missing important aspects of the data if users do not explore a wide enough
range of model or program structures.

In contrast to this current practice, we model the data with an ensemble of probabilistic programs
sampled from a joint space of program structures and parameters. This approach eliminates the
need for the user to select a specific model structure, extends the range of data that can be easily
and productively analyzed, and (as our experimental results show) delivers artifacts that more
accurately model the observed data. A challenge is that this approach requires substantially more
sophisticated and effective probabilistic modeling and inference techniques.

We meet this challenge by combining techniques from machine learning, program synthesis, and
programming language design. Frommachine learningwe import the Bayesianmodeling framework
and the Bayesian inference algorithms required to express and sample from rich probabilistic
structures. From program synthesis we import the concept of representing knowledge as programs
and searching program spaces to derive solutions to technical problems. From programming
language design we import the idea of using domain-specific languages to precisely capture families
of computations. The entire framework rests on the foundation of a precise formal semantics which
enables a clear formulation of the synthesis problem along with proofs that precisely characterize
the soundness guarantees that our inference algorithms deliver.

1.1 Automated Data Modeling via Bayesian Synthesis of Probabilistic Programs in

Domain-Specific Languages

We use Bayesian inference to synthesize ensembles of probabilistic programs sampled from domain-
specific languages given observed data. Each language is designed to capture key properties of a
broad class of data generating processes. Probabilistic programs in the domain-specific language
(DSL) provide concise representations of probabilistic models that summarize the qualitative and
quantitative structure in the underlying data generating process. The synthesized ensembles are
then used for data analysis, interpretation, and prediction.

We precisely formalize the problem of Bayesian synthesis of probabilistic programs for automatic
data modeling. To each expression in the domain-specific language we assign two denotational
semantics: one that corresponds to the prior probability distribution over expressions in the DSL
and another that corresponds to the probability distribution that each DSL expression assigns to
new data. We provide sufficient conditions on these semantics needed for Bayesian synthesis to
be well-defined. We outline a template for a broad class of synthesis algorithms and prove that
algorithms that conform to this template and satisfy certain preconditions are sound, i.e., they
converge asymptotically to the Bayesian posterior distribution on programs given the data.
Our approach provides automation that is lacking in both statistical programming environ-

ments and in probabilistic programming languages. Statistical programming environments such as
SAS [Cody and Smith 2005], SPSS [Nie 1975] and BUGS [Spiegelhalter et al. 1996] require users
to first choose a model family and then to write code that estimates model parameters. Proba-
bilistic programming languages such as Stan [Carpenter et al. 2017], Figaro [Pfeffer 2016], and
Edward [Tran et al. 2017] provide constructs that make it easier to estimate model parameters

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:3

given data, but still require users to write probabilistic code that explicitly specifies the underlying
model structure. Our approach, in contrast, automates model selection within the domain-specific
languages. Instead of delivering a single model or probabilistic program, it delivers ensembles of
synthesized probabilistic programs that, together, more accurately model the observed data.

1.2 InferringQualitative Structure by Processing Synthesized Programs

In this paper we work with probabilistic programs for model families in two domains: (i) analysis of
univariate time series data via Gaussian processes [Rasmussen and Williams 2006]; and (ii) analysis
of multivariate tabular data using nonparametric mixture models [Mansinghka et al. 2016]. The
synthesized programs in the domain-specific language provide a compact model of the data that
make qualitative properties apparent in the surface syntax of the program. We exploit this fact
to develop simple program processing routines that automatically extract these properties and
present them to users, along with a characterization of the uncertainty with which these properties
are actually present in the observed data.
For our analysis of time series data, we focus on the presence or absence of basic temporal

features such as linear trends, periodicity, and change points in the time series. For our analysis of
multivariate tabular data, we focus on detecting the presence or absence of predictive relationships,
which may be characterized by nonlinear or multi-modal patterns.

1.3 Predicting New Data by Translating Synthesized Programs to Venture

In addition to capturing qualitative properties, we obtain executable versions of the synthesized
probabilistic programs specified in the DSL by translating them into probabilistic programs specified
in Venture [Mansinghka et al. 2014]. This translation step produces executable Venture programs
that define a probability distribution over new, hypothetical data from a generative process learned
from the observed data and that can deliver predictions for new data. Using Venture as the underly-
ing prediction platform allows us to leverage the full expressiveness of Venture’s general-purpose
probabilistic inference machinery to obtain accurate predictions, as opposed to writing custom
prediction engines on a per-DSL basis.

For time series data analyzed with Gaussian processes, we use the Venture programs to forecast
the time series into the future. For multivariate tabular data analyzed with mixture models, we use
the programs to simulate new data with similar characteristics to the observed data.

1.4 Experimental Results

We deploy the method to synthesize probabilistic programs and perform data analysis tasks on
several real-world datasets that contain rich probabilistic structure.

For time series applications, we process the synthesized Gaussian process programs to infer the
probable existence or absence of temporal structures inmultiple econometric time series withwidely-
varying patterns. The synthesized programs accurately report the existence of structures when they
truly exist in the data and the absence of structures when they do not.We also demonstrate improved
forecasting accuracy as compared to multiple widely-used statistical and baselines, indicating that
they capture patterns in the underlying data generating processes.
For applications to multivariate tabular data, we show that synthesized programs report the

existence of predictive relationships with nonlinear and multi-modal characteristics that are missed
by standard pairwise correlation metrics. We also show that the predictive distribution over
new data from the probabilistic programs faithfully represents the observed data as compared to
simulations from generalized linear models and produce probability density estimates that are
orders of magnitude more accurate than standard kernel density estimation techniques.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:4 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

1.5 Contributions

This paper makes the following contributions:

• Bayesian synthesis of probabilistic programs. It introduces and precisely formalizes the
problem of Bayesian synthesis of probabilistic programs for automatic data modeling in domain-
specific data modeling languages. It also provides sufficient conditions for Bayesian synthesis to
be well-defined. These conditions leverage the fact that expressions in the DSL correspond to
data models and are given two denotational semantics: one that corresponds to the prior proba-
bility distribution over expressions in the DSL and another that corresponds to the probability
distribution that each DSL expression assigns to new data. It also defines a template for a broad
class of synthesis algorithms based on Markov chains and proves that algorithms which conform
to this template and satisfy certain preconditions are sound, i.e., they converge to the Bayesian
posterior distribution on programs given the data.
• Languages defined by probabilistic context-free grammars. It defines a class of domain-
specific data modeling languages defined by probabilistic context-free grammars and identifies
when these languages satisfy the sufficient conditions for sound Bayesian synthesis. We also
provide an algorithm for Bayesian synthesis for this class of DSLs that conforms to the above
template and prove that it satisfies the soundness preconditions.
• Example domain-specific languages for modeling time series and multivariate data. It
introduces two domain-specific languages, each based on a state-of-the-art model discovery
technique from the literature on Bayesian statistics and machine learning. These languages are
suitable for modeling broad classes of real-world datasets.
• Applications to inferring qualitative structure and making quantitative predictions. It
shows how to use the synthesized programs to (i) infer the probability that qualitative structure
of interest is present in the data, by processing collections of programs produced by Bayesian
synthesis, and (ii) make quantitative predictions for new data.
• Empirical results in multiple real-world domains. It presents empirical results for both
inferring qualitative structure and predicting new data. The results show that the qualitative
structures match the real-world data, for both domain specific languages, and can be more
accurate than those identified by standard techniques from statistics. The results also show that
the quantitative predictions are more accurate than multiple widely-used baselines.

2 EXAMPLE

We next present an example that illustrates our synthesis technique and applications to data
interpretation and prediction. Figure 1a presents a time series that plots world-wide airline passenger
volume from 1948 to 1960 [Box and Jenkins 1976]. The data contains the year and passenger volume
data points. As is apparent from the time series plot, the data contain several temporal patterns.
Passenger volume linearly increases over time, with periodic fluctuations correlated with the time
of year Ð volume peaks in summer and falls in winter, with a small peak around winter vacation.

2.1 Gaussian Process Models

Gaussian processes (GPs) define a family of nonparametric regression models that are widely used
to model a variety of data [Rasmussen and Williams 2006]. It is possible to use GPs to discover
complex temporal patterns in univariate time series [Duvenaud et al. 2013]. We first briefly review
the Gaussian process, which places a prior distribution over functions f : X → R. In our airline
passenger example, x ∈ X is a time point and f (x) ∈ R is passenger volume at time x . The GP
prior can express both simple parametric forms, such as polynomial functions, as well as more
complex relationships dictated by periodicity, smoothness, and time-varying functionals. Following

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:5

// ** PRIOR OVER DSL SOURCE CODE **

assume get_hyper ~ mem((node) ~> {

-log_logistic(log_odds_uniform() #hypers:node)

});

assume choose_primitive = mem((node) ~> {

base_kernel = uniform_discrete(0, 5) #structure:node;

cond(

(base_kernel == 0)(["WN", get_hyper(pair("WN", node))]),

(base_kernel == 1)(["C", get_hyper(pair("C", node))]),

(base_kernel == 2)(["LIN", get_hyper(pair("LIN", node))]),

(base_kernel == 3)(["SE", get_hyper(pair("SE", node))]),

(base_kernel == 4)(["PER", get_hyper(pair("PER_l", node)),

get_hyper(pair("PER_t", node))]))

});

assume choose_operator = mem((node) ~> {

operator_symbol ~ categorical(

simplex(0.45, 0.45, 0.1), ["+", "*", "CP"])

#structure:pair("operator", node);

if (operator_symbol == "CP") {

[operator_symbol, hyperprior(pair("CP", node)), .1]

} else { operator_symbol }

});

assume generate_random_dsl_code = mem((node) ~> {

cov = if (flip(.3) #structure:pair("branch", node)) {

operator ~ choose_operator(node);

[operator,

generate_random_dsl_code(2 * node),

generate_random_dsl_code((2 * node + 1))]

} else { choose_primitive(node) };

["+", cov, ["WN", 0.01]]

});

assume dsl_source ~ generate_random_dsl_code(node:1);

// ** TRANSLATING DSL CODE INTO VENTURE **

assume ppl_source ~ generate_venturescript_code(dsl_source);

assume gp_executable = venture_eval(ppl_source);

// ** DATA OBSERVATION PROGRAM **

define xs = get_data_xs("./data.csv");

define ys = get_data_ys("./data.csv");

observe gp_executable(${xs}) = ys;

// ** BAYESIAN SYNTHESIS PROGRAM **

resample(60);

for_each(arange(T), (_) -> {

resimulate([|structure|], one, steps:100);

resimulate([|hypers|], one, steps:100)})

// ** PROCESSING SYNTHESIZED DSL CODE **

define count_kernels = (dsl, kernel) -> {

if contains(["*", "+", "CP"], dsl[0]) {

count_kernels(dsl[1], kernel) + count_kernels(dsl[2], kernel)

} else { if (kernel == dsl[0]) {1} else {0} }

};

define count_operators = (dsl, operator) -> {

if contains(["*", "+", "CP"], dsl[0]) {

(if (operator == dsl[0]) {1} else {0})

+ count_operators(dsl[1], operator)

+ count_operators(dsl[2], operator)

} else { 0 }

};

// ** SAMPLING FROM VENTURE EXECUTABLE FOR PREDICTION **

define xs_test = get_data_xs("./data.test.csv");

define ys_test = get_data_ys("./data.test.csv");

define ys_pred = sample_all(gp_executable(${xs_test}));

(a) Observed Dataset

>> plot(xs, ys, "Year", "Passenger Volume")

1948 1950 1952 1954 1956 1958 1960 1962

Year

100

200

300

400

500

600

700

P
a
s
s
e
n
g
e
r

V
o
lu

m
e Observed Data

(b) Synthesized DSL and PPL Programs

>> sample_all(dsl_source)[0]

['+',

['*',

['+', ['WN',49.5], ['C',250.9]],

['+', ['PER', 13.2, 8.6],

['+',

['LIN', 1.2],

['LIN', 4.9]]]],

['WN', 0.1]]

>> sample_all(ppl_source)[0]

make_gp(gp_mean_const(0.),

((x1,x2) -> {((x1,x2) -> {((x1,x2) ->

{((x1,x2) ->

if (x1==x2) {49.5} else {0})(x1,x2)

+ ((x1,x2) -> {250.9})(x1,x2)})(x1,x2)

* ((x1,x2) -> {((x1,x2) -> {

-2/174.2400*sin(2*pi/8.6*

abs(x1-x2))**2})(x1,x2)

+ ((x1,x2) -> {((x1,x2) ->

{(x1-1.2)*(x2-1.2)})(x1,x2)

+ ((x1,x2) ->

{(x1-4.9)*(x2-4.9)})(x1,x2)})

(x1,x2)})(x1,x2)})(x1,x2)

+ ((x1,x2) -> if (x1==x2) {0.1}

else {0})(x1,x2)}))

(c) Processing Synthesized DSL Program

// estimate probability that data has

// change point or periodic structure

>> mean(mapv((prog) -> {

count_kernels(prog, "PER")

+ count_operators(prog, "CP") > 0

}, sample_all(dsl_source)))

0.97

(d) Predictions from PPL Program

>> plot(xs, ys, "Year", "Passenger Volume",

xs_test, ys_test, ys_pred)

1948 1950 1952 1954 1956 1958 1960 1962

Year

100

200

300

400

500

600

700

P
a
s
s
e
n
g
e
r

V
o
lu

m
e Simulated Forecasts

Observed Data

Held-Out Data

Fig. 1. Overview of Bayesian synthesis and execution of probabilistic programs in the Gaussian process DSL.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:6 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

notation of Rasmussen and Williams [2006], we formalize a GP f ∼ GP(m,k) with mean function
m : X → Y and covariance function k : X×X → R as follows: f is a collection of random variables
{

f (x) : x ∈ X}

. Give time points {x1, . . . ,xn } the vector of random variables [f (x1), . . . , f (xn)] is
jointly Gaussian with mean vector [m(x1), . . . ,m(xn)] and covariance matrix [k (xi ,x j)]1≤i, j≤n .

The prior mean is typically set to zero (as it can be absorbed by the covariance). The functional
form of the covariance k defines essential features of the unknown function f , allowing the GP to (i)
fit structural patterns in observed data, and (ii) make time series forecasts. GP covariance functions
(also called kernels) can be created by composing a set of simple base kernels through sum, product,
and change point operators [Rasmussen and Williams 2006, Section 4.2]. We therefore define the
following domain-specific language for expressing the covariance function of a specific GP:

K ∈ KernelF (C v) | (WN v) | (SE v) | (LIN v) | (PER v1 v2) [BaseKernels]

| (+ K1 K2) | (× K1 K1) | (CP v K1 K2) [CompositeKernels]

The base kernels are constant (C), white noise (WN), squared exponential (SE), linear (LIN), and
periodic (PER). Each base kernel has one or more numeric parameters v . For example, LIN has an
x-intercept and PER has a length scale and period. The composition operators are sum (+), product
(×), and change point (CP, which smoothly transitions between two kernels at some x-location).
Given a covariance function specified in this language, the predictive distribution over airline
passenger volumes [f (x1), . . . , f (xn)] at time points (x1, . . . ,xn) is a standard multivariate normal.

2.2 Synthesized Gaussian Process Model Programs

The first code box in Figure 1 (lines 148-171) presents Venture code that defines a prior distribu-
tion over programs in our domain-specific Gaussian process language. This code implements a
probabilistic context-free grammar that samples a specific program from the DSL. In the code
box, we have two representations of the program: (i) a program in the domain-specific language
(dsl_source, line 169); and (ii) the translation of this program into executable code in the Venture
probabilistic programming language (ppl_source, line 171). When evaluated using venture_eval,
the translated Venture code generates a stochastic procedure that implements the Gaussian process
model (gp_executable, line 172). Given the observed time points (xs, line 173 of the second code
box in Figure 1), the stochastic procedure gp_executable defines the probability of observing the
corresponding passenger volume data (ys, line 174) according to the GP. This probability imposes
a posterior distribution on the random choices made by generate_random_dsl_code (line 163)
which sampled the dsl_source. The next step is to perform Bayesian inference over these random
choices to obtain a collection of programs (approximately) sampled from this posterior distribu-
tion. Programs sampled from the posterior tend to deliver a good fit between the observed data
and the Gaussian process. In our example we configure Venture to sample 60 programs from the
(approximately inferred) posterior (line 176). The third code box in Figure 1 actually performs
the inference, specifically by using a Venture custom inference strategy that alternates between
performing a Metropolis-Hastings step over the program structure (base kernels and operators)
and a Metropolis-Hastings step over the program parameters (lines 177-179).

2.3 InferringQualitative Structure by Processing Synthesized Programs

Figure 1b presents one of the programs sampled from the posterior. The syntactic structure of
this synthesized program reflects temporal structure present in the airline passenger volume data.
Specifically, this program models the data as the sum of linear and periodic components (base
kernels) along with white noise. Of course, this is only one of many programs (in our example, 60
programs) sampled from the posterior. To analyze the structure that these programs expose in the
data, we check for the existence of different base kernels and operators in each program (fourth

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:7

Bayesian
Synthesis

y1 y2 x1
1.8 2.1 4.5
3.7 4.2 -2
· · · · · · · · ·

Observed Data

Denotational
Semantics
{

Prior JEK}
Denotational
Semantics

{

Lik JEK (X)
}

Program
Mutations
{E 7→ E′ }

Probabilistic
Programs
(DSL)

Program
Translation

DSL to Venture
Translation

{

Venture JEK}

DSL Program
Analysis

Static Property
Query

Probability of
Property

Probabilistic
Programs
(Venture)

Venture
Interpreter

Prediction
Query

Probabilistic
Predictions

Domain-Specific Language for Data Modeling Venture Probabilistic Programming System

Fig. 2. Components of Bayesian synthesis of probabilistic programs for automatic data modeling.

code box in Figure 1 and Figure 1c). By averging across the ensemble of synthesized program we
estimate the probable presence of each structure in the data. In our example, all of the programs
have white noise, 95% exhibit a linear trend, 95% exhibit periodicity, and only 22% contain a change
point. These results indicate the likely presence of both linear and periodic structure.

2.4 Predicting New Data via Probabilistic Inference

In addition to supporting structure discovery by processing the synthesized domain-specific pro-
gram (dsl_source), it is also possible to sample new data directly from the Venture executable
(gp_executable) obtained from the translated program (ppl_source). In our example, this capabil-
ity makes it possible to forecast future passenger volumes. The final code box in Figure 1 presents
one such forecast, which we obtain by sampling data from the collection of 60 synthesized stochastic
procedures (the green line in Figure 1d overlays all the sampled predictions). The forecasts closely
match the actual held-out data, which indicates that the synthesized programs effectively capture
important aspects of the underlying temporal structure in the actual data.

3 BAYESIAN SYNTHESIS IN DOMAIN-SPECIFIC DATA MODELING LANGUAGES

We next present a general framework for Bayesian synthesis in probabilistic domain-specific
languages. We formalize the probabilistic DSL L as a countable set of strings, where an expression
E ∈ L represents the structure and parameters of a family of statistical models specified by the DSL
(such as the space of all Gaussian process models from Section 2). We associate L with a pair of
denotational semantics Prior and Lik that describe the meaning of expressions E in the language:

• The łpriorž semantic function Prior : L → (0, 1], where Prior JEK is a positive real number
describing the probability that a given random process generated E.
• The łlikelihoodž semantic function Lik : L → (X → R≥0), where Lik JEK is a probability
function over a data space X, where each item X ∈ X has a relative probability Lik JEK (X).

These two semantic functions are required to satisfy three technical conditions.

Condition 3.1 (Normalized Prior). Prior defines a valid probability distribution over L:
∑

E∈L
Prior JEK = 1. (1)

If L is finite then this condition can be verified directly by summing the values. Otherwise if L
is countably infinite then a more careful analysis is required (see Section 4.2).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:8 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

Condition 3.2 (Normalized Likelihood). For each E ∈ L, Lik JEK is a probability distribution (for
countable data) or density (for continuous data) over X:

∀E ∈ L.

∑

X ∈X Lik JEK (X) = 1 (if X is a countable space)
∫

X ∈X Lik JEK (X)µ (dX) = 1 (if X is a general space with base measure µ).
(2)

Condition 3.3 (Bounded Likelihood). Lik is bounded, and is non-zero for some expression E:

∀X ∈ X. 0 < cmax
X F sup

{

Lik JEK (X) | E ∈ L}

< ∞. (3)

For each X ∈ X, define cX F
∑

E∈L Lik JEK (X) · Prior JEK to be the marginal probability of X
(which is finite by Conditions 3.1 and 3.3). When the semantic functions satisfy the above conditions,
they induce a new semantic function Post : L → X → R≥0, called the posterior distribution:

Post JEK (X) F (Lik JEK (X) Prior JEK)/cX . (4)

Lemma 3.4. Let L be a language whose denotational semantics Prior and Lik satisfy Conditions 3.1,

3.2, and 3.3. For each X ∈ X, the function λE.Post JEK (X) is a probability distribution over L.

Proof. Fix X . Then
∑

E∈L Post JEK (X) =
∑

E∈L (Lik JEK (X) Prior JEK)/cX = cX /cX = 1. □

The objective of Bayesian synthesis can now be stated.

Objective 3.5 (Bayesian Synthesis). Let L be a language whose denotational semantics Prior
and Lik satisfy Conditions 3.1, 3.2, and 3.3. Given a dataset X ∈ X, generate expressions E with
probability Post JEK (X).

Figure 2 shows the main components of our approach. Assuming we can achieve the objective of
Bayesian synthesis, we now outline how to use synthesized probabilistic programs in the DSL for
(i) inferring qualitative statistical structure, by using simple program analyses on the program text;
and (ii) predicting new data by translating them into executable Venture probabilistic programs.

3.1 Inferring Probabilities ofQualitative Properties in Synthesized DSL Programs

After synthesizing an ensemble of n DSL expressions {E1, . . . ,En } according to the posterior
probability distribution given X , we can obtain insight into the learned models by processing the
synthesized DSL expressions. In this paper, a typical query has the signature HasProperty : L →
{0, 1} that checks whether a particular property holds in a given DSL program. In other words,
HasProperty JEK is 1 if the E reflects the property, and 0 otherwise. We can use the synthesized
programs to form an unbiased estimate of the posterior probability of a property:

Pr
{

HasProperty JEK | X } ≈ 1

n

n
∑

i=1

HasProperty JEiK . (5)

3.2 Forming Predictions by Translating DSL Programs into Venture Programs

In our formalism, each DSL expression E ∈ L is a probabilistic program that represents the
structure and parameters of a family of statistical models specified by the domain-specific language.
In this paper, we translate probabilistic programs E in the DSL into new probabilistic programs
Venture JEK specified in Venture [Mansinghka et al. 2014]. A main advantage of translating DSL
programs into Venture programs is that we can reuse general-purpose inference machinery in
Venture [Mansinghka et al. 2018] to obtain accurate predictions, as opposed to writing custom
interpreters for data prediction on a per-DSL basis. Sections 5 and 6 show two concrete examples of
how DSL programs can be translated into Venture programs and how to use inference programming
in Venture to obtain predictions on new data.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:9

3.3 Markov Chain Monte Carlo Algorithms for Bayesian Synthesis

We next describe Markov chain Monte Carlo (MCMC) techniques to randomly sample expressions
E ∈ L with probability that approximates Post JEK (X) to achieve Objective 3.5. In particular,
we employ a general class of MCMC sampling algorithms (Algorithm 1) that first obtains an
expression E0 ∈ L such that Lik JEK (X) > 0 and then iteratively generates a sequence of expressions
E1, . . . ,En ∈ L. The algorithm iteratively generates Ei from Ei−1 using a DSL-specific transition
operator T , which takes as input expression E ∈ L and a data set X , and stochastically samples
an expression E ′ with probability denoted T (X ,E → E ′), where

∑

E′∈L T (X ,E → E ′) = 1 for
all E ∈ L. The algorithm returns the final expression En . Implementing Bayesian synthesis for a
data-modeling DSL L requires implementing three procedures:

(1) generate-expression-from-prior, which generates expression E with probability Prior JEK.
(2) evaluate-likelihood(X ,E), which evaluates Lik JEK (X).
(3) generate-new-expression(X ,E), which generates expression E ′ from expression E with

probability T (X ,E → E ′).

Algorithm 1 Template of Markov chain Monte Carlo algorithm for Bayesian synthesis.

1: procedure bayesian-synthesis(X , T , n)
2: do

3: E0 ∼ generate-expression-from-prior()

4: while Lik JE0K (X) = 0

5: for i = 1 . . .n do

6: Ei ∼ generate-new-expression(X ,Ei−1))

7: return En

Using MCMC for synthesis allows us to rigorously characterize soundness conditions. We
now describe three conditions on the operator T that are sufficient to show that Algorithm 1
generates expressions from arbitrarily close approximation to the Bayesian posterior distribution
on expressions Post JEK (X). In Section 4.3 we show how to construct such an operator for a class
of DSLs generated by probabilistic context-free grammars and prove that this operator satisfies the
conditions.

Condition 3.6 (Posterior invariance). If an expression E is sampled from the posterior distribution
and a new expression E ′ ∈ L is sampled with probability T (X ,E → E ′), then E ′ is also a sample
from the posterior distribution:

∑

E∈L
Post JEK (X) · T (X ,E → E ′) = Post JE ′K (X).

Condition 3.7 (Posterior irreducibility). Every expression E ′ with non-zero likelihood is reachable
from every expression E ∈ L in a finite number of steps. That is, for all pairs of expressions E ∈ L
and E ′ ∈ {L : Lik JE ′K (X) > 0} there exists an integer n ≥ 1 and a sequence of expressions
E1,E2, . . . ,En where E1 = E and En = E ′ such that T (X ,Ei−1 → Ei) > 0 for all i ∈ {2, . . .n}.

Condition 3.8 (Aperiodicity). There exists some expression E ∈ L such that the transition operator
has a non-zero probability of returning to the same expression, i.e. T (X ,E → E) > 0.

We now show that Algorithm 1 gives asymptotically correct results provided these three condi-
tions hold. First, we show that it is possible to obtain an expression E0 ∈ L where Lik JE0K (X) > 0

using a finite number of invocations of generate-expression-from-prior.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:10 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

Lemma 3.9. The do-while loop of Algorithm 1 will terminate with probability 1, and the expected

number of iterations in the do-while loop is at most cmax
X
/cX .

Proof. The number of iterations of the loop is geometrically distributed with mean p, given by:

p =
∑

E∈L
Prior JEK · I[Lik JEK (X) > 0] =

1

cmax
X

∑

E∈L
Prior JEK · cmax

X · I[Lik JEK (X) > 0]

≥ 1

cmax
X

∑

E∈L
Prior JEK · Lik JEK (X) =

cX

cmax
X

.

Therefore, the expected number of iterations of the do-while loop is at most 1/p = cmax
X
/cX < ∞. □

Wedenote the probability that Algorithm 1 returns expression E, given that it startedwith expression
E0 by ApproxPost1E0 JEK (X), and define the n-step probability inductively:

ApproxPost1E0 JEK (X) F T (X ,E0 → E)

ApproxPostnE0 JEK (X) F
∑

E′∈L
T (X ,E ′ → E) · ApproxPostn−1E0

JE ′K (X) (n > 1).

We can now state a key convergence theorem, due to Tierney [1994].

Theorem 3.10 (Convergence of MCMC [Tierney 1994]). If Condition 3.6 and Condition 3.7 and

Condition 3.8 hold for some language L, transition operator T , and data X ∈ X, then
∀E0,E ∈ L. Lik JE0K (X) > 0 =⇒ lim

n→∞
ApproxPostnE0 JEK (X) → Post JEK (X).

4 BAYESIAN SYNTHESIS FOR DOMAIN-SPECIFIC LANGUAGES DEFINED BY

PROBABILISTIC CONTEXT-FREE GRAMMARS

Having described the general framework for Bayesian synthesis in general domain-specific lan-
guages, we now focus on the class of domain-specific languages which are generated by a probabilis-
tic context-free grammar (PCFG) over symbolic expressions (s-expressions). We begin by describing
the formal model of the grammar and the languages it can produce. We then outline a default
denotational semantics Prior, derive a general MCMC algorithm for all languages in this class, and
prove that the synthesis technique converges to the posterior distribution over expressions.

4.1 Tagged Probabilistic Context-Free Grammars with Random Symbols

Probabilistic context-free grammars are commonly used models for constructing languages [Jelinek
et al. 1992]. We describe a special type of PCFG, called a tagged PCFG with random symbols, by
extending the standard definition in two ways: (i) we require the grammar to produce s-expressions
containing a unique phrase tag for each production rule, which guarantees that the grammar is
unambiguous; and (ii) we allow each non-terminal to specify a probability distribution over symbols
in the alphabet. The model is formally described below.

Definition 4.1 (Tagged probabilistic context-free grammar with random symbols). A tagged proba-
bilistic context-free grammar with random symbols is a tuple G = (Σ,N ,R,T , P ,Q, S) where

• Σ is a finite set of terminal symbols.
• N F {N1, . . . ,Nm } is a finite set of non-terminal symbols.
• R F {Rik | i = 1, . . . ,m;k = 1, . . . , ri } is a set of production rules, where Rik is the k th

production rule of non-terminal Ni . Each production rule Rik is a tuple of the form

Rik F (Ni ,Tik , Ñ1 · · · Ñhik), (6)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:11

where hik ≥ 0 is the number of non-terminals on the right-hand side of Rik and each Ñj ∈ N
(j = 1, 2, . . . ,hik) is a non-terminal symbol. If hik = 0 then Ñ1 · · · Ñhik = ϵ is the empty
string and we call Rik a non-recursive production rule. Otherwise it is a recursive rule.
• T F {Tik | i = 1, . . . ,m;k = 1, . . . , ri } is a set of phrase tag symbols, disjoint from N , where
Tik is a unique symbol identifying the production rule Rik .
• P : T → (0, 1] is a map from phrase tag symbols to their probabilities, where P (Tik) is the
probability that non-terminal Ni selects its k

th production rule Rik . For each non-terminal
Ni , the probabilities over its production rules sum to unity

∑ri
k=1

P (Tik) = 1.
• Q : T × Σ→ [0, 1] is a map from phrase tags and terminal symbols to probabilities, where
Q (Tik , s) is the probability that production rule Rik of non-terminal Ni draws the terminal
symbol s ∈ Σ. For each tagTik , the probabilities over symbols sum to unity

∑

s ∈ΣQ (Tik , s) = 1.
• S ∈ N is a designated start symbol.

We additionally assume that grammarG is proper : production rules must be cycle-free, and there
are no useless symbols in Σ ∪ N ∪T [Nijholt 1980].

The production rules from Eq (6) define the rewriting rules that describe how to syntactically
replace a non-terminal Ni with a tagged s-expression. We now describe how an evaluator uses
these production rules to generate tagged s-expressions according to the probabilities P and Q .
The big-step sampling semantics for this evaluator are shown below, where the notation Ni ⇓pG E

means that starting from non-terminal Ni , the evaluator yielded expression E with p being the total
probability of all the phrase tags and terminal symbols in the generated s-expression.

[Sampling: Non-Recursive Production Rule] [Sampling: Recursive Production Rule]

(Ni ,Tik , ϵ) ∈ R, s ∈ Σ, Q (Tik , s) > 0

Ni ⇓
P (Tik)Q (Tik ,s)

G
(Tik s)

(Ni ,Tik , Ñ1 · · · Ñhik) ∈ R, Ñ1 ⇓p1G E1, . . . , Ñhik ⇓
phik
G

Ej

Ni ⇓
P (Tik)

∏hik
z=1 pz

G
(Tik E1 . . . Ehik)

In words, when the evaluator encounters a non-terminal symbol Ni , it chooses a production
rule Rik with probability P (Tik). If the selected production rule is non-recursive, the evaluator
randomly samples a symbol s ∈ Σ with probability Q (Tik , s), and returns an s-expression starting
with Tik followed by the random symbol. Otherwise, if the selected production rule is recursive,
the evaluator recursively evaluates all the constituent non-terminals and returns an s-expression
starting with Tik followed by all the evaluated sub-expressions. Note that each evaluation step
yields an s-expression where the first element is a phrase tag Tik that unambiguously identifies the
production rule Rik that was selected to produce the expression. Hence, every expression maps
uniquely to its corresponding parse tree simply by reading the phrase tags [Turbak et al. 2008]. As
a result, the probability of any expression under its sampling semantics is unambiguous which is
essential for the soundness properties established in Section 4.3.

Finally, we letL (G,Ni) denote the set of all strings that can be yielded starting from non-terminal
Ni (i = 1, . . . ,m), according to the sampling semantics ⇓G . The language L (G) generated by G is
the set of all strings derivable from the start symbol S , so that L (G) F L (G, S). Conceptually, for
a probabilistic domain-specific language L specified by tagged PCFGs, terminal symbols s ∈ Σ are
used to represent the program parameters and tag symbols t ∈ T represent the program structure.

4.2 A Default Prior Semantics with the Normalization Property

Having described the big-step sampling semantics for expressions E ∈ L generated by a tagged
probabilistic context-free grammar G, we next describe the łpriorž denotational semantics of an
expression, given by the semantic function Prior : L (G) → (0, 1]. To aid with the construction, we
first introduce some additional notation. Define the semantic function Expand : L (G) → N → [0, 1]

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:12 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

which takes an expression and a non-terminal symbol, and returns the probability that the non-
terminal evaluates to the given expression:

Expand J(Tik s)K (Ni) F P (Tik) ·Q (Tik , s)

Expand J(Tik E1 · · · Ehik)K (Ni) F P (Tik) ·
∏hik

z=1 Expand JEzK (Ñz)

where Rik = (Tik ,Ni , Ñ1, . . . , Ñhik),

for i = 1, . . . ,n and k = 1, . . . , ri .

Lemma 4.2. For each non-terminal Ni and for all expressions E ∈ L (G,Ni), we have

Expand JEK (Ni) = p if and only if Ni ⇓pG E.

Proof. By structural induction on the s-expression E. □

Recalling that S is the start symbol of G, we define the prior semantics

Prior JEKF Expand JEK (S). (7)

Having established the correspondence between the sampling semantics and denotational se-
mantics, we next provide necessary and sufficient conditions on G that are needed for Prior to be
properly normalized as required by Condition 3.1. We begin with the following definition:

Definition 4.3 (Consistency [Booth and Thompson 1973]). A probabilistic context-free grammar G
is consistent if the probabilities assigned to all words derivable from G sum to 1.

The following result of Booth and Thompson [1973] plays a key role in our construction.

Theorem 4.4 (Sufficient Condition for Consistency [Booth and Thompson 1973]). A

proper probabilistic context-free grammar G is consistent if the largest eigenvalue (in modulus) of the

expectation matrix of G is less than 1.

The expectation matrix of G can be computed explicitly using the transition rule probabilities
P for non-terminal symbols [Gecse and Kovács 2010, Equation 2]. If G is non-recursive then it is
necessarily consistent since L (G) consists of a finite number of finite length words. Otherwise, if
G is recursive, consistency is equivalently described by having the expected number of steps in
the stochastic rewriting-process ⇓G be finite Gecse and Kovács [2010]. To ensure that the Prior
semantic function of G is correctly normalized, we construct the expectation matrix and confirm
that the modulus of the largest eigenvalue is less than 1. (Note that the probabilities Q of random
symbols in the tagged PCFG are immaterial in the analysis, since they appear only in non-recursive
production rules and do not influence the production rule probabilities P .) We henceforth require
every tagged probabilistic context-free grammar to satisfy the stated conditions for consistency.

4.3 Bayesian Synthesis Using Markov Chain Monte Carlo

We now derive a Bayesian synthesis algorithm specialized to domain-specific languages which are
generated by a tagged context-free grammar, and prove that the algorithm satisfies the conditions
for convergence in Theorem 3.10. Recall that implementing Algorithm 1 requires an implementation
of three procedures:

(1) generate-expression-from-prior, which generates expression E with probability Prior JEK
(subject to Condition 3.1). Letting E ∼ Expand J·K (Ni) mean that E is sampled randomly
with probability Expand JEK (Ni) (Ni ∈ N), we implement this procedure by sampling E ∼
Expand J·K (S) as described in Section 4.2.

(2) evaluate-likelihood(X ,E), which evaluates Lik JEK (X) (subject to Conditions 3.2 and 3.3).
This procedure is DSL specific; two concrete examples are given in Sections 5 and 6.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:13

(3) generate-new-expression(X ,E), which generates a new expression E ′ from the starting
expression E with probability T (X ,E → E ′) (subject to Conditions 3.7, 3.6, and 3.8), which
we describe below.

We construct a class of transition operators T (X ,E → E ′) that (i) stochastically replaces a
random sub-expression in E; then (ii) stochastically accepts or rejects the mutation depending
on how much it increases (or decreases) the value of Lik JEK (X). Our construction applies to any
data-modeling DSL generated by a tagged PCFG and is shown in Algorithm 2. In this section
we establish that the transition operator in Algorithm 2 satisfies Conditions 3.7, 3.6, and 3.8 for
Bayesian synthesis with Markov chain Monte Carlo given in Section 3.3.

Algorithm 2 Transition operator T for a context-free data-modeling language.

1: procedure generate-new-expression(E,X) ▷ Input expression E and data set X

2: a ∼ SelectRandomElementUniformly(AE) ▷ Randomly select a node in parse tree

3: (Ni ,Ehole) ← Severa JEK ▷ Sever the parse tree and return the non-terminal symbol at the sever point

4: Esub ∼ Expand J·K (Ni) ▷ Generate random Esub with probability Expand JEsubK (Ni)

5: E ′ ← Ehole[Esub] ▷ Fill hole in Ehole with expression Esub

6: L ← Lik JEK (X) ▷ Evaluate likelihood for expression E and data set X

7: L′ ← Lik JE ′K (X) ▷ Evaluate likelihood for expression E′ and data set X

8: paccept ← min {1, (|AE |/|AE′) · (L′/L)} ▷ Compute the probability of accepting the mutation

9: r ∼ UniformRandomNumber([0, 1]) ▷ Draw a random number from the unit interval

10: if r < paccept then ▷ If-branch has probability paccept

11: return E ′ ▷ Accept and return the mutated expression

12: else ▷ Else-branch has probability 1 − paccept
13: return E ▷ Reject the mutated expression, and return the input expression

Let G be a grammar from Definition 4.1 with language L F L (G). We first describe a scheme
for uniquely identifying syntactic locations in the parse tree of each expression E ∈ L. Define the
set AF {(a1,a2, . . . ,al) | ai ∈ {1, 2, . . . ,hmax} , l ∈ {0, 1, 2, . . .}} to be a countably infinite set that
indexes nodes in the parse tree of E, where hmax denotes the maximum number of symbols that
appear on the right of any given production rule of the form Eq (6) in the grammar. Each element
a ∈ A is a sequence of sub-expression positions on the path from the root node of a parse tree to
another node. For example, if E = (t0 E1 E2) where E1 = (t1 E3 E4) and E2 = (t2 E5 E6), then the
root node of the parse tree has index aroot F (); the node corresponding to E1 has index (1), the
node corresponding to E2 has index (2); the nodes corresponding to E3 and E4 have indices (1, 1)
and (1, 2) respectively; and the nodes corresponding to E5 and E6 have indices (2, 1) and (2, 2). For
an expression E, let AE ⊂ A denote the finite subset of nodes that exist in the parse tree of E.
Let □ denote a hole in an expression. For notational convenience, we extend the definition of

Expand to be a partial function with signature Expand : {Σ ∪T ∪□}∗ → N → [0, 1] and add the
rule: Expand J□K (Ni) F 1 (for each i = 1, . . . ,m). We define an operation Sever, parametrized by
a ∈ A, that takes an expression E and either returns a tuple (Ni ,Ehole) where Ehole is the expression
with the sub-expression located at a replaced with □ and where Ni is the non-terminal symbol
from which the removed sub-expression is produced, or returns failure (∅) if the parse tree for E
has no node a:

a = (), ∃k .t ≡ Tik
(a, (t E1 · · · El)) −−−−→

sever
(Ni ,□)

((a2,a3, . . .),Ej) −−−−→
sever

(Ni ,Esev) and a1 = j

(a, (t E1 · · · El)) −−−−→
sever

(Ni , (t E1 · · · Ej−1 Esev Ej+1 · · · El)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:14 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

Severa J(t E1 E2 . . . El)KF

(Ni ,Ehole) if (a, (t E1 E2 . . . El)) −−−−→
sever

(Ni ,Ehole)

∅ otherwise

Note that for any expression E ∈ L, setting a = aroot ≡ () gives ((),E) −−−−→
sever

(S,□) where S ∈ N
is the start symbol. Also note that Ehole < L because Ehole contains □. For expression Ehole that
contains a single hole, where (a,E) −−−−→

sever
(Ni ,Ehole) for some a and E, let Ehole[Esub] ∈ L denote

the expression formed by replacing □ with Esub, where Esub ∈ L (G,Ni). We further define an
operation Subexpr, parametrized by a, that extracts the sub-expression corresponding to node a in
the parse tree:

Subexpra J(t E1 E2 . . . El)KF

∅ if a = () or a1 > k

Ej if a = (j) for some 1 ≤ j ≤ k

Subexpr(a2,a3, ...) JEjK if i , (j) and a1 = j for some 1 ≤ j ≤ k

Consider the probability that T takes an expression E to another expression E ′, which by total
probability is an average over the uniformly chosen node index a:

T (X ,E → E ′) =
1

|AE |
∑

a∈AE

T (X ,E → E ′;a) =
1

|AE |
∑

a∈AE∩AE′

T (X ,E → E ′;a),

where

T (X ,E → E ′;a) F

Expand JSubexpra JE ′KK (Ni) · α (E,E ′) + I[E = E ′](1 − α (E,E ′))
if Severa JEK = Severa JE ′K = (Ni ,Ehole) for some i and Ehole,

0 otherwise,

α (E,E ′) F min

{

1,
|AE | · Lik JE ′K (X)

|AE′ | · Lik JEK (X)

}

. (8)

Note that we discard terms in the sum with a ∈ AE \AE′ because for these terms Severa JE ′K = ∅

and T (X ,E → E ′;a) = 0.

Lemma 4.5. For E ∈ L, if Severa JEK = (Ni ,Ehole) then Expand JSubexpra JEKK (Ni) > 0.

Proof. If Severa JEK = (Ni ,Ehole) then Subexpra JEK is an expression with tag t ∈ Ti . Since the
expression E ∈ L, it follows that Expand JSubexpra JEKK (Ni) > 0 because otherwise Prior JEK = 0
(a contradiction). □

Lemma 4.6. For E ∈ L, if Severa JEK = (Ni ,Ehole) then:

Expand JEK (S) = Expand JSubexpra JEKK (Ni) · Expand JEholeK (S).

Proof. Each factor in Expand JEK (S) corresponds to a particular node a′ in the parse tree. Each
factor corresponding to a′ appears in Expand JSubexpra JEKK (Ni) if a

′ is a descendant of a in the
parse tree, or in Expand JEholeK (S) otherwise. □

Lemma 4.7. For any E,E ′ ∈ L where Severa JEK = Severa JE ′K = (Ni ,Ehole):

Prior JE ′K = Prior JEK · Expand JSubexpra JE ′KK (Ni)

Expand JSubexpra JEKK (Ni)
.

Proof. Use Prior JEK = Expand JEK (S) and Prior JE ′K = Expand JE ′K (S), and expand using
Lemma 4.6. □

Lemma 4.8. The transition operator T of Algorithm 2 satisfies Condition 3.6 (posterior invariance).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:15

Proof. We show detailed balance for T with respect to the posterior:

Post JEK (X) · T (X ,E → E ′) = Post JE ′K (X) · T (X ,E ′ → E) (E,E ′ ∈ L).

First, if Post JEK (X) · T (X ,E → E ′) = 0 then Post JE ′K (X) · T (X ,E ′ → E) = 0 as follows. Either
Post JEK (X) = 0 or T (X ,E → E ′) = 0.

(1) If Post JEK (X) = 0 we have Lik JEK (X) = 0 which implies that α (E ′,E) = 0 and therefore
T (X ,E ′ → E) = 0.

(2) If T (X ,E → E ′) = 0 then T (X ,E → E ′;aroot) = 0 which implies either that the accep-
tance probability α (E,E ′) = 0 or that Expand

q
Subexpraroot JE ′K

y
(S) = 0. If α (E,E ′) = 0

then Lik JE ′K (X) = 0 and Post JE ′K (X) = 0. But Expand JSubexprE′ JarootKK (S) = 0 is a
contradiction since Expand JSubexprE′ JarootKK (S) = Expand JE ′K (S) = Prior JE ′K > 0.

Next, consider Post JEK (X) · T (X ,E → E ′) > 0 and Post JE ′K (X) · T (X ,E ′ → E) > 0. It suffices
to show that Post JEK (X) · |AE′ | · T (X ,E → E ′;a) = Post JE ′K (X) · |AE | · T (X ,E ′ → E;a) for all
a ∈ AE ∩AE′ . If E = E ′, then this is vacuously true. Otherwise E , E ′, then consider two cases:

(1) If Severa JEK = Severa JE ′K = (Ni ,Ehole) for some i and Ehole, then it suffices to show that:

Post JEK (X) · |AE′ | · Expand JSubexpra JE ′KK (Ni) · α (E,E ′)
= Post JE ′K (X) · |AE | · Expand JSubexpra JEKK (Ni) · α (E ′,E)

Both sides are guaranteed to be non-zero because Post JEK (X) > 0 implies Lik JEK (X) > 0

implies α (E ′,E) > 0, and by Lemma 4.5 (and similarly for Post JE ′K (X) > 0). Therefore, it
suffices to show that

α (E,E ′)

α (E ′,E)
=

Post JE ′K (X) · |AE | · Expand JSubexpra JEKK (Ni)

Post JEK (X) · |A′
E
| · Expand JSubexpra JE ′KK (Ni)

=

Prior JE ′K · Lik JE ′K (X) · |AE | · Expand JSubexpra JEKK (Ni)

Prior JEK · Lik JEK (X) · |A′
E
| · Expand JSubexpra JE ′KK (Ni)

=

Lik JE ′K (X) · |AE |
Lik JEK (X) · |A′

E
| ,

where for the last step we used Lemma 4.7 to expand Prior JE ′K, followed by cancellation of
factors. Note that if α (E,E ′) < 1 then α (E ′,E) = 1 and

α (E,E ′)

α (E ′,E)
=

α (E,E ′)

1
=

Lik JE ′K (X) · |AE |
Lik JEK (X) · |A′

E
| .

If α (E ′,E) < 1 then α (E,E ′) = 1 and

α (E,E ′)

α (E ′,E)
=

1

α (E ′,E)
=

Lik JE ′K (X) · |AE |
Lik JEK (X) · |A′

E
| .

If α (E,E ′) = 1 = α (E ′,E) then α (E,E ′)/α (E ′,E) = 1 = α (E,E ′).
(2) If Severa JEK , Severa JE ′K, then T (X ,E → E ′;a) = T (X ,E ′ → E;a) = 0.

If E , E ′, then T (X ,E → E ′;a) = Prior JSubexpra JE ′KK · α (E,E ′). Finally, posterior invariance
follows from detailed balance:

∑

E∈L Post JEK (X)T (X ,E → E ′) =
∑

E∈L Post JE ′K (X)T (X ,E ′ → E) = Post JE ′K (X).

□

Lemma 4.9. The transition operator T of Algorithm 2 satisfies Condition 3.7 (posterior irreducibility).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:16 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

Proof. We show that for all expressions E and E ′ ∈ {L : Post JE ′K (X) > 0}, E ′ is reachable from
E in one step (that is, T (X ,E → E ′) > 0). Note for all E,E ′ ∈ L, aroot ∈ AE∩AE′ and Severaroot JEK =
Severaroot JE ′K = (S,□). Since Post JE ′K (X) > 0, we know that Prior JE ′K = Expand JE ′K (S) > 0,
and Lik JE ′K (X) > 0, which implies α (E,E ′) > 0. Finally:

T (X ,E → E ′) ≥ 1

|AE |
· T (X ,E → E ′;a) ≥ Expand JE ′K (S) · α (E,E ′) > 0.

□

Lemma 4.10. The transition operator T of Algorithm 2 satisfies Condition 3.8 (aperiodicity).

Proof. For all E ∈ L, we have T (X ,E → E) ≥ (1/|AE |) ·Expand JEK (S) = (1/|AE |) ·Prior JEK >
0. The inequality derives from choosing only a = aroot in the sum over a ∈ |AE |. □

We have thus established (by Lemmas 4.8, 4.9, and 4.10) that for a language L specified by a
consistent probabilistic context-free grammar with well-defined Prior and Lik semantics (Condi-
tions 3.1, 3.2, and 3.3) the Bayesian synthesis procedure in Algorithm 1 with the transition operator
T from Algorithm 2 satisfies the preconditions for sound inference given in Theorem 3.10.

5 GAUSSIAN PROCESS DSL FOR UNIVARIATE TIME SERIES DATA

Section 2.1 introduced the mathematical formalism and domain-specific language for Gaussian
process models. The DSL is generated by a tagged probabilistic context-free grammar as described in
Definition 4.1, which allows us to reuse the general semantics and inference algorithms in Section 4.
Figure 3 shows the core components of the domain-specific language: the syntax and production
rules; the symbol and production rule probabilities; the likelihood semantics; and the translation
procedure of DSL expressions into Venture. By using addition, multiplication, and change point
operators to build composite Gaussian process kernels, it is possible to discover a wide range of time
series structure from observed data [Lloyd et al. 2014]. The synthesis procedure uses Algorithm 1
along the generic transition operator for PCFGs in Algorithm 2, which is sound by Lemmas 4.8,
4.9, and 4.10. The supplementary material formally proves that the prior and likelihood semantics
satisfy the preconditions for Bayesian synthesis.
This Gaussian process domain-specific language (whose implementation is shown in Figure 1)

is suitable for both automatic model structure discovery of the covariance kernel as well as for
estimating the parameters of each kernel. This contrasts with standard software packages for infer-
ence in GPs (such as python’s scikit-learn [Pedregosa et al. 2011], or MATLAB’s GPML [Rasmussen
and Nickisch 2010]) which do not have the ability to synthesize different Gaussian process model
structures and can only perform parameter estimation given a fixed, user-specified model structure
which is based on either the user’s domain-specific knowledge or (more often) an arbitrary choice.

5.1 Time Complexity of Bayesian Synthesis Algorithm

In Algorithm 2 used for synthesis, each transition step from an existing expression K to a candidate
new expression K ′ requires the following key computations:

(1) Severing the parse tree at a randomly selected node using Sever (Algorithm 2, line 3). The
cost is linear in the number |K | of subexpressions in the overall s-expression K .

(2) Forward-sampling the probabilistic context-free grammar using Expand (Algorithm 2, line 4).
The expected cost is linear in the average length of strings lG generated by the PCFG, which
can be determined from the transition probabilities [Gecse and Kovács 2010, Eq. 3]).

(3) Assessing the likelihood under the existing and proposed expressions using Lik JKK ((x, y))
(Algorithm 2, line 6). For a Gaussian process with n observed time points, the cost of building
the covariance matrix Cov JKK is O (|K |n2) and the cost of obtaining its inverse is O (n3).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:17

The overall time complexity of a transition from K to K ′ is thus O (lG +max(|K |, |K ′ |)n2 + n3).
This term is typically dominated by the n3 term from assessing Lik. Several existing techniques use
sparse approximations of Gaussian processes to reduce this complexity to O (m2n) wherem ≪ n

is a parameter representing the size of a subsample of the full data to be used [Rasmussen and
Williams 2006, Chapter 8]. These approximation techniques trade-off predictive accuracy with

Syntax and Production Rules

v ∈ Numeric

H ∈ ParametersF (gammav) [GammaParam]

K ∈ KernelF (const H) [Constant]

| (wn H) [WhiteNoise]

| (lin H) [Linear]

| (se H) [SquaredExp]

| (per H1 H2) [Periodic]

| (+ K1 K2) [Sum]

| (* K1 K2) [Product]

| (cp H K1 K2) [ChangePoint]

Production Rule Probabilities

H : P (gamma) F 1.

K : P (const) = P (wn) = P (lin) = P (se) F 0.14,

P (+) = P (*) F 0.135, P (cp) F 0.03.

Terminal Symbol Probabilities

gamma : Q (gamma, v) F
βαvα−1e−βv

Γ(α)
(α = 1, β = 1).

Prior Denotation
Default prior for probabilistic context-free grammars (Section 4.2).

Likelihood Denotation

Cov J(const (gammav))K (x) (x ′) F v

Cov J(wn (gammav))K (x) (x ′) F v · I[x = x ′]
Cov J(lin (gammav))K (x) (x ′) F (x − v) (x ′ − v)

Cov J(se (gammav))K (x) (x ′) F exp(−(x − x ′)2/v)

Cov J(per (gammav1) (gammav2))K (x) (x ′) F exp(−2/v1 sin((2π /v2) |x − x ′ |)2)
Cov J(+ K1 K2)K (x) (x ′) F Cov JK1K (x) (x ′) + Cov JK2K (x) (x ′)
Cov J(* K1 K2)K (x) (x ′) F Cov JK1K (x) (x ′) × Cov JK2K (x) (x ′)

Cov J(cp (gammav) K1 K2)K (x) (x ′) F ∆(x, v)∆(x ′, v) (Cov JK1K (x) (x ′)) + (1 − ∆(x, v)) (1 − ∆(x ′, v)) (Cov JK1K (x) (x ′))
where ∆(x, v) F 0.5 × (1 + tanh(10(x − v)))

Lik JKK ((x, y)) F exp
(

− 1/2∑n
i=1 yi

(

∑n
j=1 ({[Cov JKK (xi) (x j) + 0.01δ (xi , x j)]ni, j=1 }−1i j)yj

)

− 1/2 log ���[Cov JKK (xi) (x j) + 0.01δ (xi , x j)]ni, j=1
��� − (n/2) log 2π

)

DSL to Venture Translation

VentureCov J(const (gammav))KF ((x1, x2) -> {v})

VentureCov J(wn (gammav))KF ((x1, x2) -> {if (x1==x2) {v} else {0}})

VentureCov J(lin (gammav))KF ((x1, x2) -> {(x1-v) * (x2-v)})

VentureCov J(se (gammav))KF ((x1, x2) -> {exp((x1-x2)**2/v)})

VentureCov J(per (gammav1) (gammav2))K (x) (x ′) F ((x1, x2) -> {-2/v1 * sin(2*pi/v2 * abs(x1-x2))**2})

VentureCov J(+ K1 K2)KF ((x1, x2) -> {VentureCov JK1K(x1, x2) + VentureCov JK2K(x1, x2)})

VentureCov J(* K1 K2)KF ((x1, x2) -> {VentureCov JK1K(x1, x2) * VentureCov JK2K(x1, x2)})

VentureCov J((cp (gammav) K1 K2)KF ((x1, x2) -> {

sig1 = sigmoid(x1, v, .1) * sigmoid(x2, v, .1);

sig2 = (1-sigmoid(x1, v, .1)) * (1-sigmoid(x2, v, .1));

sig1 * VentureCov JK1K(x1,x2) + sig2 * VentureCov JK2K(x1,x2)})
VentureProg JKKF assume gp = gaussian_process(gp_mean_constant(0), VentureCov JKK);

Fig. 3. Components of domain-specific language for automatic data modeling of time series using Gaussian

process models. This DSL belongs to the family of probabilistic context-free grammars from Section 4.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:18 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

significant increase in scalability. Quiñonero-Candela and Rasmussen [2005] show that sparse
Gaussian process approximation methods typically correspond to well-defined probabilistic models
that have different likelihood functions than the standard Gaussian process, and so our synthesis
framework can naturally incorporate sparse Gaussian processes by adapting the Lik semantics.

As for the quadratic factorO (max(|K |, |K ′ |)n2), this scaling depends largely on the characteristics
of the underlying time series data. For simple time series with only a few patterns we expect the
program size |K | to be small, whereas for time series with several complex temporal patterns then
the synthesized covariance expressions K are longer to obtain strong fit to the data.

Syntax and Production Rules

x, y, w ∈ Numeric, a ∈ [m], s ∈ [n]
P ∈ PartitionF (partition B1 . . . Bk) [Partition]

B ∈ BlockF (block (a1 . . . al)C1 . . . Ct) [Block]

C ∈ ClusterF (cluster s V1 V2 . . . Vl) [Cluster]

V ∈ VariableF (vara D) [Variable]

D ∈ DistF (normal (x y)) [Gaussian]

| (poissony) [Poisson]

| (categoricalw1 . . . wq) [Categorical]

Prior Denotation

Prior J(partition B1 . . . Bk)KF
∏k
i=1 Prior JBk K

m!

Prior J(block (a1 . . . al)C1 . . . Ct)KF (l − 1)!
∏t
i=1 Prior JCi K

n!

Prior J(cluster s V1 . . . Vl)KF (s − 1)! ∏l
i=1 Prior JVi K

Prior J(vara D)KF Prior JDK

Prior J(normalv y)KF
√

λ

y22π

βα

Γ(α)

(

1

y2

)α+1

exp

(

−(2β + λ (v − η)2)
2y2

)

Prior J(poissony)KF ξ νyν−1e−ξy

Γ(ν)

Prior
q
(categoricalw1 . . . wq)

y
F

Γ(κ)q

Γ(κ)

∏q
i=1w

α
i

α, β, λ, η, ξ , ν, κ F (statistical constants)

Likelihood Denotation

Lik J(partition B1 . . . Bk)K (X) F
∏k
i=1 Lik JBk K (X)

Lik J(block (a1 . . . al)C1 . . . Ct)K (X) F
∏n
i=1

∑t
j=1 Lik

q
Cj

y
(Xi)

Lik J(cluster s V1 . . . Vl)K (x) F
s

n

∏l
i=1 Lik JVi K (x)

Lik J(vara D)K (x) F Lik JDK (xa)

Lik J(normalv y)K (x) F 1
√

2πy2
e
−
(

x−v√
2y

)2

Lik J(poissony)K (x) F yx e−y /x !

Lik
q
(categoricalw1 . . . wq)

y
(x) F wx

DSL to Venture Translation

Probabilistic Program in DSL

(partition

(block (1)

(cluster 6 (var 1 (normal 0.6 2.1)))

(cluster 4 (var 1 (normal 0.3 1.7))))

(block (2 3)

(cluster 2 (var 2 (normal 7.6 1.9)

(var 3 (poisson 12))))

(cluster 3 (var 2 (normal 1.1 0.5)

(var 3 (poisson 1))))

(cluster 5 (var 2 (normal -0.6 2.9)

(var 3 (poisson 4))))))

Probabilistic Program in Venture

assume block1_cluster =

categorical(simplex([0.6, 0.4])) #block:1;

assume var1 = cond(

(block1_cluster == 0) (normal(0.6, 2.1))

(block1_cluster == 1) (normal(0.3, 1.7)));

assume block2_cluster =

categorical(simplex([0.2, 0.3, 0.5])) #block:2;

assume var2 = cond(

(block2_cluster == 0) (normal(7.6, 1.9))

(block2_cluster == 1) (normal(1.1, 0.5))

(block2_cluster == 2) (normal(-0.6, 2.9)));

assume var3 = cond(

(block2_cluster == 0) (poisson(12))

(block2_cluster == 1) (poisson(1))

(block2_cluster == 2) (poisson(4)));

Prediction Query in Venture

observe var3 = 8;

infer repeat(100, {gibbs(quote(block), one)});

sample [var1, var2];

Fig. 4. Components of domain-specific language for automatic data modeling of multivariate tabular data

using nonparametric mixture models. This DSL is context-sensitive and contains a custom prior denotation.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:19

(partition

(block (1)

(cluster 6 (var 1 (normal 0.6 2.1)))

(cluster 4 (var 1 (normal 0.3 1.7))))

(block (2 3)

(cluster 10 (var 2 (normal 7.6 1.9))

(var 3 (normal -2.6 7.7)))))

mutation−→

(partition

(block (1 3)

(cluster 6 (var 1 (normal 0.6 2.1))

(var 3 (normal -0.3 0.9)))

(cluster 4 (var 1 (normal 0.3 1.7)

(var 3 (normal -6.1 4.8)))

(block (2)

(cluster 10 (var 2 (normal 7.6 1.9)))))

(a) Move a variable into an existing block, and choose new distribution(s)

.
(partition

(block (1)

(cluster 6 (var 1 (normal 0.6 2.1)))

(cluster 4 (var 1 (normal 0.3 1.7))))

(block (2 3)

(cluster 10 (var 2 (normal 7.6 1.9))

(var 3 (normal -2.6 7.7)))))

mutation−→

(partition

(block (1)

(cluster 6 (var 1 (normal 0.6 2.1)))

(cluster 4 (var 1 (normal 0.3 1.7))))

(block (2)

(cluster 10 (var 2 (normal 7.6 1.9))))

(block (3)

(cluster 10 (var 3 (normal 8.4 0.9)))))

(b) Move a variable into a new block of its own, and choose new distribution(s).

(partition

(block (1)

(cluster 6 (var 1 (normal 0.6 2.1)))

(cluster 4 (var 1 (normal 0.3 1.7))))

(block (2 3)

(cluster 10 (var 2 (normal 7.6 1.9))

(var 3 (normal -2.6 7.7)))))

mutation−→

(partition

(block (1)

(cluster 5 (var 1 (normal 0.6 2.1)))

(cluster 4 (var 1 (normal 0.3 1.7)))

(cluster 1 (var 1 (normal -5.0 2.3))))

(block (2 3)

(cluster 10 (var 2 (normal 7.6 1.9))

(var 3 (normal -2.6 7.7)))))

(c) Within one block, create a new cluster with weight 1 and decrease the weight of an existing cluster by 1.

Fig. 5. Examples of mutation operators applied to amixture modeling DSL program during Bayesian synthesis.

6 NONPARAMETRIC MIXTURE MODEL DSL FOR MULTIVARIATE TABULAR DATA

We now describe a second DSL for multivariate tabular data called MultiMixture. The setup starts
with a data table containingm columns and n rows. Each column c represents a distinct random
variable Xc and each row r is a joint instantiation {xr1, . . . ,xrm } of all them random variables.
Our DSL describes the data generating process for cells in the table based on the nonparametric
łCross-Categorizationž mixture model introduced by Mansinghka et al. [2014], which we review.

Figure 4 shows the components required for Bayesian synthesis in the MultiMixture DSL. Proba-
bilistic programs in this DSL assert that the set of columns [m] ≔ {1, . . . ,m} is partitioned into
k non-overlapping blocks Bi , which is specified by the partition production rule. Each block

contains a set of unique columns {a1, . . . ,al } ⊂ [m], where a particular column must appear in
exactly one block of the partition. Each block has clusters Ci , where each cluster specifies a
component in a mixture model. Each cluster has relative weight s , a set of var objects that specify
a variable index a, and a primitive distribution D. The distributions are normal (with mean x and
variance y); poisson (with mean y); and categorical (with category weightswi).

Since theMultiMixture DSL is not context-free, we specify custom Prior semantics that recursively
describes the joint probability of all terms in an expression. These probabilities provide a hierarchical
decomposition of the distribution in [Mansinghka et al. 2014, Section 2.2] based on the structure
of the DSL program. Prior normalization (Condition 3.1) holds since the five production rules in
the grammar are non-recursive. The Lik semantics break down the full probability of a data table
of observations X into the cell-wise probabilities within each mixture component. The likelihood
is bounded (Condition 3.3) since poisson and categorical likelihoods are bounded by one, and
Prior J(normalv y)K is conjugate to Lik J(normalv y)K [Bernardo and Smith 1994]. The semantics

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:20 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

1982 1984 1986 1988 1990

0.5

1.0

1.5

2.0

2.5
×101 Global Temperature

prediction

Temporal Structure psynth

✓ White Noise 100%

× Linear Trend 16%

✓ Periodicity 92%

× Change Point 4%

(a)

1960 1968 1976 1984 1992

2

4

6

×104 Global Gas Production

prediction

Temporal Structure psynth

✓ White Noise 100%

✓ Linear Trend 85%

✓ Periodicity 76%

✓ Change Point 76%

(b)

1951 1954 1957 1960

2

3

4

5

6

7
×102 Airline Passenger Volume

prediction

Temporal Structure psynth

✓ White Noise 100%

✓ Linear Trend 95%

✓ Periodicity 95%

× Change Point 22%

(c)

1935 1940 1945 1950

0.4

0.6

0.8

1.0

1.2

1.4
×101 Radio Sales

prediction

Temporal Structure psynth

✓ White Noise 100%

× Linear Trend 6%

✓ Periodicity 93%

× Change Point 23%

(d)

1963 1966 1969 1972 1975

0.2

0.4

0.6

0.8

×103 Call Centre

prediction

Temporal Structure psynth

✓ White Noise 100%

✓ Linear Trend 93%

✓ Periodicity 97%

✓ Change Point 90%

(e)

0 4 8 12

0

1

2

3

4

5
Horizontal Line

prediction

Temporal Structure psynth

×White Noise 3%

× Linear Trend 8%

× Periodicity 1%

× Change Point 2%

(f)

Fig. 6. Detecting probable temporal structures in multiple time series with varying characteristics. In each of

the panels (a)ś(f), the plot shows observed time series data in blue and the table identifies which temporal

structures truly exist in the time series as well as the posterior probability psynth that each structure is present

in a Gaussian process program from Bayesian synthesis given the data. As described in Eq (5) of Section 3.1,

psynth is estimated by returning the fraction of programs in the ensemble that contain each structure. Programs

from Bayesian synthesis accurately reflect the probable presence or absence of linear, periodic, and change

point characteristics. The red lines show predictions from a randomly selected synthesized program, showing

that they additionally capture compositions of temporal structures to faithfully model the data.

of MultiMixture are designed to improve on the model family from Mansinghka et al. [2014] by
making it (i) easier to embed the model in a probabilistic language without enforcing complicated
exchangeable coupling (i.e. the Venture programs for modeling and prediction in Figure 4); and (ii)
possible to write a recursive, decomposable semantics for the prior and likelihood.
Since the MultiMixture DSL is not generated by a context-free grammar, we employ custom

synthesis algorithms using the cycle of Gibbs kernels given in Mansinghka et al. [2016, Section 2.4].
Figure 5 shows several examples of program mutations that occur over the course of synthesis to
sample from the approximate posterior distribution over DSL expressions. For a given expression
E ∈ L, a full sweep over all program mutations shown in Figure 5 has time complexity O (mnkt),
wherem is the number of columns,n is the number of rows,k is the number of block subexpressions,
and t is the maximum number of cluster subexpressions under any block subexpression. Full
details of this algorithmic analysis can be found in Mansinghka et al. [2016, Section 2.4].

7 EXPERIMENTAL RESULTS

We have developed a set of benchmark problems in two domains: (i) time series data and (ii)
multivariate tabular data. These benchmarks reflect a broad range of real-world data generating
processes with varying qualitative structure. We evaluated these probabilistic programs in two
ways. First, we qualitatively assessed the inferences about structure that were made by processing
the text of the programs. Second, we quantitatively benchmarked the predictive accuracy of the
synthesized programs. Probabilistic programs from Bayesian synthesis often provide improved
accuracy over standard methods for data modeling.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:21

1948 1950 1952 1954 1956 1958 1960 1962

Year

0

100

200

300

400

500

600

700
Airline Passenger Volume

Observed Data

Held-Out Data

Bayesian Synthesis

Forecasts

GP (SE Kernel)

Forecasts

ARIMA

Forecasts

Facebook Prophet

Forecasts

HDP-HMM

Forecasts

Linear Regression

Forecasts

Forecasts from Bayesian synthesis programs versus several baselines

Standardized Root Mean Squared Forecasting Error (RMSE) on Real-World Benchmark Problems

temperature airline call mauna radio solar wheat

Bayesian Synthesis 1.0 1.0 1.0 1.0 1.0 1.47 1.50

Gaussian Process (Squared Exponential Kernel) 1.70 2.01 4.26 1.54 2.03 1.63 1.37

Auto-Regressive Integrated Moving Average 1.85 1.32 2.44 1.09 2.08 1.0 1.41

Facebook Prophet 2.00 1.83 5.61 1.23 3.09 1.73 1.29

Hierarchical-DP Hidden Markov Model 1.77 4.61 2.26 14.77 1.19 3.49 1.89

Linear Regression 1.30 1.79 6.23 2.19 2.73 1.57 1.0

Fig. 7. Quantitative evaluation of forecasting using Gaussian process programs from Bayesian synthesis, as

compared to five common baselines. The top panels show extrapolated time series by each method on the

airline data. The table shows prediction errors achieved by each method on seven real-world time series.

7.1 InferringQualitative Structure from Time Series Data

This set of benchmark problems consists of five real-world time series datasets from Lloyd [2014]: (i)
bi-weekly global temperature measurements from 1980 to 1990, (ii) monthly global gas production
from 1956 to 1995, (iii) monthly airline passenger volume from 1948, (iv) monthly radio sales from
1935 to 1954, and (iv) monthly call center activity from 1962 to 1976. Each of the datasets has a
different qualitative structure. For example, the global temperature dataset is comprised of yearly
periodic structure overlaid with white noise, while the call center dataset has a linear trend until
1973 and a sharp drop afterwards. Figure 6 shows the five datasets, along with the inferences our
technique made about the qualitative structure of the data generating process underlying each
dataset. The results show that our technique accurately infers the presence or absence of each
type of structure in each benchmark. Specifically, if a specific qualitative structure is deemed to be
present if the posterior probability inferred by our technique is above 50%, and inferred to be absent
otherwise, then the inferences from Bayesian synthesis match the real world structure in every
case. To confirm that the synthesized programs report the absence of any meaningful structure
when it is not present in the data, we also include a horizontal line shown in panel (f).

7.2 Quantitative Prediction Accuracy for Time Series Data

Figure 7 shows quantitative prediction accuracy for seven real world econometric time series. The
top panel visually compares predictions from our method with predictions obtained by baseline
methods on the airline passenger volume benchmark. We chose to compare against baselines that
(i) have open source, re-usable implementations; (ii) are widely used and cited in the statistical liter-
ature; and (iii) are based on flexible model families that, like our Gaussian process technique, have
default hyperparameter settings and do not require significant manual tuning to fit the data. Baseline
methods include Facebook’s Prophet algorithm [Taylor and Letham 2018]; standard econometric

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:22 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

100 101 102 103 104

Synthesis Runtime (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

ti
ve

L
ik

e
lih

o
o
d

(H
e
ld

-O
u
t
D

a
ta

)

airline (n = 150)

center (n = 180)

radio (n = 240)

wheat (n = 370)

solar (n = 400)

mauna (n = 545)

temperature (n = 1000)

(a) Runtime vs. Accuracy Profiles

1963 1966 1969 1972 1975

Call Centre

1936 1940 1944 1948 1952

Radio

1520 1600 1680 1760 1840

Wheat

1600 1700 1800 1900 2000

Solar

1960 1970 1980 1990 2000

Mauna

1982 1984 1986 1988 1990

Temperature

(b) Time Series Datasets

Fig. 8. Synthesis runtime versus held-out predictive likelihood on the time series benchmarked in Figure 7.

Panel (a) shows a log-linear plot of the median runtime and predictive likelihood values taken over 100

independent runs of synthesis. Higher values of predictive likelihood on the y-axis indicate better fit to the

observed data. Panel (b) shows the time series datasets used to compute runtime and accuracy measurements.

techniques, such as Auto-Regressive Integrated Moving Average (ARIMA) modeling [Hyndman
and Khandakar 2008]; and advanced time series modeling techniques from nonparametric Bayesian
statistics, such as the Hierarchical Dirichlet Process Hidden Markov Model [Johnson and Willsky
2013]. Bayesian synthesis is the only technique that accurately captures both quantitative and
qualitative structure. The bottom panel of Figure 7 shows quantitative results comparing predictive
accuracy on these datasets. Bayesian synthesis produces more accurate models for five of the seven
benchmark problems and is competitive with other techniques on the other two problems.

7.3 Runtime Versus Prediction Accuracy for Time Series Data

Figure 8 shows a profile of the predictive likelihood on held-out data versus the synthesis runtime
(in seconds) for each of the seven econometric time series. For each dataset, we ran 2000 steps of
synthesis, taking runtime and predictive likelihood measurements at every 5 steps. The plotted
runtime and predictive likelihood values represent the median values taken over 100 independent
runs of Bayesian synthesis for each dataset. The predictive likelihood measurements on the y-axis
are scaled between 0 and 1 so that these profiles can be compared across the seven datasets. We see
that there is significant variance in the synthesis runtime versus prediction quality. For certain time
series such as airline and call datasets (150 and 180 observations), prediction quality stabilizes
after around 10 seconds; for radio and solar datasets (240 and 400 observations) the prediction
quality takes around 1000 seconds to stabilize; and for the temperature dataset (1000 observations)
the predictions continue to improve even after exceeding the maximum timeout.
Recall from Section 5.1 that each step of synthesis has a time complexity of O (lG + |E |n2 + n3).

Scaling the synthesis to handle time series with more than few thousands data points will require
the sparse Gaussian process techniques discussed in Section 5.1. It is also important to emphasize
that the time cost of each iteration of synthesis is not only a function of the number of observations
n but also the size |E | of the synthesized programs. Thus, while more observations typically require
more time, time series with more complex temporal patterns typically result in longer synthesized
programs. This trade-off can be seen by comparing the profiles of the mauna data (545 observations)
with the radio data (240 observations). While mauna has more observations n, the radio data
contains much more complex periodic patterns and which requires comparatively longer programs
and thus longer synthesis times.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:23

Variable 1 Variable 2 True Predictive Structure
Predictive Relationship Detected By

Pearson Correlation Bayesian Synthesis

(a) flavanoids color-intensity linear + bimodal ✓ × (0.03) ✓ (0.97)
(b) A02 A07 linear + heteroskedastic ✓ × (0.16) ✓ (0.89)
(c) A02 A03 linear + bimodal + heteroskedastic ✓ × (0.03) × (0.66)
(d) proline od280-of-wines nonlinear + missing regime ✓ × (0.09) ✓ (0.97)
(e) compression-ratio aspiration mean shift ✓ × (0.07) ✓ (0.98)
(f) age income different group tails ✓ × (0.06) ✓ (0.90)
(g) age varices scale shift ✓ × (0.00) ✓ (0.90)
(h) capital-gain income different group tails ✓ × (0.05) × (0.77)
(i) city-mpg highway-mpg linearly increasing ✓ ✓ (0.95) ✓ (1.00)
(j) horsepower highway-mpg linearly decreasing ✓ ✓ (0.65) ✓ (1.00)
(k) education-years education-level different group means ✓ ✓ (1.00) ✓ (1.00)
(l) compression-ratio fuel-type different group means ✓ ✓ (0.97) ✓ (0.98)
(m) cholesterol max-heart-rate none (+ outliers) × × (0.00) × (0.08)
(n) cholesterol st-depression none (+ outliers) × × (0.00) × (0.00)
(o) blood-pressure sex none × × (0.01) × (0.26)
(p) st-depression electrocardiography none × × (0.04) × (0.00)

0 1 2 3 4 5 6

flavanoids

0

2

4

6

8

10

12

14

c
o
lo

r-
in

te
n
s
it
y

Dataset: wine

(a) Linear + Bimodal

10 20 30 40 50 60 70 80

A02

−5

0

5

10

15

20

25

A
0
7

Dataset: credit

(b) Linear + Heteroskedastic

10 20 30 40 50 60 70 80

A02

−5

0

5

10

15

20

25

30

A
0
3

Dataset: credit

(c) Bimodal + Heteroskedastic

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

od280-od315-of-diluted-wines

200

400

600

800

1000

1200

1400

1600

1800

p
ro

lin
e

Dataset: wine

(d) Missing Regime

6 8 10 12 14 16 18 20 22 24

compression-ratio

std

turbo

a
s
p
ir
a
ti
o
n

Dataset: automobiles

(e) Mean Shift

10 20 30 40 50 60 70 80 90

age

¡=50K

¿50K

in
c
o
m

e

Dataset: census

(f) Scale Shift

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

capital-gain ×105

¡=50K

¿50K

in
c
o
m

e

Dataset: census

(g) Different Tails

0 10 20 30 40 50 60 70 80 90

age

2.0

1.0

va
ri

c
e
s

Dataset: hepatitis

(h) Different Tails

10 15 20 25 30 35 40 45 50 55

city-mpg

10

20

30

40

50

60

h
ig

h
w

a
y
-m

p
g

Dataset: automobiles

(i) Linearly Increasing

0 50 100 150 200 250 300 350

horsepower

10

20

30

40

50

60

h
ig

h
w

a
y
-m

p
g

Dataset: automobiles

(j) Linearly Decreasing

0 2 4 6 8 10 12 14 16 18

education-num

10th
11th
12th

1st-4th
7th-8th

9th
Assoc-acdm

Assoc-voc
Bachelors
Doctorate

HS-grad
Masters

Preschool
Prof-school

Some-college

e
d
u
c
a
ti
o
n

Dataset: census

(k) Different Group Means

6 8 10 12 14 16 18 20 22 24

compression-ratio

diesel

gas

fu
e
l-
ty

p
e

Dataset: automobiles

(l) Different Group Means

100 200 300 400 500 600

cholesterol

60

80

100

120

140

160

180

200

220

m
a
x
-h

e
a
rt

-r
a
te

Dataset: disease

(m) No Dependence + Outliers

−1 0 1 2 3 4 5 6 7

st-depression

0.0

1.0

2.0

re
s
ti
n
g
-e

le
c
tr

o
c
a
rd

io
g
ra

p
h
y Dataset: disease

(n) No Dependence + Outliers

80 100 120 140 160 180 200 220

resting-blood-pressure

0.0

1.0

s
e
x

Dataset: disease

(o) No Dependence

100 200 300 400 500 600

cholesterol

−1

0

1

2

3

4

5

6

7

s
t-

d
e
p
re

s
s
io

n

Dataset: disease

(p) No Dependence

Fig. 9. Detecting probable predictive relationships between pairs of variables for widely varying dependence

structures including nonlinearity, heteroskedasticity, mean and scale shifts, and missing regimes. The table in

the top panel shows 16 pairs of variables, the true predictive structure between them, and indicators as to

whether a predictive relationship, if any, was detected by Pearson correlation and Bayesian synthesis.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:24 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

compression-ratio

a
s
p
ir
a
ti
o
n

Observed Pairs
(Automobiles Data)

compression-ratio

Simulations from
Linear Model

compression-ratio

Simulations from
Bayesian Synthesis

(a) Bimodal Dependence

flavanoids

c
o
lo

r-
in

te
n
s
it
y

Observed Pairs
(Wine Data)

flavanoids

Simulations from
Linear Model

flavanoids

Simulations from
Bayesian Synthesis

(b) Bimodal Increasing Linear Dependence

capital-gain

in
c
o
m

e

Observed Pairs
(Credit Data)

capital-gain

Simulations from
Linear Model

capital-gain

Simulations from
Bayesian Synthesis

(c) Heavy-Tailed Nonlinear Dependence

od280-diluted
p
ro

lin
e

Observed Pairs
(Wine Data)

od280-diluted

Simulations from
Linear Model

od280-diluted

Simulations from
Bayesian Synthesis

(d) Missing Regime Nonlinear Dependence

Fig. 10. Comparing the quality of predictive models discovered by Bayesian synthesis to commonly-used

generalized linear models, for several real-world datasets and dependence patterns. In each of the panels

(a)ś(d), the first column shows a scatter plot of two variables in the observed dataset; the second column

shows data simulated from a linear model trained on the observed data; and the third column shows data

simulated from probabilistic programs obtained using Bayesian synthesis given the observed data. The

synthesized programs are able to detect underlying patterns and emulate the true distribution, including

nonlinear, multi-modal, and heteroskedastic relationships. Simulations from linear models have a poor fit.

7.4 InferringQualitative Structure from Multivariate Tabular Data

A central goal of data analysis for multivariate tabular data is to identify predictive relationships
between pairs of variables [Ezekiel 1941; Draper and Smith 1966]. Recall from Section 6 that
synthesized programs from the multivariate tabular data DSL place related variables in the same
variable block expression. Using Eq (5) from Section 3.1, we report a relationship between a pair of
variables if 80% of the synthesized programs place these variables in the same block. We compare
our method to the widely-used Pearson correlation baseline [Abbott 2016] by checking whether
the correlation value exceeds 0.20 (at the 5% significance level).
We evaluate the ability of our method to correctly detect related variables in six real-world

datasets from the UCI machine learning repository [Dheeru and Karra Taniskidou 2017]: automobile
data (26 variables), wine data (14 variables), hepatitis data (20 variables), heart disease data (15
variables), and census data (15 variables). Figure 9 shows results for sixteen selected pairs of
variables in these datasets (scatter plots shown in 9aś9p). Together, these pairs exhibit a broad class
of relationships, including linear, nonlinear, heteroskedastic, and multi-modal patterns. Four of the
benchmarks, shown in the final row, have no predictive relationship.
The table in Figure 9 shows that our method correctly detects the presence or absence of a

predictive relationship in 14 out of 16 benchmarks, where the final column shows the posterior
probability of a relationship in each case. In contrast, Pearson correlation, shown in the second-to-
last column, only obtains the correct answer in 8 of 16 benchmarks. This baseline yields incorrect
answers for all pairs of variables with nonlinear, bimodal, and/or heteroskedastic relationships.
These results show that Bayesian synthesis provides a practical method for detecting complex
predictive relationships from real-world data that are missed by standard baselines.
Moreover, Figure 10 shows that probabilistic programs from Bayesian synthesis are able to

generate entirely new datasets that reflect the pattern of the predictive relationship in the underlying
data generating process more accurately than generalized linear statistical models.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:25

7.5 Quantitative Prediction Accuracy for Multivariate Tabular Data

Another central goal of data analysis for multivariate tabular data is to learn probabilistic models
that can accurately predict the probability of new data records, a task known as density estimation
[Silverman 1986; Scott 2009]. Accurately predicting the probability of new data enables several
important tasks such as data cleaning, anomaly detection, and imputing missing data. We obtain
the probability of new data records according to the synthesized probabilistic programs by first
translating the programs into Venture (right column of Figure 4) and then executing the translated
programs in the Venture inference environment. Given a new data record, these programs immedi-
ately return the probability of the new data record according to the probabilistic model specified
by the Venture probabilistic program. We compare our method to the widely-used multivariate
kernel density estimation (KDE) baseline with mixed data types from Racine and Li [2004].

We evaluate our method’s ability to accurately perform density estimation using 13 benchmark
datasets adapted from Chasins and Phothilimthana [2017]. Each dataset was generated by a łground-
truthž probabilistic program written in BLOG [Milch et al. 2005]. Because the ground-truth program
is available, we can compare the actual probability of each new data record (obtained from the
ground-truth BLOG program) with its predicted probability (obtained from the synthesized Venture
programs and from KDE). The results in the table in Figure 11 show that our method is more
accurate than KDE, often by several orders of magnitude. A key advantage of our approach is that
we synthesize an ensemble of probabilistic programs for each dataset. This ensemble enables us to
approximate the full posterior distribution and then use this distribution to compute error bars
for predicted probability values. The scatter plots in Figure 11 show that the error bars are well-
calibrated, i.e. error bars are wider for data records where our method gives less accurate estimates.
In contrast, KDE only gives point estimates with no error bars and no measure of uncertainty.

Median Error in Predictive Log-Likelihood of Held-Out Data

Benchmark Kernel Density Estimation Bayesian Synthesis

biasedtugwar −1.58 × 10−1 −3.13 × 10−2
burglary −4.25 × 10−1 −1.45 × 10−3
csi −1.00 × 10−1 −4.35 × 10−4
easytugwar −2.96 × 10−1 −9.96 × 10−2
eyecolor −4.69 × 10−2 −5.31 × 10−3
grass −3.91 × 10−1 −4.49 × 10−2
healthiness −1.35 × 10−1 −3.00 × 10−3
hurricane −1.30 × 10−1 −2.11 × 10−4
icecream −1.51 × 10−1 −7.07 × 10−2
mixedCondition −1.06 × 10−1 −1.43 × 10−2
multipleBranches −4.12 × 10−2 −1.22 × 10−2
students −1.74 × 10−1 −5.47 × 10−2
tugwarAddition −2.60 × 10−1 −1.38 × 10−1
uniform −2.72 × 10−1 −1.26 × 10−1

−16−14−12−10 −8 −6 −4 −2

Ground-Truth LL

−16

−14

−12

−10

−8

−6

−4

−2

P
re

d
ic

ti
ve

L
L

easytugwar

Held-out Data

−12 −10 −8 −6 −4 −2 0

Ground-Truth LL

−12

−10

−8

−6

−4

−2

0

P
re

d
ic

ti
ve

L
L

eyecolor

Held-out Data

−10 −8 −6 −4 −2

Ground-Truth LL

−10

−8

−6

−4

−2

P
re

d
ic

ti
ve

L
L

healthiness

Held-out Data

−14 −12 −10 −8 −6 −4 −2

Ground-Truth LL

−14

−12

−10

−8

−6

−4

−2

P
re

d
ic

ti
ve

L
L

multipleBranches

Held-out Data

−18−16−14−12−10 −8 −6 −4

Ground-Truth LL

−18

−16

−14

−12

−10

−8

−6

−4

P
re

d
ic

ti
ve

L
L

students

Held-out Data

−18−16−14−12−10 −8 −6 −4

Ground-Truth LL

−18

−16

−14

−12

−10

−8

−6

−4

P
re

d
ic

ti
ve

L
L

tugwarAddition

Held-out Data

Fig. 11. Comparing the error in the predictive probabilities of held-out data according to Bayesian synthesis

and KDE. For each of the 13 benchmark problems, a training set of 10,000 data records was used to synthesize

probabilistic programs in our tabular data DSL and to fit KDE models. 10,000 new data records were then used

to assess held-out predictive probabilities, which measures how well the synthesized probabilistic programs

are able to model the true distribution. The scatter plots on the right show the full distribution of the true

(log) probabilities (according to the ground-truth program) and the predictive probabilities (according to the

synthesized programs) for six of the benchmarks (each red dot is a held-out data record). Estimates are most

accurate and certain in the bulk of the distribution and are less accurate and less certain in the tails.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:26 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

8 RELATED WORK

We discuss related work in five related fields: Bayesian synthesis of probabilistic programs (where
this work is the first), non-Bayesian synthesis of probabilistic programs, probabilistic synthesis of
non-probabilistic programs, non-probabilistic synthesis of non-probabilistic programs, and model
discovery in probabilistic machine learning.
Bayesian synthesis of probabilistic programs. This paper presents the first Bayesian synthe-

sis of probabilistic programs. It presents the first formalization of Bayesian synthesis for probabilistic
programs and the first soundness proofs of Bayesian synthesis for probabilistic programs generated
by probabilistic context-free grammars. It also presents the first empirical demonstration of accurate
modeling of multiple real-world domains and tasks via this approach.

This paper is also the first to: (i) identify sufficient conditions to obtain a well-defined posterior
distribution; (ii) identify sufficient conditions to obtain a sound Bayesian synthesis algorithm;
(iii) define a general family of domain-specific languages with associated semantics that ensure
that the required prior and posterior distributions are well-defined; (iv) present a sound synthesis
algorithm that applies to any language in this class of domain-specific languages; and (v) present a
specific domain-specific language (the Gaussian process language for modeling time series data)
that satisfies these sufficient conditions.
Nori et al. [2015] introduce a system (PSKETCH) designed to complete partial sketches of

probabilistic programs for modeling tabular data. The technique is based on applying sequences
of program mutations to a base program written in a probabilistic sketching language. As we
detail further below, the paper uses the vocabulary of Bayesian synthesis to describe the tech-
nique but contains multiple fundamental technical errors that effectively nullify its key claims.
Specifically, Nori et al. [2015] proposes to use Metropolis-Hastings sampling to approximate the
maximum a posteriori solution to the sketching problem. However, the paper does not establish
that the prior or posterior distributions on programs are well-defined. The paper attempts to use
a uniform prior distribution over an unbounded space of programs. However, there is no valid
uniform probability measure over this space. Because the posterior is defined using the prior and
the marginal likelihood of all datasets is not shown to be finite, the posterior is also not well-defined.
The paper presents no evidence or argument that the proposed prior or posterior distribution
is well-defined. The paper also asserts that the synthesis algorithm converges because the MH
algorithm always converges, but it does not establish that the presented framework satisfies the
properties required for the MH algorithm to converge. And because the posterior is not well-defined,
there is no probability distribution to which the MH algorithm can converge. We further note
that while the paper claims to use the MH algorithm to determine whether a proposed program
mutation is accepted or rejected, there is in fact no tractable algorithm that can be used to compute
the reversal probability of going back from a proposed to an existing program, which means the
MH algorithm cannot possibly be used with the program mutation proposals described in the paper.
The presented system, PSKETCH, is based on applying sequences of program mutations to a

base program written in a probabilistic sketching language with constructs (such as if-then-else,
for loops, variable assignment, and arbitrary arithmetic operations) drawn from general-purpose
programming languages. We believe that, consistent with the experimental results presented in the
paper, working only with these constructs is counterproductive in that it produces a search space
that is far too unconstrained to yield practical solutions to real-world data modeling problems in the
absence of other sources of information that can more effectively narrow the search. We therefore
predict that the field will turn to focus on probabilistic DSLs (such as the ones presented in this
paper) as a way to more effectively target the problems that arise in automatic data modeling. As an
example, while the sketching language in Nori et al. [2015] contains general-purpose programming

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:27

constructs, it does not have domain-specific constructs that concisely represent Gaussian processes,
covariance functions, or rich nonparametric mixture models used in this paper.

Hwang et al. [2011] use beam search over arbitrary program text in a subset of the Church [Good-
man et al. 2008] language to obtain a generative model over tree-like expressions. The resulting
search space is so unconstrained that, as the authors note in the conclusion, this technique does not
apply to any real-world problem whatsoever. This drawback highlights the benefit of controlling
the search space via an appropriate domain-specific language. In addition we note that although
Hwang et al. [2011] also use the vocabulary of Bayesian synthesis, the proposed program-length
prior over an unbounded program space is not shown to be probabilistically well-formed, nor is
it shown to lead to a valid Bayesian posterior distribution over programs, nor is the stochastic
approximation of the program likelihood shown to result in a sound synthesis algorithm.
Non-Bayesian synthesis of probabilistic programs. Ellis et al. [2015] introduce a method

for synthesizing probabilistic programs by using SMT solvers to optimize the likelihood of the
observed data with a regularization term that penalizes the program length. The research works
with a domain-specific language for morphological rule learning. Perov and Wood [2014] propose
to synthesize code for simple random number generators using approximate Bayesian computation.
These two techniques are fundamentally different from ours. They focus on different problems,
specifically morphological rule learning, visual concept learning, and random number generators,
as opposed to data modeling. Neither is based on Bayesian learning and neither presents soundness
proofs (or even states a soundness property). Moreover, both attempt to find a single highest-scoring
program as opposed to synthesizing ensembles of programs that approximate a Bayesian posterior
distribution over the sampled probabilistic programs. As this previous research demonstrates,
obtaining soundness proofs or characterizing the uncertainty of the synthesized programs against
the data generating process is particularly challenging for non-Bayesian approaches because of the
ad-hoc nature of the synthesis formulation.
Tong and Choi [2016] describe a method which uses an off-the-shelf model discovery system

[Lloyd 2014, ABCD] to learn Gaussian process models and the code-generate the models to Stan
[Carpenter et al. 2017] programs. However, Tong and Choi [2016] does not formalize the program
synthesis problem, nor does it present any formal semantics, nor does it show how to extract the
probability that qualitative properties hold in the data, nor does it apply to multiple model families
in a single problem domain let alone multiple problem domains. Chasins and Phothilimthana
[2017] present a technique for synthesizing probabilistic programs in tabular datasets using if-
else statements. Unlike our method, their approach requires the user to manually specify a causal
ordering between the variables. This informationmay be difficult or impossible to obtain. Second, the
proposed technique is based on using linear correlation, which we have shown in our experiments
(Figures 10 and 9) fails to adequately capture complex probabilistic relationships. Finally, the paper
is based on simulated annealing, not Bayesian synthesis, has no probabilistic interpretation, and
does not claim to provide a notion of soundness.
Probabilistic synthesis of non-probabilistic programs. Schkufza et al. [2013] describe a

technique for synthesizing high-performance X86 binaries by using MCMC to stochastically search
through a space of programs and to deliver a single X86 program which satisfies the hard constraint
of correctness and the soft constraint of performance improvement. While both the Bayesian
synthesis framework in this paper and the superoptimization technique from Schkufza et al. [2013]
use MCMC algorithms to implement the synthesis, they use MCMC in a fundamentally different
way. In Schkufza et al. [2013], MCMC is used as a strategy to search through a space of deterministic
programs that seek to minimize a cost function that itself has no probabilistic semantics. In contrast,
Bayesian synthesis uses MCMC as a strategy to approximately sample from a space of probabilistic
programs whose semantics specify a well-defined posterior distribution programs.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:28 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

Bayesian priors over structured program representations which seek to sample from a posterior
distribution over programs have also been investigated. Liang et al. [2010] use adapter grammars
[Johnson et al. 2007] to build a hierarchical nonparametric Bayesian prior over programs specified
in combinatory logic [Schönfinkel 1924]. Ellis et al. [2016] describe a method to sample from a
bounded program space with a uniform prior where the posterior probability of a program is equal
to (i) zero if it does not satisfy an observed input-output constraint, or (ii) geometrically decreasing
in its length otherwise. These methods are used to synthesize arithmetic operations, text editing,
and list manipulation programs. Both Liang et al. [2010] and Ellis et al. [2015] specify Bayesian
priors over programs similar to the prior in this paper. However, these two techniques are founded
on the assumption that the synthesized programs have deterministic input-output behavior and
cannot be easily extended to synthesize programs that have probabilistic input-output behavior.
In contrast, the Bayesian synthesis framework presented in this paper can synthesize programs
with deterministic input-output behavior by adding hard constraints to the Lik semantic function,
although alternative synthesis techniques may be required to make the synthesis more effective.
Lee et al. [2018] present a technique for speeding up program synthesis of non-probabilistic

programs by using A* search to enumerate programs that satisfy a set of input-output constraints
in order of decreasing prior probability. This prior distribution over programs is itself learned
using a probabilistic higher-order grammar with transfer learning over a large corpus of existing
synthesis problems and solutions. The technique is used to synthesize programs in domain-specific
languages for bit-vector, circuit, and string manipulation tasks. Similar to the Bayesian synthesis
framework in this paper, Lee et al. [2018] use PCFG priors for specifying domain-specific languages.
However the fundamental differences are that the synthesized programs in Lee et al. [2018] are
non-probabilistic and the objective is to enumerate valid programs sorted by their prior probability,
while in this paper the synthesized programs are probabilistic so enumeration is impossible and
the objective is instead to sample programs according to their posterior probabilities.
Non-probabilistic synthesis of non-probabilistic programs. Over the last decade program

synthesis has become a highly active area of research in programming languages. Key techniques
include deductive logic with program transformations [Burstall and Darlington 1977; Manna and
Waldinger 1979, 1980], genetic programming [Koza 1992; Koza et al. 1997], solver and constraint-
based methods [Solar-Lezama et al. 2006; Jha et al. 2010; Gulwani et al. 2011; Gulwani 2011; Feser
et al. 2015], syntax-guided synthesis [Alur et al. 2013], and neural networks [Graves et al. 2014;
Reed and de Freitas 2016; Balog et al. 2017; Bošnak et al. 2018]. In general these approaches have
tended to focus on areas where uncertainty is not essential or even relevant to the problem being
solved. In particular, synthesis tasks in this field apply to programs that exhibit deterministic input-
output behavior in discrete problem domains with combinatorial solutions. There typically exists
an łoptimalž solution and the synthesis goal is to obtain a good approximation to this solution.
In contrast, in Bayesian synthesis the problem domain is fundamentally about automatically

learning models of non-deterministic data generating processes given a set of noisy observations.
Given this key characteristic of the problem domain, we deliver solutions that capture uncertainty at
two levels. First, our synthesis produces probabilistic programs that exhibit noisy, non-deterministic
input-output behavior. Second, our technique captures inferential uncertainty over the structure
and parameters of the synthesized programs themselves by producing an ensemble of probabilistic
programs whose varying properties reflect this uncertainty.
Model discovery in probabilistic machine learning. Researchers have developed several

probabilistic techniques for discovering statistical model structures from observed data. Prominent
examples include Bayesian network structures [Mansinghka et al. 2006], matrix-composition models
[Grosse et al. 2012], univariate time series [Duvenaud et al. 2013], multivariate time series [Saad
and Mansinghka 2018], and multivariate data tables [Mansinghka et al. 2016].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:29

Our paper introduces a general formalism that explains and extends these modeling techniques.
First, it establishes general conditions for Bayesian synthesis to be well-defined and introduces
sound Bayesian synthesis algorithms that apply to a broad class of domain-specific languages.

Second, we show how to estimate the probability that qualitative structures are present or absent
in the data. This capability rests on a distinctive aspect of our formalism, namely that soundness is
defined in terms of sampling programs from a distribution that converges to the Bayesian posterior,
not just finding a single łhighest scoringž program. As a result, performing Bayesian synthesis
multiple times yields a collection of programs that can be collectively analyzed to form Monte
Carlo estimates of posterior and predictive probabilities.

Third, our framework shows oneway to leverage probabilistic programming languages to simplify
the implementation of model discovery techniques. Specifically, it shows how to translate programs
in a domain-specific language into a general-purpose language such as Venture, so that the built-in
language constructs for predictive inference can be applied (rather than requiring new custom
prediction code for each model family). A key advantage of this approach is that representing
probabilistic models as synthesized probabilistic programs enable a wide set of capabilities for data
analysis tasks [Saad and Mansinghka 2016, 2017].

Fourth, we implemented two examples of domain-specific languages and empirically demonstrate
accuracy improvements over multiple baselines.

9 CONCLUSION

Wepresent a technique for Bayesian synthesis of probabilistic programs for automatic datamodeling.
This technique enables, for the first time, users to solve important data analysis problems without
manually writing statistical programs or probabilistic programs. Our technique (i) produces an
ensemble of probabilistic programs that soundly approximate the Bayesian posterior, allowing an
accurate reflection of uncertainty in predictions made by the programs; (ii) is based on domain-
specific modeling languages that are empirically shown to capture the qualitative structure of a
broad class of data generating processes; (iii) processes synthesized programs to extract qualitative
structures from the surface syntax of the learned programs; (iv) translates synthesized programs into
probabilistic programs that provide the inference machinery needed to obtain accurate predictions;
and (v) is empirically shown to outperform baseline statistical techniques for multiple qualitative
and quantitative data analysis and prediction problems.

Designing good probabilistic domain-specific languages and priors is a key characteristic of our
approach to automatic data modeling. In this paper we focus on broad non-parametric Bayesian
priors that are flexible enough to capture a wide range of patterns and are also tractable enough for
Bayesian synthesis. In effect, the choice of prior is embedded in the language design pattern, is done
once when the language is designed, and can be reused across applications. The high-level nature
of the DSL and carefully designed priors allow us to restrict the space of probabilistic programs to
those that are well-suited for a particular data modeling task (such as time series and multivariate
data tables). Once an appropriate DSL is developed, the synthesis algorithms can then be optimized
on a per-DSL basis. Future directions of research include developing optimized synthesis algorithms
to improve scalability; adding language support for user-specified qualitative constraints that must
hold in the synthesized programs; and information-flow analyses on the synthesized programs to
quantify relationships between variables in the underlying data generating process.

ACKNOWLEDGMENTS

This research was supported by the DARPA SD2 program (contract FA8750-17-C-0239); grants
from the MIT Media Lab, the Harvard Berkman Klein Center Ethics and Governance of AI Fund,
and the MIT CSAIL Systems That Learn Initiative; as well as an anonymous philanthropic gift.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

37:30 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

REFERENCES

Martin L. Abbott. 2016. Correlation. In Using Statistics in the Social and Health Sciences with SPSS and Excel. Chapter 11,

329ś370.

Rajeev Alur, Rastislav Alur, Garvit Juniwal, Milo M. K. Juniwal, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Proceedings of the

Thirteenth International Conference on Formal Methods in Computer-Aided Design (FMCAD). IEEE, 1ś8.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning

to write programs. In International Conference on Learning Representations (ICLR).

José-Miguel Bernardo and Adrian Smith. 1994. Bayesian Theory. John Wiley & Sons, Inc.

Taylor L. Booth and Richard A. Thompson. 1973. Applying probability measures to abstract languages. IEEE Trans. Comput.

22, 5 (1973), 442ś450.

Matko Bošnak, Pushmeet Kohli, Tejas Kulkrani, Sebastian Riedel, Tim Rocktäschel, Dawn Song, and Robert Zinkov (Eds.).

2018. Neural Abstract Machines and Program Induction Workshop v2.

George E. P. Box and Gwilym Jenkins. 1976. Time Series Analysis: Forecasting and Control. Holden-Day, Inc.

Richard M. Burstall and John Darlington. 1977. A transformation system for developing recursive programs. J. ACM 24, 1

(1977), 44ś67.

Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,

Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming language. Journal of Statistical Software

76, 1 (2017), 1ś32.

Sarah Chasins and Phitchaya M. Phothilimthana. 2017. Data-driven synthesis of full probabilistic programs. In Proceedings

of the Twenty-Ninth International Conference on Computer Aided Verification (CAV), Rupak Majumdar and Viktor Kunčak

(Eds.), Vol. 10426. Springer, 279ś304.

Ron P. Cody and Jeffrey K. Smith. 2005. Applied Statistics and the SAS Programming Language (5 ed.). Prentice-Hall.

Dua Dheeru and Efi Karra Taniskidou. 2017. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml. (2017).

Norman R. Draper and Harry Smith. 1966. Applied Regression Analysis. John Wiley & Sons, Inc.

David Duvenaud, James Lloyd, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani. 2013. Structure discovery in

nonparametric regression through compositional kernel search. In Proceedings of the Thirtieth International Conference

on Machine Learning (ICML), Sanjoy Dasgupta and David McAllester (Eds.), Vol. 28. PMLR, 1166ś1174.

Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. 2015. Unsupervised learning by program synthesis. In Advances

in Neural Information Processing Systems 28 (NIPS), Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,

and Roman Garnett (Eds.). Curran Associates, 973ś981.

Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. 2016. Sampling for Bayesian program learning. In Advances in

Neural Information Processing Systems 29 (NIPS), Daniel D. Lee, Masashi Sugiyama, Ulrich von Luxburg, I. Guyon, and

Roman Garnett (Eds.). Curran Associates, 1297ś1305.

Mordecai Ezekiel. 1941. Methods of Correlation Analysis. John Wiley & Sons, Inc.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure transformations from input-output exam-

ples. In Proceedings of the Thirty-Sixth ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). ACM, 229ś239.

Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: A language for flexible probabilistic inference. In Proceedings of

the Twenty-First International Conference on Artificial Intelligence and Statistics (AISTATS), Amos Storkey and Fernando

Perez-Cruz (Eds.), Vol. 84. PMLR, 1682ś1690.

Roland Gecse and Attila Kovács. 2010. Consistency of stochastic context-free grammars. Mathematical and Computer

Modelling 52, 3 (2010), 490ś500.

Andrew Gelman and Jennifer Hill. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge

University Press.

Noah Goodman, Vikash Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua Tenenbaum. 2008. Church: A language

for generative models. In Proceedings of the Twenty-Fourth Conference Annual Conference on Uncertainty in Artificial

Intelligence (UAI). AUAI Press, 220ś229.

Noah D. Goodman and Andreas Stuhlmüller. 2014. The Design and Implementation of Probabilistic Programming Languages.

http://dippl.org. (2014).

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural Turing machines. (2014). arXiv:1410.5401

Roger Grosse, Ruslan Salakhutdinov, William Freeman, and Joshua B. Tenenbaum. 2012. Exploiting compositionality to

explore a large space of model structures. In Proceedings of the Twenty-Eighth Annual Conference on Uncertainty in

Artificial Intelligence (UAI). AUAI Press, 306ś31.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In Proceedings of the

Thirty-Eighth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 317ś330.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

http://archive.ics.uci.edu/ml
http://dippl.org
http://arxiv.org/abs/1410.5401

Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling 37:31

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011. Synthesis of loop-free programs. In

Proceedings of the Thirty-Second ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

ACM, 62ś73.

Irvin Hwang, Andreas Stuhlmüller, and Noah D. Goodman. 2011. Inducing probabilistic programs by Bayesian program

merging. (2011). arXiv:1110.5667

Rob Hyndman and Yeasmin Khandakar. 2008. Automatic time series forecasting: The forecast package for R. Journal of

Statistical Software 27, 3 (2008), 1ś22.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning: with

Applications in R. Springer.

Frederick Jelinek, John D. Lafferty, and Robert L. Mercer. 1992. Basic methods of probabilistic context free grammars. In

Speech Recognition and Understanding (NATO ASI Series, Sub-Series F: Computer and Systems Sciences), Pietro Laface and

Renato De Mori (Eds.), Vol. 75. Springer, 345ś360.

Sumit Jha, Sumit Gulwani, Sanjit A. Jha, and Ashish Tiwari. 2010. Oracle-guided component-based program synthesis. In

Proceedings of the Thirty-Second ACM/IEEE International Conference on Software Engineering (ICSE), Vol. 1. ACM, 215ś224.

Mark Johnson, Thomas L. Griffiths, and Sharon Goldwater. 2007. Adaptor grammars: A framework for specifying com-

positional nonparametric Bayesian models. In Advances in Neural Information Processing Systems 19 (NIPS), Bernard

Schölkopf, John C. Platt, and Thomas Hoffman (Eds.). Curran Associates, 641ś648.

Matthew J. Johnson and Alan S. Willsky. 2013. Bayesian nonparametric hidden semi-Markov models. Journal of Machine

Learning Research 14, Feb (2013), 673ś701.

John R. Koza. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.

John R. Koza, Forest H. Bennett III, Andre David, Martin A. Keane, and Frank Dunlap. 1997. Automated synthesis of analog

electrical circuits by means of genetic programming. IEEE Transactions on Evolutionary Computation 1, 2 (1997), 109ś128.

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating search-based program synthesis using learned

probabilistic models. In Proceedings of the Thirty-Ninth ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). ACM, 436ś449.

Percy Liang, Michael I. Jordan, and Dan Klein. 2010. Learning programs: A hierarchical Bayesian approach. In Proceedings

of the Twenty-Seventh International Conference on Machine Learning (ICML), Johannes Fürnkranz and Thorsten Joachims

(Eds.). Omnipress, 639ś646.

James R. Lloyd. 2014. Kernel structure discovery research code. https://github.com/jamesrobertlloyd/gpss-research/tree/

master/data. (2014).

James R. Lloyd, David Duvenaud, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani. 2014. Automatic construc-

tion and natural-language description of nonparametric regression models. In Proceedings of the Twenty-Eighth AAAI

Conference on Artificial Intelligence (AAAI). AAAI Publications.

Zohar Manna and Richard Waldinger. 1979. Synthesis: Dreams to programs. IEEE Transactions on Software Engineering 5, 4

(1979), 294ś328.

Zohar Manna and Richard Waldinger. 1980. A deductive approach to program synthesis. ACM Transactions on Programming

Languages and Systems 2, 1 (1980), 90ś121.

Vikash Mansinghka, Charles Kemp, Thomas Griffiths, and Joshua B. Tenenbaum. 2006. Structured priors for structure

learning. In Proceedings of the Twenty-Second Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI).

AUAI Press, 324ś331.

Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: A higher-order probabilistic programming platform

with programmable inference. (2014). arXiv:1404.0099

Vikash Mansinghka, Patrick Shafto, Eric Jonas, Cap Petschulat, Max Gasner, and Joshua B. Tenenbaum. 2016. CrossCat: A

fully Bayesian nonparametric method for analyzing heterogeneous, high dimensional data. Journal of Machine Learning

Research 17, 138 (2016), 1ś49.

Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018. Probabilistic

programming with programmable inference. In Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). ACM, 603ś616.

Andrew McCallum, Karl Schultz, and Sameer Singh. 2009. FACTORIE: Probabilistic programming via imperatively defined

factor graphs. In Advances in Neural Information Processing Systems 22 (NIPS), Yoshua Bengio, Dale Schuurmans, John D.

Lafferty, Christopher K. Williams, and Aron Culotta (Eds.). Curran Associates, 1249ś1257.

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey Kolobov. 2005. BLOG: Probabilistic

models with unknown objects. In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence

(IJCAI). Morgan Kaufmann Publishers Inc., 1352ś1359.

Kevin P. Murphy. 2012. Machine Learning: A Probabilistic Perspective. MIT Press.

Norman H. Nie. 1975. SPSS: Statistical Package for the Social Sciences. McGraw-Hill.

Antinus Nijholt. 1980. Context-Free Grammars: Covers, Normal Forms, and Parsing. Springer.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

http://arxiv.org/abs/1110.5667
https://github.com/jamesrobertlloyd/gpss-research/tree/master/data
https://github.com/jamesrobertlloyd/gpss-research/tree/master/data
http://arxiv.org/abs/1404.0099

37:32 Saad, Cusumano-Towner, Schaechtle, Rinard, and Mansinghka

Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and Deepak Vijaykeerthy. 2015. Efficient synthesis of probabilistic

programs. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). ACM, 208ś217.

Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel,

Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu

Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research 12, Oct (2011), 2825ś2830.

Yura N. Perov and Frank D. Wood. 2014. Learning probabilistic programs. (2014). arXiv:1407.2646

Avi Pfeffer. 2001. IBAL: A probabilistic rational programming language. In Proceedings of the Seventeenth International Joint

Conference on Artificial Intelligence (IJCAI), Vol. 1. Morgan Kaufmann Publishers Inc., 733ś740.

Avi Pfeffer. 2016. Practical Probabilistic Programming (1 ed.). Manning Publications Co.

Martyn Plummer. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of

the Third International Workshop on Distributed Statistical Computing (DSC), Kurt Hornik, Friedrich Leisch, and Achim

Zeileis (Eds.). Austrian Association for Statistical Computing.

Joaquin Quiñonero-Candela and Carl E. Rasmussen. 2005. A unifying view of sparse approximate Gaussian process

regression. Journal of Machine Learning Research 6, Dec (2005), 1939ś1959.

Jeff Racine and Qi Li. 2004. Nonparametric estimation of regression functions with both categorical and continuous data.

Journal of Econometrics 119, 1 (2004), 99ś130.

Carl Rasmussen and Christopher Williams. 2006. Gaussian Processes for Machine Learning. The MIT Press.

Carl E. Rasmussen and Hannes Nickisch. 2010. Gaussian processes for machine learning (GPML) toolbox. Journal of Machine

Learning Research 11, Nov (2010), 3011ś3015.

Scott Reed and Nando de Freitas. 2016. Neural programmer-interpreters. In International Conference on Learning Representa-

tions (ICLR).

Feras Saad and VikashMansinghka. 2016. Probabilistic data analysis with probabilistic programming. (2016). arXiv:1608.05347

Feras Saad and Vikash Mansinghka. 2017. Detecting dependencies in sparse, multivariate databases using probabilistic

programming and non-parametric Bayes. In Artificial Intelligence and Statistics (AISTATS), Aarti Singh and Jerry Zhu

(Eds.), Vol. 54. PMLR, 632ś641.

Feras A. Saad and Vikash K. Mansinghka. 2018. Temporally-reweighted Chinese restaurant process mixtures for clustering,

imputing, and forecasting multivariate time series. In Proceedings of the Twenty-First Conference on Artificial Intelligence

and Statistics (AISTATS), Amos Storkey and Fernando Perez-Cruz (Eds.), Vol. 84. PMLR, 755ś764.

John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. 2016. Probabilistic programming in python using PyMC3.

PeerJ Computer Science 2 (2016), e55.

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic superoptimization. In Proceedings of the Eighteenth In-

ternational Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). ACM,

305ś316.

Moses Schönfinkel. 1924. Über die Bausteine der mathematischen Logik. Math. Ann. 92 (1924), 305ś316.

David W. Scott. 2009. Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley & Sons, Inc.

Skipper Seabold and Josef Perktold. 2010. Statsmodels: Econometric and statistical modeling with python. In Proceedings of

the Ninth Python in Science Conference (SciPy), Stêfan van der Walt and Jarrod Millman (Eds.). 57ś61.

Bernard W. Silverman. 1986. Density Estimation for Statistics and Data Analysis. CRC Press.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial sketching

for finite programs. In Proceedings of the Twelfth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS). ACM, 404ś415.

David Spiegelhalter, Andrew Thomas, Nicky Best, and Wally Gilks. 1996. BUGS 0.5: Bayesian Inference Using Gibbs Sampling

Manual (version ii). MRC Biostatistics Unit, Institute of Public Health, Cambridge, United Kingdom.

Sean J. Taylor and Benjamin Letham. 2018. Forecasting at scale. The American Statistician 72, 1 (2018), 37ś45.

Luke Tierney. 1994. Markov chains for exploring posterior distributions. The Annals of Statistics 22, 4 (1994), 1701ś1728.

Anh Tong and Jaesik Choi. 2016. Automatic generation of probabilistic programming from time series data. (2016).

arXiv:1607.00710

Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. 2017. Deep probabilistic

programming. In International Conference on Learning Representations (ICLR).

John W. Tukey. 1977. Exploratory Data Analysis. Addison-Wesley Publishing Company.

Franklyn Turbak, David Gifford, and Mark A. Sheldon. 2008. Design Concepts in Programming Languages. MIT Press.

Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. 2014. A new approach to probabilistic programming

inference. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS),

Vol. 33. PMLR, 1024ś1032.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 37. Publication date: January 2019.

http://arxiv.org/abs/1407.2646
http://arxiv.org/abs/1608.05347
http://arxiv.org/abs/1607.00710

	Abstract
	1 Introduction
	1.1 Automated Data Modeling via Bayesian Synthesis of Probabilistic Programs in Domain-Specific Languages
	1.2 Inferring Qualitative Structure by Processing Synthesized Programs
	1.3 Predicting New Data by Translating Synthesized Programs to Venture
	1.4 Experimental Results
	1.5 Contributions

	2 Example
	2.1 Gaussian Process Models
	2.2 Synthesized Gaussian Process Model Programs
	2.3 Inferring Qualitative Structure by Processing Synthesized Programs
	2.4 Predicting New Data via Probabilistic Inference

	3 Bayesian Synthesis in Domain-Specific Data Modeling Languages
	3.1 Inferring Probabilities of Qualitative Properties in Synthesized DSL Programs
	3.2 Forming Predictions by Translating DSL Programs into Venture Programs
	3.3 Markov Chain Monte Carlo Algorithms for Bayesian Synthesis

	4 Bayesian Synthesis for Domain-Specific Languages Defined By Probabilistic Context-Free Grammars
	4.1 Tagged Probabilistic Context-Free Grammars with Random Symbols
	4.2 A Default Prior Semantics with the Normalization Property
	4.3 Bayesian Synthesis Using Markov Chain Monte Carlo

	5 Gaussian Process DSL for Univariate Time Series Data
	5.1 Time Complexity of Bayesian Synthesis Algorithm

	6 Nonparametric Mixture Model DSL for Multivariate Tabular Data
	7 Experimental Results
	7.1 Inferring Qualitative Structure from Time Series Data
	7.2 Quantitative Prediction Accuracy for Time Series Data
	7.3 Runtime Versus Prediction Accuracy for Time Series Data
	7.4 Inferring Qualitative Structure from Multivariate Tabular Data
	7.5 Quantitative Prediction Accuracy for Multivariate Tabular Data

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

