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We present a new technique for automatically synthesizing replacement classes. The technique starts with

an original class O and a potential replacement class R, then uses R to synthesize a new class that implements

the same interface and provides the same functionality as O. Critically, our technique works with a synthe-

sized inter-class equivalence predicate between the states of O and R. It uses this predicate to ensure that

original and synthesized methods leave corresponding O and R objects in equivalent states. The predicate

therefore enables the technique to synthesize individual replacement methods in isolation while still obtain-

ing a replacement class that leaves the original and replacement objects in equivalent states after arbitrarily

long method invocation sequences. We have implemented the technique as part of a tool, named Mask, and

evaluated it using open-source Java classes. The results highlight the effectiveness of Mask in synthesizing

replacement classes.
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1 INTRODUCTION

Libraries play a central role in the software development process as they provide the nec-

essary interfaces that can be used by client applications. Oftentimes, client applications are

refactored to use an updated version of a library or a different library that provides simi-

lar functionality. There are many reasons for this refactoring – the original library is dep-

recated or is no longer supported [API Deprecation 2018; JDK Deprecation 2018], the need

to switch library vendors to satisfy organizational requirements or intellectual property con-

straints [Guava Collections 2009; Oracle v/s Google 2019], libraries with improved performance

and memory usage [Guava v/s Apache 2009; Hasan et al. 2016], updated library versions where

bugs are fixed [Fraser and Arcuri 2011; JDK Bug fixes 2019], etc.

Manually updating the application to use a different library can be cumbersome and error-

prone [Dig and Johnson 2006; Kapur et al. 2010]. For example, even when library versions are

updated, backward compatibility is not always maintained.1 Ensuring that the behavior of the

application is unchanged can become non-trivial because an existing class in the library can differ

1Java incompatibility report https://abi-laboratory.pro/?view=timeline&lang=java&l=jre.
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from the chosen replacement class in the new library across multiple dimensions – internal data

representation, signatures of the provided interfaces, or the underlying functionality offered by

these interfaces. This motivates the need for a technique that can synthesize an adapter class for

a given replacement class so that the synthesized class is equivalent to the existing class.

1.1 Automatic Class Replacement

We present a new technique and a system that, given an original class O and desired replacement

class R, automatically synthesizes methods that implementO’s interface using only class R. To per-

form this replacement, our system constructs an inter-class equivalence predicate σo,r that defines

equivalent states in O and R objects. For every public method including constructors defined by

O, our approach synthesizes a new replacement method that invokes only public methods defined

by R. Each replacement method provides observably identical functionality as the corresponding

original method, including updatingO and R objects to equivalent states and driving any other ma-

nipulated objects to identical states. Similarly, each replacement constructor constructs an instance

of class R equivalent to the object instance constructed by the corresponding constructor inO. The

result is the automatic synthesis of a new adapter class G that provides a drop-in replacement for

O.

Obtaining effective equivalence predicates σo,r is critical for the success of our technique. Meth-

ods that update object states can affect the operation of subsequently invokedmethods (whichmay

observe the updated state). Identifying equivalent object states and requiring synthesized methods

to leave objects in equivalent states enables the technique to synthesize individual methods in iso-

lation while still guaranteeing that sequences of method invocations deliver equivalent behavior

regardless of the length of the sequence.
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Fig. 1. Overall architecture of Mask.

1.2 Technique

Figure 1 presents the overall architecture of our tool, Mask, that implements our proposed so-

lution. Broadly, Mask comprises two interleaved stages. The first stage generates a set of candi-

date equivalence predicates. The equivalence predicates are synthesized by symbolically execut-

ing [King 1976] allmethods defined in classesO, R to identify a set of relevant symbolic expressions

constructed by the classes and suitably equating these expressions to obtain the necessary predi-

cates. The second stage starts with a candidate predicate and attempts to synthesize a replacement

method for each method in the original class. Each synthesized method encapsulates a sequence

of method invocations, where every method in the sequence is defined by class R.

Mask synthesizes replacement classes by generating and solving sketches that encode a search

space of candidate method invocation sequences for each replacement method. For each replace-

ment method, Mask generates an adapter method sketch (Figure 7), that consists of a sequence
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of conditionally invoked methods from the replacement class. The choice of whether to invoke a

method or not is determined by choices that the Sketch solver [Solar-Lezama 2008] resolves when

it solves a synthesis correctness condition implemented by a Sketch method harness (Figure 8). This

method harness has the following structure:

• Assumes: Code that instructs the Sketch solver to assume the initial system states input

to the original method and the adapter method sketch are equivalent, i.e., they satisfy the

following, 1) all R objects, including the receiver R object, start in equivalent states as the cor-

responding O objects and 2) all other objects and primitive type parameters start in identical

states.

• Method Invocations: Code that invokes the original method and the adapter method

sketch on their respective equivalent input states.

• Requires: Code that requires the original method and adapter method sketch to produce

equivalent final system states i.e, 1) leave all R objects in equivalent states as their corre-

sponding O objects, 2) leave all other objects in identical states, and 3) return equivalent

values to the caller.

Mask then invokes the Sketch solver on themethod harness to resolve the choices in the adapter

method sketch to satisfy the synthesis correctness condition encoded in the harness. The resolved

choices identify a sequence of method invocations from the replacement class that together exhibit

identical behavior as the original method. This sequence can then be used as a correct drop-in

replacement implementation for the original method under all contexts.

IfMask succeeds in finding replacementmethods for all original methods under the current can-

didate equivalence predicate, it terminates and returns the newly constructed replacement meth-

ods to the user. Otherwise, it repeats the process using the next candidate equivalence predicate.

Note that the soundness of the technique does not depend on any concept of the soundness

of the candidate equivalence predicates. If the synthesis succeeds, all of the synthesized methods

soundly preserve the current candidate equivalence predicate, which ensures the soundness of the

technique. The only requirement is that, to avoid vacuously satisfying the assume/guarantee rea-

soning encoded in the method harness, each candidate equivalence predicate must be satisfiable.

This desirable property enablesMask to use essentially any candidate equivalence predicate gen-

eration algorithm without sacrificing soundness (as long as the candidate equivalence predicates

are filtered through a satisfiability checker, whichMask does).

1.3 Experimental Results

We have evaluated Mask using Java classes from open-source codebases (e.g., JDK [JDK 2019],

apache [Apache Commons 2019]). We consider two scenarios: 1) replacing classes from one li-

brary with classes from another unrelated library and 2) replacing classes with upgraded versions

from the same library. For the first scenario, our implementation is able to automatically and cor-

rectly generate replacements in a majority of the cases when replacements are feasible, including

examples such as replacing ArrayListwith Vector. For the second scenario, our implementation

is able to synthesize the replacement classes except when defects in the original implementations

were fixed in the updated version.

1.4 Contributions

This paper makes the following contributions:

• To the best of our knowledge, we are the first to address the problem of synthesizing an

implementation to replace an original class O with a desired replacement class R.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 52. Publication date: January 2020.
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• We propose a technique to identify equivalent object states to facilitate the synthesis of indi-

vidual methods in isolation while still guaranteeing that any sequence ofmethod invocations

deliver equivalent behavior.

• We present a novel solution to synthesizing replacement methods by effectively integrating

symbolic execution, constraint solving, and program synthesis.

• We describe the implementation of a tool, Mask, that incorporates our approach and eval-

uate its effectiveness by synthesizing adapter classes for closely related open source Java

classes.

2 EXAMPLES

We illustrate using two examples how our system solves the problem of automatically replacing

classes. The first example illustrates the need for a non-trivial equivalence predicate to enable

synthesis of an adapter class. The second example demonstrates synthesis in the presence of subtle

side effects to the system state.

2.1 Inter-class Equivalence

Figure 2 presents classes from the eclipse [Eclipse 2019] and JMist2 code bases. Figure 2(a)

presents the class Box2 from JMist which is a representation for rectangles. It defines four pri-

vate fields – minX, maxX, minY, and maxY. Each field captures the different edges of the rectangle.

The class defines method expand, that constructs and returns a new instance of Box2, where each

field of the new instance differs from the original instance, as specified by the input parameter c.

This method does not modify the fields of the receiver.

Figure 2(b) presents the class Rectangle from the eclipse framework. This class implements

the required functionality for a rectangle. Instead of representing the edges of the rectangle as in

Box2, it declares four fields that together represent the corners of the rectangle — x and y represent

the lower left corner of the rectangle; width and height represent the width and height of the

rectangle.

To replace Box2 with Rectangle, there must be a suitable replacement for expand. There is no

implementation of expand in Rectangle. However, the implementation can be synthesized using

the existing APIs in Rectangle as shown in Figure 2(c).

The synthesized implementation of expand initially creates a new instance of Rectangle that

is identical to the current instance. Then, it invokes the shrink method on the created instance

to expand its bounds by providing negative values to the shrinkmethod. The modified instance

of the rectangle is then returned to the client. This synthesized implementation is an effective

replacement for the original expand under all contexts and leaves the overall system in an equiv-

alent state. To verify the equivalence of the original implementation of expand in Box2 and the

synthesized implementation expand, the inter-class equivalence predicate needs to be available as

given in Figure 2(d).

Our approach is able to automatically derive the inter-class equivalence predicate and synthesize

the implementation of expand (and Gen). The class Gen is implemented using only class Rectangle.

We show an example usage of Box2 in a client and the refactored code obtained by replacing it

with the synthesized drop-in replacement class Gen here.

Box2 b = new Box2(10,10,20,20);

Box2 b2 = b.expand(10);

Gen b = new Gen(10,10,20,20);

Gen b2 = b.expand(10);

Similarly, our approach can also synthesize the implementations for other methods in Box2.

2JMIST: A research-oriented library for image synthesis https://github.com/bwkimmel/jmist
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public final class Box2 {

private int minX, maxX, minY, maxY;

public Box2(int m1, int m2, int m3, int m4) {

minX = m1; minY = m2; maxX = m3; maxY = m4;

}

private Box2 instance(int m1, int m2, int m3, int m4) {

return new Box2(m1, m2, m3, m4);

}

...

public Box2 expand(int c) {

return instance(minX - c, minY - c, maxX + c, maxY + c);

}

}

(a) Simplified implementation of Box2.

public class Rectangle {

public int x, y, width, height;

public Rectangle(Rectangle r) {

this(r.x, r.y, r.width, r.height);

}

public Rectangle(int v1, int v2, int w, int h) {

x = v1; y = v2; width = w; height = h;

}

public int bottom() { return y + height; }

public int right() { return x + width; }

...

public Rectangle shrink(int h, int v) {

x += h; width -= (h + h); y += v; height -= (v + v);

return this;

}

}

(b) Simplified implementation of Rectangle.

class Gen {

Rectangle r;

public Gen(Rectangle rect) {r = rect;}

public Gen(int a, int b, int c, int d) {

r = new Rectangle(a, b, c - a, d - b);

}

...

public Gen expand(int val) {

Rectangle rect = new Rectangle(this.r);

rect.shrink(-val, -val);

return new Gen(rect);

}

}

(c) Gen: Synthesized adapter class for Rectangle which is equivalent to Box2.

Box2.minX = Rectangle.x && Box2.maxX = Rectangle.x + Rectangle.width &&

Box2.minY = Rectangle.y && Box2.maxY = Rectangle.y + Rectangle.height

(d) Derived inter-class equivalence between Box2 and Rectangle.

Fig. 2. Motivating example: Box2 class from JMIST and Rectangle class from eclipse.
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class ArrayList {

int size; Objects [] elements;

public Object[] toArray(Object[] arr) {

if (arr.length < size) return Arrays.copyOf(elements, size);

System.arraycopy(elements, 0, arr, 0, size);

if (arr.length > size) arr[size] = null;

return arr;

}

}

(a) Simplified implementation of ArrayList.

ArrayList.elements = FastArray.data && ArrayList.size = FastArray.size

(b) Inter-class equivalence of ArrayList and FastArray.

class FastArray {

public int size; private Objects[] data;

public FastArray(Object[] objects) { data = objects; size = objects.length;}

public void set(int index, Object o) { data[index] = o;}

public Object[] getArray() { return data; }

public void addAll(Object[] array, int len) {

if (len == 0) return;

final int newSize = size + len;

if (newSize > data.length) {

Object nd[] = new Object [newSize];

System.arraycopy(data, 0, nd, 0, size);

data = nd;

}

System.arraycopy(array, 0, data, size, len);

this.size = newSize;

}

}

(c) Simplified implementation of FastArray.

class Gen {

FastArray r;

...

public Object[] toArray(Object[] arr) {

FastArray fastarr = new FastArray(arr);

fastarr.size = 0;

try {

fastarr.set(r.size(), null);

} catch(Exception e) { }

fastarr.addAll(r.getArray(), r.size());

return fastarr.getArray();

}

}

(d) Synthesized replacement class

Fig. 3. ArrayList class from JDK and FastArray class from Groovy.
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2.2 Synthesizing Implementations

The utility class ArrayList from JDK [JDK 2019] offers a resizable array implementation, which

can be used to store and retrieve objects. Other libraries also offer custom implementations of

ArrayList that are fine-tuned for specific requirements. FastArray is an example of such an

implementation offered by Groovy [Groovy 2019] that provides a subset of the APIs offered by the

ArrayList class. Therefore, invocations to ArrayList can not be trivially replaced by invocations

to FastArray using a one-to-one API replacement.

To explain the nuances of the problem, we examine the implementation of toArray in

ArrayList. Figure 3(a) presents the implementation of toArray, which receives an array arr as

a parameter. If the input array is greater than the size of the array in the receiver, the toArray

method performs a shallow copy of the objects stored in the receiver into arr and returns arr to

the client. Otherwise, the API allocates a new array of length stored in the field size and copies

the objects into the newly allocated array before returning it to the client. We observe that after

the array is returned to the client from the method, modifying the returned array has no impact

on the array in the receiver instance and vice versa.

We now consider the problem of replacing ArrayListwith FastArray. Even though FastArray

is designed to store and retrieve objects, it does not implement a method that is equivalent to

toArray. Figure 3(c) presents the implementation of getArray defined in FastArraywhich may

appear to be a good candidate (based on naming) to replace toArray. Unfortunately, this replace-

ment will be incorrect as this method simply returns a reference to field data, a private field main-

tained by the object. The client can modify the object state by updating the returned array leading

to non-equivalent behavior.

The implementation of toArray can be synthesized using a carefully selected sequence of

method invocations in FastArray as shown in Figure 3(d). Initially, a new FastArray instance

fastarr is created by invoking the constructor, given in Figure 3(b), and passing arr as input

parameter. The data field of the newly allocated instance fastarr now holds a reference to the

input array arr. The constructor also initializes the size field to the length of arr. After creating

fastarr, the size field of fastarr is reset to zero indicating there are not valid entries stored by

fastarr.

Next, the setmethod is invoked to insert a null value. This is critical as it mimics the behavior

of the second if branch in the original toArray method, which sets the last index of its corre-

sponding array (elements field) to null. This invocation is surrounded by a try-catch block

to catch the ArrayIndexOutofBoundException that may be thrown by this invocation. If an ex-

ception is thrown by this invocation, then the synthesized method will simulate the else branch

from the original code thus ensuring equivalence. Next, addAll method is invoked to copy the

data from r.data to fastarr.data. This operation will be successful if the array referenced by

fastarr.data is large enough to store all the entries in r.data. Otherwise, the method will allo-

cate a larger array to fastarr.data field and copy the data into it. This will leave the input array

arr unmodified. Finally, the field fastarr.data is returned to the caller using getArraymethod.

By breaking the alias between input arr and fastarr.data, the addAll method invocation

correctly captures the execution of the first if branch in the original method. Where, the original

toArray implementation ignores the input array arr when it has insufficient space and instead

allocates a new array to copy the data stored in the ArrayList instance. Thus the behavior of the

synthesized implementation of toArray is equivalent to the original implementation of toArray,

under all contexts. This also ensures that all relevant objects are driven to an identical state as the

original toArray implementation in ArrayList. Our system is able to automatically synthesize

this implementation.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 52. Publication date: January 2020.
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3 PROBLEM FORMULATION

For a core object-oriented language, we formally describe the problem we address in this paper.

The language has two kinds of values:

v ∈ Value = Int ∪ Addr

n ∈ Int

a ∈ Addr

where Int is a set of integers and Addr is an address space of objects in a memory. An environ-

ment ρ ∈ Env is a finite mapping from variables to values:

ρ ∈ Env = Var
fin
→ Value

A memory µ receives an address of an object and its field name as its arguments, and returns a

value stored in the object’s field:

µ ∈ Mem = Addr→ Field
fin
→ Value

f ∈ Field

We assume two functions class ∈ (Mem × Addr) → Class, which returns the class of an object at

a given address, and fields ∈ Class → P(Field), which returns a set of fields of a class. A system

state s = 〈ρ, µ〉 ∈ State consists of the current environment ρ and memory µ:

s ∈ State = Env ×Mem

Value Equivalence.A valuev1 in a memory µ1 is (deeply) equivalent to a valuev2 in a memory µ2
if and only if

• v1 and v2 are the same integer value, or

• v1 andv2 are the addresses of two instances of the same class and the values of each of their

fields are (deeply) equivalent:

〈v1,v2〉 ∈ equivµ1,µ2 ≡




v1 = v2 if v1,v2 ∈ Int

∀f ∈ fields(C) : 〈µ1(v1, f ), µ2(v2, f )〉 ∈ equivµ1,µ2
if class(µ1,v1) = class(µ2,v2) = C

State Equivalence.We now define equivalence between any two system states. We say two sys-

tem states s1, s2 are equivalent, if the two states define the same set of variables and every variable

in s1 is equivalent to its mirror image in s2. In addition, the two states maintain an identical aliasing

relation between the variables and their field dereferences. Before we formally define equivalence,

we define the alias function here:

alias ∈ Mem × (Var ×
−−−→
Field) × (Var ×

−−−→
Field) → Bool

The alias function receives the systemmemory, two variables and their corresponding field deref-

erences as input. The function evaluates both the field dereferences under the memory and yields

the corresponding memory addresses. If both the field dereferences yield the same address, then

the function returns true; otherwise it returns false. We now formally define equivalence be-

tween system states.

Any two given states s1 = 〈ρ1, µ1〉, s2 = 〈ρ2, µ2〉 are equivalent (represented by s1 ≡ s2) if the

states satisfy:

S.1 Domain(ρ1) = Domain(ρ2) ∧ ∀r ∈ Domain(ρ1) : 〈ρ1(r ), ρ2(r )〉 ∈ equivµ1,µ2 .

S.2 ∀r1, r2 ∈ Domain(ρ1) ∀
−→
d1,
−→
d2 ∈

−−−→
Field : (aliasµ1(r1,

−→
d1, r2,

−→
d2) ⇔ aliasµ2(r1,

−→
d1, r2,

−→
d2))
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Fig. 4. System state equivalence: The states s1 and s2 are not equivalent (s1 . s2) and the states s2 and s3
are equivalent (s2 ≡ s3)

We illustrate verifying equivalence between system states using Figure 4. The figure depicts

three system states s1, s2 and s3. All three states define the same set of variables x,y and z, i.e.,

Domain(ρ1) = Domain(ρ2) = Domain(ρ3). The variable x holds a reference to an object of type A

and variables y, z hold references to objects of type B under all three states. Class A defines three

fields: a1,a2 and a3. Field a1 stores an integer value and fields a2,a3 hold reference to objects of

type B. Class B defines two primitive fields: b1 and b2.

The system states s1 and s2 satisfy check S.1, as the values stored by all three variables are

equivalent under s1 and s2. For instance, for variable x this check translates to ensuring field deref-

erences x.a1, x.a2.b1, x.a2.b2, x.a3.b1, x.a3.b2 all store the same integer value under both

states. However, the states s1 and s2 do not satisfy check S.2, as y and z alias in s2 but do not alias

in s1. Similarly, the pairs (x.a2,z) and (x.a3,y) alias only in s2. Therefore the two states are not

equivalent. On the other hand, the states s2 and s3 are equivalent as they satisfy both checks. In

this case, all field dereferences of x,y and z yield the same value. In addition to this, the states

maintain identical aliasing relations among all variables and their field dereferences.

Inter-Class Equivalence σo,r. Given two classes O and R, an inter-class equivalence σo,r ∈

(Addr×Mem) × (Addr×Mem) → Bool is a function that determines whether an object of class O

at an address can be considered to be equivalent to an object of class R at some other address,

although they belong to different classes. If two values are equivalent up to an inter-class equiv-

alence function σo,r, they are called σo,r-equivalent. More formally, a value v1 in a memory µ1 is

σo,r-equivalent to a value v2 in a memory µ2 if and only if

• v1 and v2 are value equivalent, or

• the objects at the addresses v1 and v2 are of type O and R, respectively, and σo,r(v1,v2) is

true.

〈v1,v2〉 ∈ σo,r-equivµ1,µ2 ≡

〈v1,v2〉 ∈ equivµ1,µ2 ∨ (class(µ1,v1) = O ∧ class(µ2,v2) = R ∧ σo,r(v1, µ1,v2, µ2))

We also overload the definition of σo,r as σo,r ∈
−−−→
Field → P(

−−−→
Field). This function maps a

valid field dereference of class O to set of valid field dereference of class R. For example, if

σo,r(
−→
d ) = {

−→
d1 . . .

−→
dn}, then the original σo,r function has a check that asserts the field dereference

−→
d of class O instances is equated with the field dereferences

−→
d1 . . .

−→
dn of R instances.

State Equivalence under σo,r [so ≡σo,r
sr]. Given the notion of inter-class equivalence σo,r, we

can extend the definition of system state equivalence for system states so and sr. We formally

define equivalence for two states so, sr, where so can contain instances of class O but cannot

contain instances of R and sr can contain instances of class R but not instances of class O.
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Let so = 〈ρo, µo〉, sr = 〈ρr, µr〉 be two system states where, ∀vo ∈ Range(µo), class(µo,vo) , R

and ∀vr ∈ Range(µr), class(µr,vr ) , O. The two states so, sr are equivalent under an inter-class

equivalence predicate σo,r (i.e., so ≡σo,r
sr), if they satisfy

IS.1 Domain(ρo) = Domain(ρr) ∧ ∀r ∈ Domain(ρo) : 〈ρo(r ), ρR(r )〉 ∈ σo,r-equivµo,µr .

IS.2 ∀r1, r2 ∈ Domain(ρo) one of the following is true:

(a) class(µo, ρo(r1)) , O ∧ class(µo, ρo(r2)) , O ∧ ∀
−→
d1,
−→
d2 ∈
−−−→
Field :

aliasµo(r1,
−→
d1, r2,

−→
d2) ⇔ aliasµr(r1,
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(b) class(µo, ρo(r1))=O ∧ class(µo, ρo(r2)) , O ∧ ∀
−→
d1,
−→
d2 ∈
−−−→
Field.∀

−→
di ∈ σo,r(
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−→
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−→
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d2) ⇔ aliasµr(r1,
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Fig. 5. System state equivalence under σo,r : If the equivalence predicate for the two classesO, R is such that,

field o2 in class O is mapped to field r3 (i.e., σo,r(o2) = {r3}) and the predicate checks the following: σo,r(o1)

= r1 +r2. Then under the predicate σo,r the states so and sr are equivalent (i.e., so ≡σo,r
sr).

We explain the working of the above checks using Figure 5. The figure presents two system

states so and sr. The state so contains instances of classesO,A, and B, whereas the state sr contains

instances of classes R, A, and B. The structure of classes A and B are the same as shown in Figure 4.

The class O defines two fields: o1 and o2. Field o1 is primitive and it stores an integer value and

field o2 is a reference field of type A. The class R defines three fields: r1,r2 and r3. Fields r1,r2

are primitive and field r3 holds a reference to an object of type A. Let σo,r be defined as follows:

σo,r(v1, µ1,v2, µ2) ≡ 〈µ1(v1, o2), µ2(v2, r3)〉 ∈ equivµ1,µ2
∧
〈µ1(v1, o1), µ2(v2, r1) + µ2(v2, r2)〉 ∈

equivµ1,µ2 . The two states define the same set of variables: w,x,y,z.

We now elaborate on how all the variables w,x,y,z in states so and sr are equivalent under

σo,r and satisfy the check IS.1. For variables x and z, the value equivalence is verified by check-

ing 〈ρo(x), ρr(x)〉 ∈ equivµo,µr and 〈ρo(z), ρr(z)〉 ∈ equivµo,µr respectively. For variable x, this

check boils down to verifying whether field dereferences x.a1, x.a2.b1, x.a2.b2, x.a3.b1 and

x.a3.b2 yield the same integer value under both states. Similarly, for variable z, this ensures deref-

erences z.b1 and z.b2 yield the same integer values under both states. For variables w and y, the

value equivalence is verified by checking σo,r(ρo(w), µo, ρr(w), µr) and σo,r(ρo(y), µo, ρr(y), µr) re-

spectively. In other words, for variable w, this check ensures that value at w.o1 in state so is equal

to w.r1 + w.r2 in state sr and that the object at x.o2 in so is value equivalent to object at x.r3 in

sr.
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The two states are also equivalent under σo,r as they satisfy check IS.2. We elaborate using three

different pairs where each pair corresponds to a different check.

• pair (x,z) under check IS.2(a): We consider all valid references reachable from x and z that

may alias. For x, the references that are considered are {x, x.a2, x.a3}. For z, it is {z}. We

check whether all reference pairs, (x,z), (x.a2, z) and (x.a3, z), either alias (or not) under

both states. The pairs (x.a2, z) and (x.a3, zr4) alias whereas the pair (x, z) do not alias

under both the states. Hence, the pair satisfies the check.

• pair (w,x) under check IS.2(b): Since there are many reference pairs that are feasible here, we

explain using one reference pair (w.o2, x) under so. We identify the corresponding reference

pair under sr using σo,r. This yields the reference pair (w.r3,x). Since w.o2 and x alias under

so, and x.r3 and x alias under sr, the pair satisfies the check. Similarly, other references pairs

that are derived for (w,x) satisfy the check.

• pair (w,y) under check IS.2(c): We explain using one reference pair (w.o2.a2, y.a3) obtained

under state so. The corresponding pair under sr is (w.r3.a2, y.r3.a3) obtained using σo,r.

The references w.o2.a2 and y.r3.a3 alias under so and references w.r3.a2 and y.r3.a3

alias under sr, thereby, satisfying the check. Similarly, all other reference pairs that are de-

rived from (w,y) satisfy the check.

Since the system states so and sr satisfy the checks IS.1 and IS.2 under the given σo,r, the two

states are equivalent under σo,r.

Goal. Given two different classes O and R, the goal of this work is to synthesize a new class G that

contains a replacement methodmg for every methodmo of class O, such that everymg provides

an identical behavior as the corresponding methodmo, using the methods of class R only.

We realize this goal by synthesizing 1) a replacement class G that contains a reference to an in-

stance of class R as its only field and 2) an inter-class equivalence predicate σo,g (and, consequently,

σo,r) that will be used to ensure the equivalence of the replacement classGwith the original classO

as follows:

For all methods mo in O, there exists a method mg in G such that, if so = 〈ρo, µo〉

and sg = 〈ρg, µg〉 are equivalent states under σo,g (i.e., so ≡σo,gsg) and if executing

a statement r = mo(x1 . . . xn) under so yields a state s′o = 〈ρ
′
o, µ
′
o〉 and executing

r =mg(x1 . . . xn) under sg yields a state s
′
g = 〈ρ

′
g, µ
′
g〉, then

• 〈ρ ′O(r ), ρ
′
G(r )〉 ∈ σo,g-equivµ ′o,µ ′g . The values returned by the invocations (if any) are

equivalent under σo,g.

• s′o ≡σo,gs
′
g. The final states of the system are equivalent under σo,g.

In other words, if we execute a method mo and mg under two states so and sg that are equiva-

lent under σo,g, then the methods mo and mg return equivalent values to the user and drive the

states so and sg to equivalent states. Since this guarantee exists for every pair ofmo and mg, re-

placing class O with class G is correct under every context.

4 DESIGN

We present the design of a tool, Mask, that achieves the goal described in the previous section.

Algorithm 1 presents the overall working of Mask. The algorithm receives classes O, R and any

known class invariants of O, R as input. If class invariants are not available, then Mask assumes

a default true value for the class invariants. The algorithm symbolically analyzes classes O and

R and constructs sets Eo,Er populated with symbolic expressions built using field dereferences of

classes O, R respectively. This is carried out by invoking the symbolic-summary procedure at line
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Algorithm 1 Mask main algorithm

Require:

O← Original class; R← Replacement class

Io ← Original class invariant; Ir ← Replacement class invariant ⊲ Optional input

1: 〈Eo, Er〉 ← symbolic-summary(O, R)

2: ΣO, R ← candidate-generator(Eo, Er , Io , Ir )

3: Gs ← �;

4: for everymo ∈ O do ⊲ Generate sketch of class G

5: Gs ← Gs ⊕ generate-sketch(mo,R,k)

6: end for

7: for every σo,r ∈ ΣO, R do

8: harness← �

9: for everymo ∈ O do ⊲ Generate checks for all methods in G

10: mд ← signature(mo, G) ⊲ Signature of corresponding method in G

11: harness← harness ∪ generate-harness(mo,mд,σo,r)

12: end for

13: G← sketch-solver(Gs, harness) ⊲ Resolve sketch using class-harness

14: if G , ⊥ then return G;

15: end if

16: end for

17: return ⊥

1. Next, the algorithm invokes the candidate-generator procedure, which receives the expres-

sions in sets Eo,Er and the class invariants Io,Ic as input. Leveraging the input expressions, the

candidate-generator constructs a set of possible inter-class equivalence predicates ΣO,R. Every

predicate in set ΣO,R is satisfiable and relates every instance of class O to at least one instance of

class R.

Once the candidate set of interclass equivalence definitions are constructed, the algorithm at-

tempts to synthesize the required adapter classG. The algorithm begins the synthesis by construct-

ing an overall sketchGs of classG (lines 4-6). It adds amethod sketch toGs for every public method

mo in classO using procedure generate-sketch. The adapter method sketch is later resolved into

a unique method invocation sequence to class R, which is at most k long, where k is specified by

the user.

After creating the sketch Gs for class G, Mask creates the necessary harness to resolve it. The

algorithm iterates over the set ΣO,R returned by candidate-generator procedure and generates

a harness to resolve Gs in each iteration (line 7-16). The harness constructed in each iteration

leverages a different interclass equivalence σo,r in set ΣO,R. The harness for every methodmд that

must be synthesized for class G is constructed using generate-harnessprocedure and it encodes

the correctness check for the specific method (line 11). After the harness is created for all methods

in Gs , theMask invokes the sketch-solver (line 13). If the sketch-solver is able to resolve the

adapter class sketchGs by satisfying the harness, it produces a completed adapter classG as output.

The constructed class is then returned to the user at line 14. Otherwise, the algorithm attempts

to instantiate the Gs using another harness in the next iteration. This is carried out until all the

interclass equivalence predicates are considered for synthesis or the required class G is found. We

now elaborate each of the above steps in detail.
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public Original () {

}

x = 0; y = 0; count = 0;

public void set(int v1, int v2) {

}

x = v1; y = v2; count++;

public void moveX(int val) {

}

x = x + val; count++;

}

public void moveY(int val) {

y = y + val; count++;

public void scale(int val) {

}

    moveX(val); moveY(val);

count++;

public Replacement () {

}

a = 0; b = 0;

if (flag) return a;

return b;
}

public int getValue(boolean flag) {

if (flag) a = a + val;

else b = b + val;
}

public void add(boolean flag, int val) {

public int subtract(boolean flag, int val) {

if (flag) { a = a − val; return a;}

else { b = b − val; return b; }

}

}

a = 0; b = 0;

public void reset() {

public class Replacement {

(b)

}

int a, b;

public Generated () {

r = new Replacement();

}

public void moveX(int val) {

}
r.add(true, val); r.add(false, val);

public int diff() { return r.getValue(false);}

public int sum() { return r.getValue(true);}

public void moveY(int val) {

}
r.add(true, val); r.subtract(false, val);

public void scale(int val) {

}
r.add(true, val); r.add(true, val);

public void set(int v1, int v2) {

r.reset(); r.add(true, v1);

r.add(true, v2); r.add(false, v1);

r.subtract(false, v2);
}

public class Generated {

Replacement r;

}
(c)

 

}

public class Original {

int x, y, count;

public int sum() {return x+y;}

public int diff() {return x−y;}

(a)

Fig. 6. Running example.

4.1 Illustrative Example

For clarity, we illustrate the working of our approach with the help of a simple running example,

that will be used to explain the various aspects of our approach throughout this section.

Figure 6(a) presents a simple class Original which needs to be replaced with another class

Replacement given in Figure 6(b). The classes differ from each other across multiple dimensions:

• Original contains three private fields x, y, and count, while Replacement declares two

fields, a and b.

• Original provides 6 public APIs as compared to the 4 APIs present in Replacement.

• The APIs have distinct signatures with respect to the number of parameters, the types of the

parameters, etc.

Given the two classes,Mask can generate a replacement class Generatedas shown in Figure 6(c)

where the interfaces of Original are implemented using the Replacement class. Each method in

Generated performs a sequence of invocations to Replacement.

4.2 Symbolic Summary Generation

As a first step,Mask explores the two input classes using symbolic execution. The analysis builds

the set of symbolic expressions returned by invoking various public methods defined by the class.

This set will be later used to build the required σo,r checks for input classes O, R.

Algorithm 2 presents the generation of symbolic summaries where classes O and R form the

input. The procedure iterates over all public methods, that have a non-void return type, defined

in the class O (lines 3-7). For a given method, the procedure assigns fresh a symbolic variable to

each parameter (line 4). If a parameter is of reference type, it assigns a unique symbol to every
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Algorithm 2 The symbolic-summary procedure

1: procedure symbolic-summary(O, R)

2: Eo ← ∅; Er ← ∅

3: for methodmi ∈ O do ⊲ skip methods that have a void return type

4: P← parameters(mi); S← create-symbols(P)

5: Ei ← symbolic-explore(mi,S)

6: Eo ← Eo ∪ filter(Ei,O)

7: end for

8: for methodmi ∈ R do ⊲ skip methods that have a void return type

9: P← parameters(mi); S← create-symbols(P)

10: Ei ← symbolic-explore(mi,S)

11: Er ← Er ∪ filter(Ei,R)

12: end for

13: Eo ← Eo ∪ field-dereferences(O) ⊲ Additional expression for stronger predicates

14: Er ← Er ∪ field-dereferences(R)

15: return 〈 Eo , Er 〉

16: end procedure

field dereference of the parameter. This is carried out to precisely track the data flow from object

fields to the return values.

The method is then executed symbolically using the generated symbolic parameters. The sym-

bolic execution is inter-procedural and explores all paths in the method. If a path returns a value

to the caller, the symbolic expression associated with the return value is added to the set Ei , at line

5. Next, the procedure filters the set of expressions contained in the set Ei at line 6. The filter

function retains symbolic expressions in Ei that are purely constructed using symbolic variables

initially assigned to field dereferences of objects of type O. This is to enable Mask to use these

symbolic expressions to build candidate σo,r checks. More specifically, we require the evaluation

σo,r(vo , µo , vr , µr ) check to only depend on the state of object of type O at vo and object of type R

at vr , and not contain additional free variables. The same process is repeated for class R to build

the corresponding set Er (lines 8-12).

The procedure next explores classes O and R to derive the set of valid field dereferences which

are then added to the sets Eo and Er respectively. This is carried out to widen the space of candidate

σo,r predicates considered byMask. For some classes, predicates that only leverage symbolic return

expressions may not be strong enough and in such cases these additional predicates may become

essential for synthesizing the required G.

For the running example given in Figure 6, Original defines two public methods that return a

value to its caller – sum and diff. These methods are symbolically explored by symbolic-summary

procedure. Both methods are invoked on an instance of the class Original and receive no addi-

tional parameters. The procedure assigns symbolic variables to field dereference of the receiver

objects and assigns the symbols xs , ys and counts for the fields x, y and count respectively. The

method sum returns xs+ys and diff returns xs-ys symbolic expressions. Since, the symbolic ex-

pressions are composed only of symbolic variables drawn from the fields in Original, they remain

intact and are not removed by the filtermethod at line 5 resulting in Eo = { xs+ys , xs-ys }. Sym-

bolic expressions are not generated for the remaining methods in Original as they do not return

a value to the client.

Next, the procedure explores the two public methods that have a non-void return type, getValue

and subtract, in the class Replacement.The procedure creates the symbols as,bs,flags and vals
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corresponding to object fields a,b of receiver object and input parameters flag and val of method

subtract. After symbolically executing subtract, two symbolic expressions that are returned are

identified: as-vals and bs-vals . However, both the expressions are filtered out by filtermethod

at line 11. This is because the expressions contain a free variable vals which cannot be used in a

candidate check. Then, the procedure symbolically analyses getValuemethod which results in Er

= { as , bs }. Subsequently, the procedure adds field dereferences xs,ys and counts to Eo . When the

procedure concludes, Eo = {xs+ys , xs-ys , xs,ys , counts } and Er = {as , bs }.

4.3 Equivalence Candidate Generator

We now describe the candidate generator which builds the set of σo,r candidates.

4.3.1 Generating Possible Inter-class Equivalence Predicates. In the previous stage, Mask con-

structed sets Eo and Er that contain expressions built with field dereferences of classes O and

R. Using these expressions, the candidate generator synthesizes the required inter-class equiva-

lence predicate by establishing a relation between the field dereferences of classes O and R. This

is carried out by equating expressions in set Eo with expressions in set Er .

While building these predicates, higher importance is given to expressions in Eo that are added

by the symbolic execution of public methods. As these expressions are returned to the client appli-

cation, the synthesized adapter class Gmust be able to return equivalent expressions to the client.

Therefore, we require that each such expression in Eo is equivalent to at-least one expression in

set Er . We define function return to extract these expressions.

We attempt to construct a relation η ⊆ Eo×Er , where ∀eo ∈ return(Eo) .∃er ∈ Er s.t. (eo , er ) ∈ η.

Every such relation can be regarded as a potential σo,r:

σo,r ≡
∧

(eo,er )∈η

(eo = er )

However, all possible relations need not be meaningful. For instance, a relation that pairs two

expressions of different types will not produce a useful equivalence predicate σo,r. Therefore, we

choose only those mappings that are type compatible as potential candidates. Further, we must

only consider those predicates that offer a valid mapping for every object of class O. We now

discuss these criterion in detail.

4.3.2 Eliminating Invalid Predicates. Intuitively, we want every object instance of type O to be

represented (and eventually replaced) by some object instance of class R. If such an objectmapping

is not possible, then O can not be replaced by R as it can not offer equivalent functionality under

all contexts. Any σo,r predicate that we consider must ensure that this requirement is met. In this

subsection, we elaborate on how Mask identifies such valid σo,r predicates.

We use class invariants to identify all possible object instances of a given class. We define a class

invariant checker, Ic , that returns true, if and only if, an input value is an instance of type C and

satisfies the class invariant.

Ic ∈ Inv = Value ×Mem→ Bool

An inter-class equivalence predicateσo,r for any two classesO, R is considered valid, if it satisfies

the following check given IO and IR:

∀〈vo, µo〉 ∈ Value ×Mem. ∃〈vr , µr 〉 ∈ Value ×Mem.

IO(vo, µo) = false ∨ (IR(vr , µr ) = true ∧ σo,r(vo, µo,vr , µr ) = true)

In other words, if we can find an instance of class O which causes the σo,r check to be unsat-

isfiable, then σo,r is invalid. We define a function CheckValid that performs this validity check,
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given a candidate predicate and two class invariant checkers. If the candidate fails the check, the

function returns false and returns true otherwise.

CheckValid = Σ × Inv × Inv→Bool

Algorithm 3 presents the working of the CheckValid function which is used to eliminate the

invalid σo,r candidates. It takes as input a σo,r predicate and class invariant checkers, Io and Ir ,

in the form of constraints. The implementation of the procedure uses the minimal satisfiability

theory [Dillig et al. 2012].

Algorithm 3 The CheckValid procedure

1: procedure CheckValid(σo,r, Io , Ir )

2: Do ← field-dereferences(O); Dr ← field-dereferences(R)

3: limit← |Do | + 1; cost← empty-map

4: for eo ∈ Do do cost[eo]← 1 end for ⊲ Assign suitable cost for O and R dereferences

5: for er ∈ Dr do cost[er ]← limit end for

6: mincost← MSA-cost(Io ∧ ¬(σo,r ∧ Ir ), mincost) ⊲Minimal cost for satisfying constraint.

7: if mincost < limit then return false ⊲ Found an O instance without a valid mapping

8: else return true

9: end if

10: end procedure

A minimal satisfying assignment (MSA) is defined for a input constraint α under a cost function

C , whereC specifies the cost of every free variable in α . A satisfying assignment is a value mapping

for a set of variables in α , such that α is satisfied. The cost of the assignment is the sum of the costs

associated with every variable that is assigned a value. Then, the minimal satisfying assignment

is a satisfying assignment that incurs the minimal cost.

The CheckValid procedure begins by building sets Do and Dr that contain all field dereferences

of classes O and R respectively (line 2). The idea is to only assign values to variables in set Do such

that Io∧¬(σo,r ∧ Ir ) is satisfied. To do this, we create a unique cost function for variables in Do and

Dr . Each variable in Do is assigned cost 1 and each variable in Dr is assigned cost |Do |+1. Therefore,

the cost of assigning a value to a variable in Dr is higher than the total cost of assigning values

to all variables in Do . Subsequently, CheckValid computes the MSA cost of constraint Io∧¬(σo,r ∧

Ir ). If the cost is less than |Do | + 1, then only variables in Do are assigned values. With this value

assignment, we now have an instance of class O that has no mapping in σo,r, making it an invalid

candidate. If the cost is higher, the solver had to assign values to variables in Dr . This means that

there is no object instance of O without a mapping under σo,r, making it a valid candidate.

4.3.3 Candidate Generator Procedure. We now present candidate-geneartor procedure that

generates possible σo,r candidates in Algorithm 4. The procedure receives the sets of symbolic

expressions, Eo and Er , as input. It returns a valid set of σo,r candidates that appropriately map

expressions in Eo with those in Er . The procedure is recursive and it employs divide and conquer

strategy to build the candidate predicates, where simpler predicates are built before building more

complex ones.

The procedure begins by initializing an empty set of predicates at line 2. If Eo contains only a

single expression eo , then the procedure executes the base case between lines 3-9. The procedure

iterates over every expression er ∈ Er that is of the same type as eo . For every such expression er ,

the procedure creates a simple constraint that maps expression eo to er (i.e., eo = er ). The validity
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Algorithm 4 The candidate-generator procedure

1: procedure candidate-generator(Eo, Er )

2: Σ← � ⊲ Initialize σo,r candidate set

3: if |Eo | = 1 then eo ← element(Eo)

4: for every er ∈ type(Er,eo) do ⊲ er and eo are of compatible types

5: if CheckValid((eo = er ), Io, Ir ) then Σ← Σ ∪ {(eo = er )}

6: end if

7: end for

8: return Σ;

9: end if

10: (Ei,Ej )← divide-set(Eo) ⊲ Split the expressions

11: Σi ← candidate-generator(Ei, Er); ⊲ Generate partial σo,r
12: Σj ← candidate-generator(Ej, Er)

13: for every (σi , σj ) ∈ Σi × Σj do

14: if CheckValid(σi ∧ σj , Io, Ir ) then Σ← Σ ∪ {σi ∧ σj } end if

15: end for

16: if return(Eo)∩ Ei = � then Σ← Σ ∪ Σj end if

17: if return(Eo)∩ Ej = � then Σ← Σ ∪ Σi end if

18: return Σ

19: end procedure

of the newly built predicate (eo = er ) is checked by the CheckValid procedure at line 5. All valid

predicates are added to Σ at line 5. The base case terminates by returning the populated Σ.

If the size of Eo is more than one, then the candidate-generatorprocedure builds the candidate

predicates recursively using a divide and conquer strategy (lines 10-18). It divides the set Eo into

Ei and Ej at line 10 and invokes the procedure on these divided sets (lines 11-12). The candidate

predicates built by these recursive invocations are captured in Σi and Σj respectively.

Using the predicates in Σi and Σj , the procedure builds stronger predicates that map expressions

in set Eo with those in Er by considering all pairs of predicates (σi ,σj ), where σi ∈ Σi and σj ∈ Σj .

The validity of σi ∧ σj is checked using CheckValid procedure. If it is valid, then σi ∧ σj is added

to Σ. After evaluating all pairs, the procedure checks if the predicates in Σi and Σj can be added

to Σ.

Recall that we require every symbolic expression returned by a method inO be mapped to some

expression in Er . Therefore, the predicates in set Σj can be added to Σ provided the set Ei does not

contain any symbolic expression returned by method of class O (line 16). Similarly, predicates in

set Σi are added (line 17).

We now explain the candidate-generatorprocedure using the running example. Initially, the

procedure is invoked with sets Eo = {xs + ys, xs − ys, xs, ys, counts} and Er = {as, bs} as input.

As there are no class invariants for this example, the constraints Io and Ir are true. Since the set

Eo contains more than one entry, the procedure builds the predicates recursively.

Table 1 presents the details for all recursive calls with Eo as input, where each row presents the

data corresponding to an invocation. The details pertaining to the first invocation of the procedure

is presented in the last row. The procedure makes a recursive invocations with Ei = {xs+ys,xs-ys }

and Ej ={xs,ys,counts} as inputs respectively. The invocations return predicate sets Σ6={σ1 ∧ σ4,

σ2 ∧σ3} and Σ8 = {σ5∧σ10, σ6 ∧σ9, . . . }. The definitions of the constructed predicates σ1 . . . σ10 are

shown in Table 1 and are self-explanatory.
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Table 1. The first column presents the recursive depth of the candidate-generator instance processing the

input Eo which is shown in the second column. The third column indicates the Σi and Σj sets constructed by

the recursive calls. The fourth column presents the Σ built by this invocation and the fi�h column presents

the number of candidates that are found to be invalid by this invocation.

D Eo Σi , Σj Constructed Σ |Invalid|

4 {xs+ys } [2] Σ1 = {σ1:xs+ys=as ,σ2:xs+ys=bs } 0

4 {xs-ys } [2] Σ2 = {σ3:xs-ys=as ,σ4:xs-ys=bs } 0

4 {xs } � [2] Σ3 = {σ5:xs=as ,σ6:xs=bs } 0

4 {ys } [2] Σ4 = {σ7:ys=as ,σ8:ys=bs } 0

3 {counts } [2] Σ5 = {σ9:counts=as ,σ10:counts=bs } 0

3 {xs,ys } Σ3, Σ4 [6] Σ7 = Σ3 ∪ Σ4∪ {σ5 ∧ σ8,σ6 ∧ σ7} 2

2 {xs+ys ,xs-ys } Σ1, Σ2 [2] Σ6 = {σ1 ∧ σ4,σ2 ∧ σ3} 6

2 {xs,ys,counts } Σ5, Σ7 [12] Σ8 = Σ7 ∪ Σ5∪ {σ5 ∧ σ10,σ6 ∧ σ9, 8

σ7 ∧ σ10,σ8 ∧ σ9}

1 {xs+ys,xs-ys Σ6, Σ8 [2] Σ9 = Σ6 36

xs,ys,counts}

For every pair of predicates (σi ,σj ), where σi ∈ Σ6 and σj ∈ Σ8, the procedure checks

whether σi ∧ σj is valid. Let us consider one such case, where σi : xs+ys=as∧xs-ys=bs and σj :

xs=as∧counts=bs . The conjunction of these predicates is input to the CheckValid procedure to

check its validity which reports the predicate as invalid. This is because when xs=5 and ys=5,

σi ∧ σj is unsatisfiable. Similarly, CheckValid evaluates every such σi ∧ σj as invalid. Next the

procedure checks if set return(Eo)∩E1 is empty. Since the expressions xs+ys,xs-ys in set E1 are

returned by methods in class Original, the resulting set is non empty. Hence, candidates in Σ8 are

discarded. However, the check to add elements in Σ6 succeeds and therefore the procedure returns

predicates xs+ys=as∧xs-ys=bs,xs+ys=bs∧xs-ys=as }.

4.4 Sketch Generator

In this section, we describe the working of the sketch generator. It receives the two classes O and

R, a maximum sequence length k and the set Σ returned by the candidate-generator as input.

It constructs an overall sketch of the adapter class and a class harness to resolve it. The sketch

for class G is a set of smaller sketches corresponding to its methods – { sketch1 . . . sketchn}. For

every sketchm , there exists a unique method harness in the class harness and the method sketch

can be independently resolved by the Sketch solver [Solar-Lezama 2008] using its harness. We

now explain the process of generating a method sketch and the corresponding method harness.

4.4.1 Generating a Sketch. A sketch sketchm is constructed to replace every methodm ∈ O using

the generate-sketch procedure presented in Algorithm 5. The procedure receives the method

m and the replacement class R as input. It iterates over every formal parameter defined by m

and identifies the corresponding parameter type to be input to the sketched method (line 3-8). If

methodm receives a parameter of type O, then the sketched method will receive a parameter of

typeG. Otherwise, it receives a parameter of the same type. Using the established parameter types

to the sketched method and the input methodm, the procedure creates the method signature and

adds it to sketchm at line 8.

Next, the procedure creates a sketch for the method body. It constructs a sketch that allows at-

most kmethod invocations to class R (line 9-14). This is done iteratively and each iteration adds a

choice to select at-most onemethod in R to invoke. Each iteration identifies the set ofmethods from
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Algorithm 5 The generate-sketch procedure

1: procedure generate-sketch(m, R, k)

2: parameters← �; sketchm ← �

3: for every 〈ti ,pi 〉 ∈ formal-parameters(m) do ⊲ ti is the type of parameter pi
4: if ti = O then parameters← parameters∪ {〈G,pi 〉}

5: else parameters← parameters∪ {〈ti ,pi 〉}

6: end if

7: end for

8: sketchm ← signature(m, parameters)

9: while |sketchm | < k do ⊲ k is set by the user

10: Mi ← enabled-methods(R, parameters)

11: sketchm ← sketchm ⊕ create-choice(Mi, parameters)

12: parameters← parameters∪ new-values(Mi )

13: end while

14: sketchm ← sketchm ⊕ ret-choice(parameters,m)

15: return sketchm

16: end procedure

R that can be invoked using only the input parameters to the sketched method and the values that

maybe returned by the previous invocations using function enabled-methods (line 10). Using this

set of methods and all the currently available values (stored in parameters), the procedure creates

a new choice and adds it to sketchm at line 11. Subsequently, the set parameters is updated with

any values that may be returned by the newly added choice. After adding k choices, the procedure

adds a final choice to return a suitable value to the caller, provided the original method m also

returns a value.

public void scale(int val) {

int choice1=??; int choice2=??;

int v1=??, ret1=0;

if(choice1 == 1) r.getValue({|true,false|});

else if(choice1 == 2) r.add({|true,false|}, {|val,v1|});

else if(choice1 == 3) ret1 = r.subtract({|true,false|}, {|val,v1|});

else if(choice1 == 4) r.reset();

else do_nothing

int v2 =??; int ret2 = 0;

if(choice2 == 1) r.getValue({|true,false|});

else if(choice2 == 2) r.add({|true,false|}, {|val,v2,r1|});

else if(choice2 == 3) ret2 = r.subtract({|true,false|}, {|val,v2,ret1|});

else if(choice2 == 4) r.reset();

else do_nothing

return;

}

Fig. 7. The generated sketch for method scale

We illustrate the construction of a sketched method for the running example given in Figure 6.

Let us consider generating a sketch for method scale with k set to 2. The final sketched method
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is shown in Figure 7. Here, choice1 and choice2 are free variables that are to be resolved by

the Sketch solver to concretize the methods that need to be invoked. The receiver for these in-

vocations is field r of type Replacement defined by the adapter class. The generated sketch also

provides a choice to select appropriate input parameters to the method invocation. For example,

under choice1, the addmethod can accept true or false value for the first parameter. For the sec-

ond parameter, it can choose between the input parameter val to the sketched method scale, or a

constant value assigned to v1 by the Sketch solver. Further, under choice2, the second parameter

to add can also accept ret1 which stores the value returned by subtract under choice1.

Algorithm 6 The method harness generator

1: procedure generate-harness(mo,mд , σo,r)

2: Po ← formal-parameters(mo) ⊲ Build states so, sg
3: (so = 〈ρo, µo〉, sg = 〈ρg, µg〉) ← create-states(Po,O,R)

4: assume
∧

i ∈(1...n)

(ρo(pi), ρg(qi)) ∈ σo,r-equivµo,µg ⊲ Assume state equivalence under σo,r

5: for every (i, j) ∈ [1 . . .n] × [1 . . .n] do

6: for every (
−→
d1,
−→
d2) ∈ deref(pi) × deref(pj) do

7: S1 ← {
−→
d1}; S2 ← {

−→
d2}

8: if type(pi) = O then S1 ←σo,r(
−→
d1) end if

9: if type(pj) = O then S2 ← σo,r(
−→
d2) end if

10: for every (
−→
di ,
−→
d j ) ∈ S1 × S2 do

11: assume(aliasµo(pi,
−→
d1, pj,

−→
d2) ⇔ aliasµg (qi,

−→
di , qj,

−→
d j ))

12: end for

13: end for

14: end for

15: execute(pn+1 = p1.mo(p2 . . . pf)) ⊲ Executemo under so to yield state s′o = 〈ρ ′o, µ
′
o〉

16: execute(qn+1 = q1.mд(q2 . . . qf)) ⊲ Executemд under sg to yield state s′g = 〈ρ
′
g, µ
′
g〉

17: assert
∧

i ∈(1...n+1)

(ρ ′o(pi), ρ
′
g(qi)) ∈ σo,r-equivµ ′o,µ ′g ⊲ Check state equivalence under σo,r

18: for every (i, j) ∈ [1 . . .n + 1] × [1 . . .n + 1] do

19: for every (
−→
d1,
−→
d2) ∈ deref(pi) × deref(pj) do

20: S1 ← {
−→
d1}; S2 ← {

−→
d2}

21: if type(pi) = O then S1 ←σo,r(
−→
d1) end if

22: if type(pj) = O then S2 ← σo,r(
−→
d2) end if

23: for every (
−→
di ,
−→
d j ) ∈ S1 × S2 do

24: assume(aliasµo(pi,
−→
d1, pj,

−→
d2) ⇔ aliasµg (qi,

−→
di , qj,

−→
d j ))

25: end for

26: end for

27: end for

28: end procedure

4.4.2 Generating Harness. The next step is to formulate the correctness condition and invoke

Sketch to instantiate, if possible, the choices in the sketched method to obtain the final generated

method. The correctness condition is formulated as a harness that invokes the sketched method.

Algorithm 6 presents generate-harnessprocedure, that generates a method the harness. Figure 8

presents the resulting generated Sketch program in our example.
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Algorithm 7 Symbolic state creation procedure

1: procedure create-states(P,O,R)

2: so = 〈ρo, µo〉 ←empty-state; sg = 〈ρg, µg〉 ←empty-state

3: for every 〈t,p〉 ∈ P do ⊲ Create parameters for method invocation

4: if t = O then so ← create(O, so); sg ← create(G, sg)

5: else so ← create(t, so); sg ← create(t, sg)

6: end if

7: for every
−→
d ∈ deref(t) do ⊲ Additional objects for tracking side-effects

8: if type(
−→
d ) = O then so ← create(O, so); sg ← create(G, sg)

9: else if type(
−→
d ) = C then so ← create(C, so); sg ← create(C, sg)

10: end if

11: end for

12: end for

13: return 〈symbolize(ρo, µo),symbolize(ρg, µg)〉 ⊲ Symbolic primitive values and aliases

14: end procedure

The procedure takes as input parameters the original methodmo , the sketchedmethod signature

mд , and a candidate equivalence predicate σo,r. It first invokes create-states procedure shown

in algorithm 7 to create two symbolic states so and sg. Here so is the symbolic state under which

mo will execute; sg is the symbolic state under whichmд will execute. The symbolic state so has

variables p1. . .pf . . .pn while sg has corresponding variables q1. . .qf . . .qn .

We explain the construction of the symbolic states here. The create-states procedure in al-

gorithm 7 begins the construction of the required states by creating two empty states at line 2. It

iterates over formal parameters of methodmo and creates a new value for each parameter in states

so, sg (lines 4-6). If the parameter is of type O, then the procedure creates an object of type O in

state so and an object of type R wrapped by a G object in state so. Otherwise, the procedure adds

an object of the same type C to both states. Next, the procedure creates additional variables under

both states to track the side effect of executing methodmo ,mд under states so,sg (line 7-11). The

procedure considers all possible field dereferences of input parameters and iterates over them. If

the dereference if of type O, procedure adds instance of type O to so and instance of type G to sg,

otherwise it adds an object of the same type C to both states. The procedure symbolizes both states

by assigning symbolic variables to all primitive values in the state. It also creates aliases symbol-

ically, by allowing a reference variable or its dereference to reference any type compatible object

in the state. The states are then returned to the generate-harness procedure. For the running

example the corresponding generated state construction and initialization code appears on lines

5-17 of Figure 8.

The generate-harness procedure enforces an assume construct at line 4, based on the equiv-

alence predicate σo,r, and adds the value equivalence assumption into the generated harness. The

equivalence assumption is implemented via Sketch assume statements. In the example the gener-

ated equivalence assumption appears on lines 19-22 of Figure 8. The loop on lines 5-14 enforces

the state equivalence of the two states under σo,r. This corresponds to lines 24-26 in the example.

The execute construct on lines 15-16 of Algorithm 6 generates the invocations ofmo andmд .

The corresponding generated code appears on line 29 of Figure 8. Lines 17-27 of the procedure

use the assert construct to generate the required correctness condition. This condition requires

the equivalence predicate σo,r to hold in the state after the execution of the two invoked methods.
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1. /*

2. * All asserts must be satisfied for every input array s.

3. */

4. harness static void check(int s[14]) {

5. // Construct state by initializing variables

6. Original p1 = new Original(); int p2; Original p3 = new Original();

7.

8. // Symbolize the state using symbols s[1], s[2], ... s[7]

9. p1.x = s[1]; p1.y = s[2]; p1.count = s[3]; p2 = s[4];

10. p3.x = s[5]; p3.y = s[6]; p3.count = s[7];

11.

12. // Construct state by initializing variables

13. Generated q1 = new Generated(); int q2; Generated q3 = new Generated();

14.

15. // Symbolize the state using symbols s[8], s[9], ... s[12]

16. q1.r.a = s[8]; q1.r.b =s[9]; q2 = s[10];

17. q3.r.a = s[11]; q1.r.b = s[12];

18.

19. // Enforce value equivalence on states

20. assume(p1.x+p1.y == q1.r.a && p1.x-p1.y == q1.r.b);

21. assume(p2 == q2);

22. assume(p3.x+p3.y == q3.r.a && p3.x-p3.y == q3.r.b);

23.

24. // Either alias (p1, p3) and (q1.r, q3.r) or enforce that both do not alias

25. if(s[13] > 0) {assume alias(p1, p3); assume alias(q1.r, q3.r);}

26. else {assume !alias(p1, p3); assume !alias(q1.r, q3.r);}

27.

28. // Execute methods with symbolic inputs

29. p1.scale(p2); q1.scale(q2);

30.

31. // Value equivalence in final states

32. assert(p1.x+p1.y == q1.r.a && p1.x-p1.y == q1.r.b);

33. assert(p2 == q2);

34. assert(p3.x+p3.y == q3.r.a && p3.x-p3.y == q3.r.b);

35.

36. // Equivalent aliases in final states

37. if(alias(p1, p3)) {assert alias(q1.r, q3.r);}

38. else {assert !alias(q1.r, q3.r);}

39. }

Fig. 8. The correctness check for method scale from the running example.

The equivalence condition is implemented via Sketch assert statements, which the Sketch im-

plementation must verify to resolve the Sketch variables inmд and produce a correct generated

method that preserves the equivalence condition. In our example the corresponding generated

assert statements appear on lines 32-38.

4.5 Correctness Argument

We next present a correctness argument for Algorithm 6. The generated Sketch program uses

assume/guarantee reasoning to ensure that, if methodsmo andmд start out in equivalent states

under a given inter-class equivalence σo,r, then the two states remain equivalent under the same

inter-class equivalence σo,r after the methods execute. The assume part of the assume/guarantee
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reasoning is implemented with Sketch assume statements (lines 20-26 in the example in Figure 8).

Critically, the assume/guarantee reasoning ensures that the two methods return equivalent values

and drive all reachable objects in the program state to equivalent states. The soundness of this

assume/guarantee reasoning relies on the symbolic bindings of variables p1. . .pn and q1. . .qn to

ensure that these variables correctly reflect the externally visible effects ofmo andmд . We ensure

this property by creating a variable to represent every reference value the two methods access

and generating appropriate equivalence conditions for these variables as required by the state

equivalence condition defined in IS.1 and IS.2.

Note that Algorithm 6 can work with arbitrary satisfiable equivalence predicates σo,r — the only

requirement is that Mask find some equivalence implementation that satisfies the harness. This

fact enablesMask to work with essentially arbitrary equivalence predicate generation algorithms

as long as the algorithm is able to generate an equivalence predicate that verifies. Algorithm 4 is

one example of such an algorithm.

The Sketch algorithm chooses a correct implementation of mд by resolving the holes in the

sketch of method mд so that the generated Sketch program verifiably satisfies the correctness

condition as expressed in the Sketch assume and assert statements. Note that an unsatisfiable

equivalence predicate σo,r would enable the Sketch solver to arbitrarily resolve the holes and

create a potentially incorrect implementation of mд . We avoid this situation by requiring, the

σo,r is satisfiable and for every instance of class O, there exists some instance of class R that

causes the equivalence predicate σo,r to hold as ensured by Algorithm 3. This property ensures

the sketch-solver produces a correctmд by resolving the sketch.

4.6 Sketch Solver

The sketch solver receives the generated sketch for class G and the correctness checks constructed

in the previous step as input. It then invokes the Sketch [Solar-Lezama 2008] engine to complete

the input sketch. If the σo,r associated with the check is valid and the sequence length of the input

sketch can represent the implementation ofO, then the solver succeeds and returns the completed

class. If not, the sketch solver requests for a new set of checks encoding a different σo,r candidate.

This is carried out until all σo,r candidates are exhausted orMask synthesizes the required class.

5 IMPLEMENTATION

We incorporated our ideas as part of a tool, namedMask, for synthesizing adapter classes in Java.

The implementation ofMask is in Java and leverages existing frameworks – the JavaPathFinder

(JPF) [Khurshid et al. 2003] for symbolic summary generation, Mistral [Dillig et al. 2012] to com-

pute the minimal satisfying assignment, and JavaSketch [Jeon et al. 2015], that internally invokes

Sketch [Solar-Lezama 2008]. It takes as input two Java classes and any known class invariants,

and outputs the synthesized adapter Java class. We now elaborate on a few implementation details.

Handling public fields. Java allows a client to directly modify public fields defined by a class.

Therefore, we require Mask to synthesize suitable methods in G, that can be used to replace

instructions that access public fields in class O. To do this, we refactor classes O, R by creating

public get and set methods for all suitable public fields in classes O, R. This enables Mask to

synthesize the required adapter methods in G.

Handling constructors. We require Mask to synthesize a constructor in class G, for every public

constructor defined by class O. Constructors are handled as a special case by Mask and it will

refrain from adding assume clauses for the object under creation in the generated harness

(Algorithm 6, lines 4-14). However, the harness will contain assert clauses that requires the newly
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created objects to be in equivalent states (Algorithm 6, lines 17-27).

Handling arrays and field dereferences. The symbolic execution engine constructs unique symbols

for every dereference by walking the type tree of the associated field. In a few cases (e.g., linked

lists), there can be infinite symbols that are possible. We address this issue by setting a limit on

the dereference sequence to a constant c in our implementation. Similarly, handling arrays is

challenging due to the size of the array. We also set an upper bound on the number of elements in

the array to c. Note that imposing such a bound means that the correctness guarantee holds only

within the specified bound c.

Handling loops and recursion. The presence of loops or recursive method invocations can

affect the scalability of the symbolic execution engine. If the loop condition is symbolic, the

number of unique paths that need to be considered by the engine can be infinite. Therefore,

we limit the unrolling of the loop to a constant c in symbolic summary generation. Similarly,

we also bound the maximum depth of recursive calls to a constant c. Once again, note that im-

posing such a boundmeans that the correctness guarantee holds only within the specified bound c.

Handling generics. Handling generic object types can be challenging for the underlying symbolic

execution engine and the sketch solver. This is because the set of paths that need to be explored

by these systems become unconstrained, as every instantiation of a generic type variable

can introduce more paths. For our implementation, we restrict the usage of generics and use

pre-defined concrete types.

Handling exceptions. The sketch synthesized by Mask contains choices to catch the exceptions

that may be thrown by the method invocations to R. Since, JSketch currently does not support

handling exceptions, we refactored [Refaster 2019] the input classes to set a state variable when

an exception is thrown and suitably handle the set exception.

Optimizing the equivalence predicate generation process. Because the generation of the equivalence

predicates can be expensive, we perform additional optimizations to reduce the associated costs.

We employ a ranking mechanism to rank the set of possible candidate predicates. Higher ranks

are assigned to stronger predicates. We apply the analysis for top ranked predicates to synthesize

the required class before analyzing lower ranked predicates.

6 EXPERIMENTAL EVALUATION

In this section, we describe our experimental setup and present the details of evaluating our system

on Java classes from open-source codebases. We ran our experiments on Ubuntu-14.04 VMware

running on a 2.9Ghz Intel Core i7 processor with 8GB RAM. For our experiments, we let our system

explore the possibility of replacing as many methods as possible (i.e., allow classes to be replaced

partially) from the original class and present those results.

6.1 Results

Table 2 presents details of the classes used for our experimentation. For each class used in our

experiments, the table specifies the source library, the version of the library, the number of fields

and methods in the class. We used ArrayList – a class for handling arrays in the JDK, Vector

– a class for operating over a vector of elements in the JDK, FastArray – a class for processing

arrays in Groovy, FastVector – a class for processing vectors in weka, Box2 – a class that imple-

ments a two dimensional box, Rectangle – a class that implements a rectangle, MutablePair,
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Table 2. Benchmark Information. |F| is the field count and |M| is the method count.

Class name Benchmark Version |F| |M|

ArrayList JDK 1.7 3 24

Vector JDK 1.7 4 38

FastArray Groovy 2.4.4 2 13

FastVector WEKA 3.6.12 4 21

Box2 JMist 0.1.1 4 11

Rectangle eclipse 3.9.0 4 23

MutablePair apache 3.4 2 9

ImmutableTriple apache 3.4 3 4

MutableTriple apache 3.4 3 8

Point3D openimaj 1.3.1 2 15

ImmutableTriple, MutableTriple – classes in apache used to process pairs and triples, and

Point3D – a class in openimaj that implements 3D points.

We applied our system to analyze pairs of classes that are closely related. For the classes

ArrayList, FastArray, Vector and FastVector, we considered the possibility of replacing each

class in the set with the other class. Similarly, we considered the possibility of replacing Box2with

Rectangle, MutablePair with MutableTriple, and vice-versa. We also highlight the results as-

sociated with replacing arbitrary classes (e.g., Point3D with MutableTriple, MutablePairwith

ImmutableTriple) to study the behavior of our approach in synthesizing replacements for seem-

ingly unrelated classes. We constrain the maximum field dereference, array and loop unrolling

lengths to 5.

Table 3 presents the results of applying our system on different pairs of classes. The first column

represents the ID assigned to each pair (E1 . . . E10). The second and third columns represent two

classes C1 and C2. For each row, we initially use C1 as the original classO and C2 as the replacement

class R, and vice versa. We present details pertaining to the ratio of the overall number of methods

for which an implementation could be synthesized (|S|/|M| in column 4), the number of inter-class

equivalence predicates (|Σ| in column 5), the maximum length of method invocations in the

replacement class (ℓ in column 6), and the overall time taken by the entire approach in seconds

(in column 7). The time taken includes a summation of the time taken to symbolically analyze

the class implementations, the time consumed by the candidate generator and the time required

by Sketch to synthesize the final implementation. Columns 8 – 11 provide the results when C2 is

used as O and C1 is used as R.

Ability to synthesize replacements. Table 3 shows the ability ofMask to synthesize adapter classes.

For example, 33 methods out of 38 methods in the Vector class can be replaced using the imple-

mentations of ArrayList. Therefore, for an application that uses a subset of these 33 methods, our

approach can be used seamlessly without any manual intervention. Even for applications that use

the remaining five methods, it is sufficient to focus on identifying effective ways of replacing the

corresponding invocations in the application while using the results of our implementation for the

remaining 33 methods. In general, we observe that a significant number of methods in each class

can be synthesized for a majority of the pairs considered by our analysis.

Also, the replacement process is not symmetric. In other words, the number of methods in C1

that can be implemented using C2 is not always equal to the number of methods in C2 that can be

implemented using C1. This is due to the differing functionalities in the two classes. We observe

that 24 out of 24 methods in ArrayList can be replaced using the implementation of Vector even
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Table 3. Experimental validation: Each row considers a pair of classes (C1 and C2) and gives details on replac-

ing C1 with C2 and vice-versa. The table specifies the number of methods for which a replacement could be

automatically synthesized by our system (|S|), the number of σ candidates considered for synthesis (|Σ|), the

maximum number of method invocations from the replacement class required in the result to implement the

method in the original class (ℓ). The overall time (in seconds) required for generating the replacement is also

provided. The time column is split into three components – time for symbolic analysis, time for candidate

σo,r generation, and the time consumed by the Sketch solver to synthesize a replacement.

ID C1 C2 O← C1∧ R← C2 O← C2∧ R← C1

|S|/|M| |Σ| ℓ time |S|/|M| |Σ| ℓ time

E1 Vector ArrayList 33/38 1 1 6+1+1050 24/24 1 1 6+1+1674

E2 Vector FastArray 10/38 1 5 5+2+1967 5/13 1 1 13+2+28

E3 Vector FastVector 11/38 1 1 4+1+7 9/21 1 1 5+2+42

E4 ArrayList FastArray 7/24 1 5 3+2+2377 8/13 1 1 3+2+15

E5 ArrayList FastVector 8/24 1 1 4+1+6 7/21 1 1 4+1+10

E6 FastVector FastArray 12/21 1 2 4+2+14 8/13 1 1 2+2+8

E7 Box2 Rectangle 9/11 8 2 2+39+100 8/23 8 1 1+38+4

E8 MutablePair ImmutableTriple 6/9 6 1 1+1+4 0/4 0 0 2+1+0

E9 MutablePair MutableTriple 9/9 6 2 2+2+4 0/8 0 0 2+1+0

E10 Point3D MutableTriple 11/15 6 6 1+2+58 8/8 6 1 1+2+4

though not all methods in Vector can be replaced using ArrayList (33 out of 38). This contrast in

behavior can be observed clearly (in E6) for the pair MutablePair and ImmutableTriple. While

the methods of MutablePair can be implemented using ImmutableTriple, none of the methods

in ImmutableTriple can be implemented using MutablePair. This is because ImmutableTriple

defines three independent fields that are returned to the client, and this cannot be captured by

the two fields defined by MutablePair. Therefore, our technique eliminates all σo,r candidates as

invalid.

Synthesized methods invoke method sequences. The methods synthesized involve invoking multiple

methods in the replacement class to implement the original functionality. This behavior can be

observed across multiple pairs of classes (E4, E6, E7, E9, E10). The maximum sequence length

of invocations is six for implementing the method copyFrom(Point3D) in Point3D using the

methods in the class MutableTriple.

Derived multiple inter-class equivalence predicates. Our approach derived multiple candidate

inter-class equivalence predicates for various pairs of classes. The maximum number of predicates

derived is eight for the pair Box2 and Rectangle. These predicates provide the equivalence of

states across the two classes. Even though each of the two classes contain four fields with a

potential for 256 predicates (4 * 4 * 4 * 4), our system is able to prune many infeasible equivalence

predicates. Further, while the semantics of the underlying fields are different in the various

class implementations, Mask generates relevant constraints and is able to synthesize suitable

replacements. Further, in the cases where the equivalence predicate cannot be derived (E8, E9),

we manually verified that the predicate is indeed outside the scope of our technique.

Analysis times for various components. The time consumed by the overall process ranges from 3 secs

for E8 and E9 to 40 minutes for E4. A significant portion of the time is consumed by JavaSketch to

synthesize the class from the input sketch. Since the synthesizer has to ensure that the correctness

condition is satisfied for any given input, the solver can consume more time than the other two
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components of our system. Further, the time taken for synthesis is dependent on multiple param-

eters including the length of the sequence for an input sketch and the complexity of the method

implementations in the replacement class.

The implementation of methods in FastArray is more complex than the implementation in

MutableTriple which explains the differing times for sketch (E4 vs E10) even though longer

method invocation sequences are considered by sketch in both cases. Also, the maximum sequence

length is different for the two cases under E4 (5 vs 1) explaining the contrast in the time consumed

by the sketch solver. Effectiveness of our approach.We also studied the effectiveness of our approach
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Fig. 9. Effectiveness of our approach.

by performing a manual analysis. More specifically, we wanted to understand the limitations of

our strategy in synthesizing class replacements. Figure 9 presents the results of our study. We

classify the methods into three categories – (a) approach correctly synthesized replacement imple-

mentations, (b) there is no feasible replacement for the method using the given replacement class,

and (c) there is a feasible replacement for the method but our approach is unable to synthesize the

replacement.

For a majority of the methods, we observe that the absence of synthesis can be mainly attributed

to the lack of any feasible replacement. In the few cases where our approach failed to synthesize

a replacement, we found that this was due to the presence of non-linear constraints in the system,

or the underlying state invariant could not be captured as part of the symbolic expression.

6.2 Case Studies

We studied the application of our approach under two scenarios – (a) usefulness of the approach

when classes are modified, and (b) effectiveness of the synthesized replacement classes by incor-

porating it in an application.

6.2.1 Analyzing Modified Classes. The proposed approach can be used while updating a client

application to use the latest version of a class. The new version can differ from the older version in

terms of the underlying data structures, the signatures of public methods, themethod functionality

and/or cosmetic changes. Therefore, blindly updating the application without considering these

changes can lead to unforeseen changes to the application logic. In such cases,Mask can be used

to synthesize an adapter class that invokes the public methods defined by the latest version of

the class, but is still equivalent to the older version. If successful, the adapter class can be used as

drop-in replacement for the older version of the class.

We studied the effectiveness of Mask for this use case by analyzing two different versions of a

class. Table 4 presents the results of our study. It presents classes from various popular (> 450 stars
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Table 4. Analyzing modified classes.

Class name Benchmark ID Synthesis?

Image Structurizr[Structurizr 2019] a1975c2 Success

IntInterval Eclipse Collection[Eclipse Foundation 2019] 4c069a8 Failed(Bug 451)

PnConfiguration Pubnub Java[PubNub 2019] ca45925 Success

GCPAuthenticator Kubernetes[Kubernetes 2019] 080c384 Success

SpscArrayQueue RxJava[RxJava 2019] 7aa0b34 Success

ParamValidatorUnwrapper Dropwizard[Dropwizard 2019] dbc1c5a Failed(Bug 1405)

on GitHub) code bases, where developers have modified the specified classes. Table 4 presents the

class name, the codebase, the commit identifier associated with the modification, and the result

of applying our approach. The changes introduced to the classes in the new version includes: re-

moving/introducing/updating fields defined in a class, changing the method signature in the class,

modifying the implementation of the methods, and refactoring code for improving readability.

Our approach is able to synthesize a replacement class for four out of the six classes. For these

four classes, we were able to synthesize an adapter for the new versions despite multiple changes

to the internal data representation and method implementations. Also, our approach is unable

to generate replacements for two classes because the underlying modifications were made to fix

existing bugs.

6.2.2 Applying Replacements to a Client. We also performed a study to validate the effectiveness

of our technique by applying the generated class replacement in a third-party client. For this pur-

pose, we considered two classes QueryExecutorImpland V2Query in postgresql-jdbc-8.0-325.

There are multiple uses of Vector objects in these classes. We used the drop-in replacement that is

synthesized for replacing Vectorwith ArrayList and applied it on these classes. We verified that

these replacements are correct modifications to the client code. More interestingly, our modifica-

tions are also validated by the refactoring performed by the developers of postgresql-jdbcwhere

they have modified the code to use ArrayList instead of Vector in postgresql-jdbc-9.3-1104.

The author of this change discusses the absence of synchronization and the consequent speedup

as one of the reasons for undertaking this change [PostgreSQL-JDBC-9.3 2019].

6.3 Limitations

To the best of our knowledge, this is the first attempt in synthesizing an adapter class for a given

replacement class. We have proposed the design ofMask that handles many real classes. We now

enumerate the limitations ofMask.

• Our approach is constrained by the strengths of the underlying approaches and inherits the

following limitations from them:

– The approach builds on sketch solver which performs bounded verification. Therefore,

the synthesized replacements are only guaranteed to be correct as long as the replace-

ment methods/constructors have bounded number of paths. This assumption will not be

satisfied by methods that have unbounded loops or recursive calls.

– The create-statesmethod creates symbolic states under the assumption that, the pos-

sible field dereferences for every input parameter to methodmo ∈ O are bounded. This

assumption will not hold if the input objects can contain arrays fields or uses recursive

data structures.

– The SMT based solvers used by the symbolic execution engines currently can only reason

about linear computations. Therefore, the approach will fail to synthesize replacement for

methods that contain non-linear computations.
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• We do not handle generation of non-sequential structures (e.g., branches and loops).

• The synthesized replacements are not guaranteed to exhibit identical behavior under con-

currency.

• We do not handle class hierarchies.

• The programmay not always return the result of an operation but can store it in an external

environment (e.g., I/O, network, etc). We have not modeled and handled such scenarios in

the current implementation.

7 RELATED WORK

Contextual Equivalence. The equivalence of two expressions under all contexts can be proved

using contextual equivalence [Koutavas and Wand 2006a,b; Lahiri et al. 2012; Sangiorgi et al. 2011;

Sumii and Pierce 2004, 2005; Wand et al. 2018; Wang et al. 2017b; Wood et al. 2017]. A set of tech-

niques [Koutavas and Wand 2006a,b; Sumii and Pierce 2004, 2005] establish a bisimulation invari-

ant to prove the equivalence of two lambda calculus programs. Sangiorgi et al [Sangiorgi et al.

2011] extend this work by proposing techniques that can establish bisimulation invariants for

higher order programs. Wang et al [Wang et al. 2017b] propose techniques for verifying the equiv-

alence of database applications. Wood et al [Wood et al. 2017] propose an approach for verifying

the equivalence of methods that may contain memory allocations, cyclic data structures and recur-

sion. In contrast to these approaches where equivalence of two programs is verified, we synthesize

a class that is equivalent to an original class by establishing inter-class equivalence predicates. Fur-

ther, the approach addresses challenges pertaining to aliases, side-effects, etc.

Wang et al propose a technique [Wang et al. 2019] for synthesizing equivalent database

queries for an application that has undergone schema migration. They establish equivalence

predicates across two versions of the schema by equating the columns and then employ sketch

based synthesis for generating equivalent queries. Although there is some conceptual similarity,

this technique is not suitable for the class migration problem addressed by Mask. Firstly, their

approach targets query migration for database applications, whereas our approach targets class

migration for object oriented languages. Secondly, our approach synthesizes equivalence pred-

icates by performing symbolic execution which can identify non-trivial equivalence predicates

between the two classes, as illustrated in Figure 6. Finally, our approach has to reason about the

aliases and side-effects which is critical for the correctness of the synthesized solution.

Program specification inference. A number of techniques have been proposed to infer

program specifications [Albarghouthi et al. 2016; Ammons et al. 2002; Bastani et al. 2015,

2018; Flanagan and Leino 2001; Livshits et al. 2009; Logozzo 2004; Nimmer and Ernst 2002;

Pradel and Gross 2009; Ramanathan et al. 2007; Sharma and Aiken 2014; Yorsh et al. 2008].

Albarghouthi et al [Albarghouthi et al. 2016] propose a technique for extracting the weakest spec-

ification of an open program that meets a user specified post-condition. Bastani et al [Bastani et al.

2018] automatically infer the behavior of libraries by synthesizing points-to specifications.

Logozzo [Logozzo 2004] proposes an approach to perform modular and automatic inference of

class invariants. These techniques can potentially be used to provide useful hints to our approach

to reduce the search space of equivalence predicates.

Program sketching. Solar-Lezama et al [Solar-Lezama 2008] proposed sketch based program

synthesis that takes as input a partial program containing holes from the user. This partial

program is also known as a sketch. The program obtained by resolving the holes is validated

using input correctness conditions. There has been significant progress in this area subse-

quently [Solar-Lezama 2009; Solar-Lezama et al. 2008, 2006]. Our approach builds upon this to
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synthesize classes instead of closed programs. Our system generates the sketch for the method

implementations in a class, constructs the correctness conditions and provides them as input to

Sketch [Solar-Lezama 2008] to synthesize the replacement classes.

Component based synthesis. Many researchers have investigated the problem of synthesizing

a method using available components [Feng et al. 2017a,b; Jha et al. 2010; Mandelin et al. 2005;

Yessenov et al. 2017]. For instance, SyPet [Feng et al. 2017b] takes as input the components,

a method signature and test cases and builds a petri-net using the APIs defined by the input

components to prune the space of possible sketches. SyPet is used to synthesize one method at a

time with the help of test cases. In contrast, our approach is designed to synthesize a class where

the synthesized implementations of multiple methods need to work correctly, even though the

synthesis process is performed in isolation. Further, unlike their approach, our approach does

not take any test cases as input. To provide test cases to SyPet to synthesize a class, all possible

contexts need to be provided as input as we are synthesizing a class. Morpheus [Feng et al. 2017a]

is designed to synthesize a table transformation that is used for data management whereas we

synthesize classes.

Applications of synthesis to various domains. Programming by example uses input-output

examples to synthesize programs that produce the behavior specified by the examples. This strat-

egy has been applied to synthesize programs in various domains [Barowy et al. 2015; Cheung et al.

2013; Drachsler-Cohen et al. 2017; Peleg et al. 2018; Polikarpova et al. 2016; Schlaipfer et al. 2017;

Wang et al. 2017a]. Cheung et al [Wang et al. 2017a] use this technique to synthesize expressive

SQL queries for databases. Schlaipfer et al [Schlaipfer et al. 2017] analyze a given query to identify

sub queries that can be optimized effectively. Barowy et al [Barowy et al. 2015] employ this

technique to extract structured relational data from spread sheets. These techniques cannot be

used to synthesize class replacements.

Source code refactoring. There are a number of existing tools that are able to refactor the source

code based on specified rules, including Refaster [Refaster 2019] and Rewrite [ReWrite 2019].

Our approach can be integrated with these tools to specify the appropriate rules for refactoring

the application to use the synthesized adapter classes.

8 CONCLUSION

In this paper, we addressed the problem of automatic class migration. Our approach takes an origi-

nal classO and a replacement class R, and synthesizes an adapter classG that implements the same

interface as O using the implementation of R. The synthesized methods in class G are equivalent

to those defined by O. We build state equivalence predicates to enable synthesis of G’s methods in

isolation while ensuring that arbitrarily long method invocations on the original and synthesized

classes exhibit equivalent behavior.We design our solution by integrating symbolic execution, con-

straint solving and program synthesis to synthesize the required class. Our experimental results

on opens Java classes demonstrate the efficacy of our approach.
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