
36

Optimal Approximate Sampling from Discrete Probability

Distributions

FERAS A. SAAD,Massachusetts Institute of Technology, USA

CAMERON E. FREER,Massachusetts Institute of Technology, USA

MARTIN C. RINARD,Massachusetts Institute of Technology, USA

VIKASH K. MANSINGHKA,Massachusetts Institute of Technology, USA

This paper addresses a fundamental problem in random variate generation: given access to a random source

that emits a stream of independent fair bits, what is the most accurate and entropy-efficient algorithm

for sampling from a discrete probability distribution (p1, . . . ,pn), where the probabilities of the output

distribution (p̂1, . . . , p̂n) of the sampling algorithm must be specified using at most k bits of precision? We

present a theoretical framework for formulating this problem and provide new techniques for finding sampling

algorithms that are optimal both statistically (in the sense of sampling accuracy) and information-theoretically

(in the sense of entropy consumption). We leverage these results to build a system that, for a broad family

of measures of statistical accuracy, delivers a sampling algorithm whose expected entropy usage is minimal

among those that induce the same distribution (i.e., is łentropy-optimalž) and whose output distribution

(p̂1, . . . , p̂n) is a closest approximation to the target distribution (p1, . . . ,pn) among all entropy-optimal

sampling algorithms that operate within the specified k-bit precision. This optimal approximate sampler

is also a closer approximation than any (possibly entropy-suboptimal) sampler that consumes a bounded

amount of entropy with the specified precision, a class which includes floating-point implementations of

inversion sampling and related methods found in many software libraries. We evaluate the accuracy, entropy

consumption, precision requirements, and wall-clock runtime of our optimal approximate sampling algorithms

on a broad set of distributions, demonstrating the ways that they are superior to existing approximate samplers

and establishing that they often consume significantly fewer resources than are needed by exact samplers.

CCS Concepts: • Theory of computation → Probabilistic computation; Numeric approximation algorithms; •

Mathematics of computing→ Probability and statistics; Random number generation;Mathematical software

performance; Combinatorial optimization; Discretization.

Additional Key Words and Phrases: random variate generation, discrete random variables

ACM Reference Format:

Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka. 2020. Optimal Approximate

Sampling from Discrete Probability Distributions. Proc. ACM Program. Lang. 4, POPL, Article 36 (January 2020),

31 pages. https://doi.org/10.1145/3371104

Authors’ addresses: Feras A. Saad, Department of Electrical Engineering & Computer Science, Massachusetts Institute of

Technology, Cambridge, MA, 02139, USA, fsaad@mit.edu; Cameron E. Freer, Department of Brain & Cognitive Sciences,

Massachusetts Institute of Technology, Cambridge, MA, 02139, USA, freer@mit.edu; Martin C. Rinard, Department of

Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA, rinard@

csail.mit.edu; Vikash K. Mansinghka, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology,

Cambridge, MA, 02139, USA, vkm@mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART36

https://doi.org/10.1145/3371104

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3371104
https://doi.org/10.1145/3371104

36:2 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

1 INTRODUCTION

Sampling from discrete probability distributions is a fundamental activity in fields such as statis-
tics [Devroye 1986], operations research [Harling 1958], statistical physics [Binder 1986], financial
engineering [Glasserman 2003], and general scientific computing [Liu 2001]. Recognizing the im-
portance of sampling from discrete probability distributions, widely-used language platforms [Lea
1992; MathWorks 1993; R Core Team 2014] typically implement algorithms for sampling from
discrete distributions. As Monte Carlo methods move towards sampling billions of random variates
per second [Djuric 2019], there is an increasing need for sampling algorithms that are both efficient
(in terms of the number of random bits they consume to generate a sample) and accurate (in terms
of the statistical sampling error of the generated random variates with respect to the intended
probability distribution). For example, in fields such as lattice-based cryptography and probabilistic
hardware [de Schryver et al. 2012; Roy et al. 2013; Dwarakanath and Galbraith 2014; Folláth 2014;
Mansinghka and Jonas 2014; Du and Bai 2015], the number of random bits consumed per sample,
the size of the registers that store and manipulate the probability values, and the sampling error
due to approximate representations of numbers are all fundamental design considerations.

We evaluate sampling algorithms for discrete probability distributions according to three criteria:
(1) the entropy consumption of the sampling algorithm, as measured by the average number of
random bits consumed from the source to produce a single sample (Definition 2.5); (2) the error of
the sampling algorithm, which measures how closely the sampled probability distribution matches
the specified distribution, using one of a family of statistical divergences (Definition 4.2); and (3) the
precision required to implement the sampler, as measured by the minimum number of binary digits
needed to represent each probability in the implemented distribution (Definition 2.13).

Let (M1, . . . ,Mn) be a list of n positive integers which sum toZ and write p ≔ (p1, . . . ,pn) for the
discrete probability distribution over the set [n] ≔ {1, . . . ,n} defined by pi ≔ Mi/Z (i = 1, . . . ,n).
We distinguish between two types of algorithms for sampling from p: (i) exact samplers, where the
probability of returning i is precisely equal to pi (i.e., zero sampling error); and (ii) approximate
samplers, where the probability of returning i is p̂i ≈ pi (i.e., non-zero sampling error). In exact
sampling, the numerical precision needed to represent the output probabilities of the sampler varies
with the values pi of the target distribution; we say these methods need arbitrary precision. In
approximate sampling, on the other hand, the numerical precision needed to represent the output
probabilities p̂i of the sampler is fixed independently of the pi (by constraints such as the register
width of a hardware circuit or arithmetic system implemented in software); we say these methods
need limited precision. We next discuss the tradeoffs between entropy consumption, sampling error,
and numerical precision made by exact and approximate samplers.

1.1 Existing Methods for Exact and Approximate Sampling

Inversion sampling is a universal method for obtaining a random sample from any probability
distribution [Devroye 1986, Theorem 2.1]. The inversion method is based on the identity that if U
is a uniformly distributed real number on the unit interval [0, 1], then

Pr
[∑j−1

i=1 pi ≤ U <
∑j

i=1 pi

]
= pj (j = 1, . . . ,n). (1)

Knuth and Yao [1976] present a seminal theoretical framework for constructing an exact sampler
for any discrete probability distribution. The sampler consumes, in expectation, the least amount of
random bits per sample among the class of all exact sampling algorithms (Theorem 2.9). The Knuth
and Yao sampler is an implementation of the inversion method which compares (lazily sampled)
bits in the binary expansion ofU to the bits in the binary expansion of the pi . Despite its minimal
entropy consumption and zero sampling error, the method requires arbitrary precision and the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:3

Algorithm 1 Rejection Sampling

Given probabilities (Mi/Z)ni=1:
(1) Let k be such that 2k−1 <Z ≤ 2k .
(2) Draw a k-bit integerW ∈ {0, . . . , 2k −1}.
(3) IfW <Z , return integer j ∈ [n] such that∑j−1

i=1 Mi ≤W <
∑j

i=1Mi ; else go to 2.

Algorithm 2 Inversion Sampling

Given probabilities (Mi/Z)ni=1, precision k :

(1) Draw a k-bit integerW ∈ {0, . . . , 2k −1}.
(2) LetU ′ ≔W /2k .
(3) Return smallest integer j ∈ [n] such that

U ′ <
∑j

i=1Mi/Z .

computational resources needed to implement the sampler are often exponentially larger than the
number of bits needed to encode the probabilities (Theorem 3.5), even for typical distributions
(Table 4). In addition to potentially requiring more resources than are available even on modern
machines, the framework is presented from a theoretical perspective without readily-programmable
implementations of the sampler, which has further limited its general application.1

The rejection method [Devroye 1986], shown in Algorithm 1, is another technique for exact
sampling where, unlike the Knuth and Yao method, the required precision is polynomial in the
number of bits needed to encode p. Rejection sampling is exact, readily-programmable, and typically
requires reasonable computational resources. However, it is highly entropy-inefficient and can
consume exponentially more random bits than is necessary to generate a sample (Example 5.1).
We now discuss approximate sampling methods which use a limited amount of numerical pre-

cision that is specified independently of the target distribution p. Several widely-used software
systems such as the MATLAB Statistics Toolbox [MathWorks 1993] and GNU C++ standard li-
brary [Lea 1992] implement the inversion method based directly on Eq. (1), where a floating-point
numberU ′ is used to approximate the ideal real random variableU , as shown in Algorithm 2. These
implementations have two fundamental deficiencies: first, the algorithm draws a fixed number
of random bits (typically equal to the 32-bit or 64-bit word size of the machine) per sample to
determineU ′, which may result in high approximation error (Section 2.4), is suboptimal in its use of
entropy, and often incurs non-negligible computational overhead in practice; second, floating-point
approximations for computing and comparingU ′ to running sums of pi produce significantly subop-
timal sampling errors (Figure 3) and the theoretical properties are challenging to characterize [von
Neumann 1951; Devroye 1982; Monahan 1985]. In particular, many of these approximate methods,
unlike the method presented in this paper, are not straightforwardly described as producing samples
from a distribution that is close to the target distribution with respect to a specified measure of
statistical error and provide no optimality guarantees.

The interval method [Han and Hoshi 1997] is an implementation of the inversion method which,
unlike the previous methods, lazily obtains a sequenceUi of fair coin flips from the set {0, 1} and
recursively partitions the unit interval until the outcome j ∈ [n] can be determined. Han and Hoshi
[1997] present an exact sampling algorithm (using arbitrary precision) and Uyematsu and Li [2003]
present an approximate sampling algorithm (using limited precision). Although entropy consumed
by the interval method is close to the optimal limits of Knuth and Yao [1976], the exact sampler uses
several floating-point computations and has an expensive search loop during sampling [Devroye
and Gravel 2015, Algorithm 1]. The limited-precision sampler is more entropy-efficient than the
limited-precision inversion sampler (Table 2) but often incurs a higher error (Figure 3).

1In reference to thememory requirements and programmability of the Knuth and Yao [1976] method, the authors note łmost of the algorithms
which achieve these optimum bounds are very complex, requiring a tremendous amount of spacež. Lumbroso [2013] also discusses these issues.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:4 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

1.2 Optimal Approximate Sampling

This paper presents a novel class of algorithms for optimal approximate sampling from discrete
probability distributions. Given a target distribution p ≔ (p1, . . . ,pn), any measure of statistical
error in the family of (1-1 transformations of) f -divergences (Definition 4.2), and a number k
specifying the allowed numerical precision, our system returns a sampler for p that is optimal in a
very strong sense: it produces random variates with the minimal sampling error possible given the
specified precision, among the class of all entropy-optimal samplers of this precision (Theorems 3.4
and 4.7). Moreover these samplers comprise, to the best of our knowledge, the first algorithms
that, for any target distribution, measure of statistical accuracy, and specification of bit precision,
provide rigorous guarantees on the entropy-optimality and the minimality of the sampling error.
The key idea is to first find a distribution p̂ ≔ (p̂1, . . . , p̂n) whose approximation error of p is

minimal among the class of all distributions that can be sampled by any k-bit entropy-optimal
sampler (Section 4). The second step is to explicitly construct an entropy-optimal sampler for the
distribution p̂ (Section 5). In comparison with previous limited-precision samplers, our samplers are
more entropy-efficient and more accurate than any sampler that always consumes at most k random
bits (Proposition 2.16), which includes any algorithm that uses a finite number of approximately
uniform floating-point numbers (e.g., limited-precision inversion sampling and interval sampling).
The time, space, and entropy resources required by our samplers can be significantly less than those
required by the exact Knuth and Yao and rejection methods (Section 6.3), with an approximation
error that decreases exponentially quickly with the amount of precision (Theorem 4.17).

The sampling algorithms delivered by our system are algorithmically efficient: they use integer
arithmetic, admit straightforward implementations in software and probabilistic hardware systems,
run in constant time with respect to the length n of the target distribution and linearly in the
entropy of the sampler, and can generate billions of random variates per second. In addition, we
present scalable algorithms where, for a precision specification of k bits, the runtime of finding the
n optimal approximate probabilities p̂ is order n logn, and of building the corresponding sampler
is order nk . Prototype implementations of the system in C and Python are available in the online
artifact and at https://github.com/probcomp/optimal-approximate-sampling.

1.3 Contributions

The main contributions of this paper are:
Formulation of optimal approximate sampling algorithms for discrete distributions. This
precise formulation allow us to rigorously study the notion of entropy consumption, statistical
sampling error, and numerical precision. These three functional metrics are used to assess the
entropy-efficiency, accuracy, and memory requirements of a sampling algorithm.
Theoretical results for the class of entropy-optimal sampling algorithms. For a specified
precision, we characterize the set of output probability distributions achievable by any entropy-
optimal sampler that operates within the given precision specification. We leverage these results to
constrain the space of probability distributions for approximating a given target distribution to
contain only those that correspond to limited-precision entropy-optimal samplers.
Algorithms for finding optimal approximations to discrete distributions.We present a new
optimization algorithm that, given a target distribution p, a measure of statistical divergence, and
a precision specification, efficiently searches the combinatorially large space of entropy-optimal
samplers of the given precision, to find a optimal approximation sampler that most accurately
approximates the target distribution p. We prove the correctness of the algorithm and analyze its
runtime in terms of the size of the target distribution and precision specification.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

https://github.com/probcomp/optimal-approximate-sampling

Optimal Approximate Sampling from Discrete Probability Distributions 36:5

Algorithms for constructing entropy-optimal sampling algorithms. We present detailed
algorithms for sampling from any closest-approximation probability distribution p̂ in a way that is
entropy-optimal, using the guarantees provided by the main theorems of Knuth and Yao [1976].
Our prototype implementation can generate billions of random variates per second and executes
between 1.5x (for low-dimensional distributions) and 195x (for high-dimensional distributions)
faster than the limited-precision linear inversion sampler provided as part of the GNU C++ standard
library [Lea 1992].
Comparisons to baseline limited-precision sampling algorithms. For several common prob-
ability distributions, we empirically demonstrate that the proposed sampling algorithms consume
less entropy and are up to 1000xÐ10000x more accurate than the limited-precision inversion sam-
pler from the GNU C++ standard library [Lea 1992] and interval algorithm [Uyematsu and Li 2003].
We also show that (i) our sampler scales more efficiently as the size of the target distribution grows;
and (ii) using the information-theoretically minimal amount of bits per sample leads to up to 10x
less wall-clock time spent calling the underlying pseudorandom number generator.
Comparisons to baseline exact sampling algorithms.We present a detailed study of the exact
Knuth and Yao method, the rejection method, and the proposed method for a canonical discrete
probability distribution. We demonstrate that our samplers can use 150x less random bits per
sample than rejection sampling and many orders of magnitude less precision than exact Knuth and
Yao sampling, and can (unlike exact sampling algorithms) trade off greater numerical precision in
exchange for exponentially smaller sampling accuracy, all while remaining entropy-optimal.

The remainder of this paper is structured as follows: Section 2 describes the random bit model of
computation for sampling algorithms and provides formal definitions used throughout the paper.
Section 3 presents theoretical results on the class of entropy-optimal samplers which are leveraged
in future sections. Section 4 presents an efficient algorithm for finding a closest-approximation
distribution to any given target distribution. Section 5 presents algorithms for constructing entropy-
optimal samplers. Section 6 investigates the properties of the optimal samplers and compares them
to multiple existing sampling methods in terms of accuracy, precision, entropy, and runtime.

2 COMPUTATIONAL MODELS OF SAMPLING ALGORITHMS

In the algebraic model of computation over the real numbers (also known as the real RAM
model [Blum et al. 1998]), a sampling algorithm has access to an ideal register machine that
can (i) sample a real random variable U uniformly distributed on the unit interval [0, 1] using a
primitive called uniform(), which forms the basic unit of randomness; and (ii) store and perform
algebraic operations on infinitely-precise real numbers in unit time [Devroye 1986, Assumptions 1,
2, and 3]. The algebraic model is useful for proving the correctness of exact mathematical trans-
formations applied to a uniform random variate U and for analyzing the algorithmic runtime and
storage costs of preprocessing and sampling, assuming access to infinite amounts of entropy or
precision [Walker 1977; Vose 1991; Smith 2002; Bringmann and Panagiotou 2017].

However, sampling algorithms that access an infinite amount of entropy and computewith infinite
precision real arithmetic cannot be implemented on physical machines. In practice, these algorithms
are implemented on machines which use a finite amount of entropy and compute with approximate
real arithmetic (e.g., double-precision floating point). As a result, sampling algorithms typically
have a non-zero sampling error, which is challenging to systematically assess in practice [Devroye
1982].2 While the quality of sampling algorithms implemented in practice is often characterized

2von Neumann [1951] objected that łthe amount of theoretical information about the statistical properties of the round-off

mechanism is nilž and, more humorously, that łanyone who considers arithmetic methods of producing random digits is, of

course, in a state of sin.ž

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:6 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

using ad-hoc statistical goodness-of-fit tests on a large number of simulations [Walker 1974; Leydold
and Chaudhuri 2014], these empirical metrics fail to give rigorous statistical guarantees about
the accuracy and/or theoretical optimality of the algorithm [Monahan 1985]. In this paper, we
consider an alternative computational model that is more appropriate in applications where limited
numerical precision, sampling error, or entropy consumption are of interest.

2.1 The Random Bit Model

In the random bit model, introduced by von Neumann [1951], the basic unit of randomness is a
random symbol in the set {0, 1, . . . ,b − 1} for some integer b ≥ 2, obtained using a primitive
called flip(). Since the random symbols are produced lazily by the source and the output of the
sampling algorithm is a deterministic function of the discrete symbols, this model is suitable for
analyzing entropy consumption and sampling error. In this paper, we consider the random bit
model of computation where any sampling algorithm for a target distribution p over [n] operates
under the following assumptions:

A1. each invocation of flip() returns a single fair (unbiased) binary digit in {0, 1} (i.e., b = 2);
A2. the bits returned by separate invocations of flip() are all mutually independent;
A3. the output of the sampling algorithm is a single outcome in [n], which is independent of all

previous outputs of the algorithm; and
A4. the output probabilities of the sampling algorithm can be specified using at most k binary

digits, where the numerical precision parameter k is specified independently of the target
distribution p.

Several limited-precision algorithms for sampling from discrete probability distributions in
the literature operate under assumptions similar to A1śA4; examples include samplers for the
uniform [Lumbroso 2013], discrete Gaussian [Folláth 2014], geometric [Bringmann and Friedrich
2013], random graph [Blanca and Mihail 2012], and general discrete [Uyematsu and Li 2003]
distributions. Since these sampling algorithms use limited numerical precision that is specified
independently of the target distribution (A4), they typically have some statistical sampling error.
We also note that several variants of the random bit model for random variate generation,

which operate under different assumptions than A1śA4, have been thoroughly investigated in the
literature. These variants include using a random source which provides flips of a biased b-sided
coin (where the bias may be known or unknown); using a random source which provides non-i.i.d.
symbols; sampling algorithms which return a random number of non-independent output symbols
in each invocation; and/or sampling algorithms which use arithmetic operations whose numerical
precision depends on the probabilities in the target distribution [von Neumann 1951; Elias 1972;
Stout and Warren 1984; Blum 1986; Roche 1991; Peres 1992; Han and Verdú 1993; Vembu and Verdú
1995; Abrahams 1996; Pae and Loui 2006; Cicalese et al. 2006; Kozen 2014; Kozen and Soloviev
2018]. For example, Pae and Loui [2006] solve the very general problem of optimally simulating an
arbitrary target distribution using k independent flips of a b-sided coin with unknown bias, where
optimality is defined in the sense of the asymptotic ratio of output bits per input symbol. Kozen
and Soloviev [2018] provide a unifying coalgebraic framework for implementing and composing
entropy-preserving reductions between arbitrary input sources to output distributions, describe
several concrete algorithms for reductions between random processes, and present bounds on the
trade-off between the latency and asymptotic entropy-efficiency of these protocols.

The assumptions A1śA4 that we make in this paper are designed to explore a new set of trade-
offs compared to those explored in previous works. More specifically, the current paper trades
off accuracy with numerical precision in the non-asymptotic setting, while maintaining entropy-
optimality of the output distribution, whereas the works of Pae and Loui [2006] and Kozen and

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:7

Soloviev [2018], for example, trade off asymptotic entropy-efficiency with numerical precision,
while maintaining perfect accuracy. The trade-offs we consider are motivated by the standard
practice in numerical sampling libraries [Lea 1992; MathWorks 1993; R Core Team 2014; Galassi
et al. 2019], which (i) use an entropy source that provides independent fair bits (modulo the fact
that they may use pseudorandom number generators); (ii) implement samplers that guarantee
exactly one output symbol per invocation; (iii) implement samplers that have non-zero output
error; and (iv) use arithmetic systems with a fixed amount of precision (using e.g., 32-bit or 64-bit
floating point). For the trade-offs considered in this paper, we present results that conclusively
solve the problem of finding entropy-optimal sampling algorithms operating within any precision
specification that yield closest-approximation distributions among the class of all entropy-optimal
samplers that also operate within the given precision. The next section formalizes these concepts.

2.2 Preliminaries

Definition 2.1 (Sampling algorithm). Let n ≥ 1 be an integer. A sampling algorithm, or sampler,
A :

⊎∞
k=1{0, 1}k → {1, . . . ,n,⊥} is a map that sends each finite tuple of bits to either an outcome

in [n] or a special symbol ⊥ that indicates more bits are needed to determine the final outcome.

Remark 2.2. In Assumption A1 and Definition 2.1, the assumption that the source outputs binary
digits in {0, 1} (i.e., b = 2) is made without loss of generality. All the definitions and results in this
paper generalize directly to the case of a source that outputs fair flips of any b-sided coin.

Knuth and Yao [1976] present a computational framework for expressing the set of all sampling
algorithms for discrete probability distribution in the random bit model. Any sampling algorithm
A that draws random bits and returns an integer outcome i with probability pi (i = 1, . . . ,n) is
equivalent to some (possibly infinite) binary tree T . Each internal node of T has exactly 2 children
and each leaf node is labeled with an outcome in [n]. The sampling algorithm starts at the root
of T . It then draws a random bit b from the source and takes the left branch if b = 0 or the right
branch if b = 1. If the child node is a leaf node, the label assigned to that leaf is returned and the
computation halts. Otherwise, the child node is an internal node, so a new random bit is drawn
from the source and the process repeats. The next definition presents a state machine model that
formally describes the behavior of any sampling algorithm in terms of such a computation tree.

Definition 2.3 (Discrete distribution generating tree). Let A be a sampling algorithm. The computa-
tional behavior ofA is described by a state machineT = (S, r ,n, c,δ), called the discrete distribution
generating (DDG) tree of A, where

• S ⊆ N is a set of states (nodes);
• r ∈ S is a designated start node;
• n ≥ 1 is an integer indicating the number of outcomes of the sampler;
• c : S → {1, . . . ,n} ∪ {branch} is a function that labels each node as either a branch node or
a terminal (leaf) node assigned to an outcome in [n]; and
• δ : S × {0, 1} → S is a transition function that maps a node and a random bit to a new node.

Let bk ≔ (b1, . . . ,bk) ∈ {0, 1}k be a tuple of k ≥ 0 bits, i ∈ S a state, and j ∈ N. The operational
semantics of T for a configuration ⟨i, j, bk ⟩ of the state machine are defined by the following rules

0 ≤ j < k ; c(i) = branch

⟨i, j, bk ⟩T →
〈
δ (i,bj+1), j + 1, bk

〉
T

k ≤ j; c(i) = branch

⟨i, j, bk ⟩T → ⊥
0 ≤ j ≤ k ; c(i) ∈ [n]
⟨i, j, bk ⟩T → c(i) (2)

In Eq. (2), the arrow→ defines a transition relation from the current configuration (i.e., state i ,
consumed bits j , and input bits bk) to either a new configuration (first rule) or to a terminal outcome
in {1, . . . ,n,⊥} (second and third rules). The output ofA on input bk is given byA(bk) ≔ ⟨r , 0, bk ⟩T .

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:8 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

Definition 2.4 (Output distribution). Let T be the DDG tree of a sampler A, 1[·] the indicator
function, and bk ∼ Uniform

(
{0, 1}k

)
a random draw of k ≥ 0 fair independent bits. Then

Pr[A(bk) = i] =
1

2k

∑

b′∈{0,1}k
1[⟨(r , 0, b′)⟩T = i] (i = 1, . . . ,n). (3)

The overall probability of returning i , over an infinite length random stream b∞ from the source, is

pi ≔ Pr[A(b∞) = i] = lim
k→∞

Pr[A(bk) = i] (i = 1, . . . ,n). (4)

For each k we have Pr[A(bk) = ⊥] = 1 − ∑n
i=1 Pr[A(bk) = i]. The list of outcome probabilities

(p1, . . . ,pn) defined in Eq. (4) is the called the output distribution of T , and we say that T is well-
formed whenever these probabilities sum to one (equivalently, whenever A halts with probability
one, so that Pr[A(b∞) = ⊥] = 0).

Definition 2.5 (Number of consumed bits). For each k ≥ 0, let bk ∼ Uniform
(
{0, 1}k

)
be a random

draw of k bits from the source. The number of bits consumed by A is a random variable defined by

Nk (A, bk) ≔ min(k, min
1≤j≤k

{j | A(b1, . . . ,bj) ∈ [n]}) (k = 0, 1, . . .). (5)

(where min(∅) ≔ ∞), which is precisely the (random) number of steps executed in the evaluation
rules (2) on the (random) input bk . Furthermore, we define N (A) ≔ limk→∞ Nk (A, bk) to be the
limiting number of bits per sample, which exists (in the extended reals) whenever T is well-formed.

Definition 2.6 (Entropy [Shannon 1948]). Let p be a probability distribution over [n]. The Shannon
entropy H (p) ≔ ∑n

i=1 pi log(1/pi) is a measure of the stochasticity of p (unless otherwise noted, all
instances of log are base 2). For each integer n, a deterministic distribution has minimal entropy
(H (p) = 0) and the uniform distribution has maximal entropy (H (p) = log(n)).

Definition 2.7 (Entropy-optimal sampler). A sampling algorithm A (or DDG tree T) with output
distribution p is called entropy-optimal if the expected number of random bits consumed from the
source is minimal among all samplers (or DDG trees) that yield the same output distribution p.

Definition 2.8 (Concise binary expansion). We say that a binary expansion of a rational number is

concise if its repeating part is not of the form 1. In other words, to be concise, the binary expansions

of dyadic rationals must end in 0 rather than 1.

Theorem 2.9 (Knuth and Yao [1976]). Let p ≔ (p1, . . . ,pn) be a discrete probability distribution
for some positive integer n. Let A be an entropy-optimal sampler whose output distribution is equal to
p. Then the number of bits N (A) consumed by A satisfies H (p) ≤ E[N (A)] < H (p) + 2. Further, the
underlying DDG treeT ofA contains exactly 1 leaf node labeled i at level j if and only if pi j = 1, where
(0.pi1pi2 . . .)2 denotes the concise binary expansion of each pi .

We next present three examples of target distributions and corresponding DDG trees that are
both entropy-optimal, based on the construction from Theorem 2.9 and entropy-suboptimal. By
Theorem 2.9, an entropy-optimal DDG tree for p can be constructed directly from a data structure
called the binary probability matrix P, whose entry P[i, j] corresponds to the jth bit in the concise
binary expansion of pi (i = 1, . . . ,n; j ≥ 0). In general, the matrix P can contain infinitely many
columns, but it can be finitely encoded when the probabilities of p are rational numbers.
In the case where each pi is dyadic, as in Example 2.10, we may instead work with the finite

matrix P that omits those columns corresponding to a final 0 in every row, i.e., whose width is the
maximum number of non-zero binary digits to the right of ł0.ž in a concise binary expansion of pi .

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:9

p1
p2
p3

=

1/2
1/4
1/4

=

. 1 0

. 0 1

. 0 1

Binary probability matrix

1
23

Entropy-optimal DDG tree

23
1

32
1

Entropy-suboptimal DDG tree

Example 2.10. Consider the distribution p ≔ (1/2, 1/4, 1/4) over {1, 2, 3}. Since p1 = (0.10)2 and
p2 = p3 = (0.01)2 are all dyadic, the finite matrix P has two columns and the entropy-optimal tree
has three levels (the root is level zero). Also shown above is an entropy-suboptimal tree for p.

Now consider the case where the values of p are all rational but not all dyadic, as in Example 2.11.
Then the full binary probability matrix can be encoded using a probability łpseudomatrixž P, which
has a finite number of columns that contain the digits in the finite prefix and the infinitely-repeating
suffix of the concise binary expansions (a horizontal bar is placed atop the columns that contain the
repeating suffix). Similarly, the infinite-level DDG tree for p can be finitely encoded by using back-
edges in a łpseudotreež. Note that the DDG trees from Definition 2.3 are technically pseudotrees of
this form, where δ encodes back-edges that finitely encode infinite trees with repeating structure.
The terms łtreesž and łpseudotreesž are used interchangeably throughout the paper.

[
p1
p2

]
=

[
3/10
7/10

]
=

[
. 0 1 0 0 1

. 1 0 1 1 0

]

Binary probability matrix

2
1

2
2

1

Entropy-optimal DDG tree

2
12

2

Entropy-suboptimal DDG tree

Example 2.11. Consider the distribution p ≔ (3/10, 7/10) over {1, 2}. As p1 and p2 are non-dyadic
rational numbers, their infinite binary expansions can be finitely encoded using a pseudotree. The
(shortest) entropy-optimal pseudotree shown above has five levels and a back-edge (red) from level
four to level one. This structure corresponds to the structure of P, which has five columns and a
prefix length of one, as indicated by the horizontal bar above the last four columns of the matrix.

If any probability pi is irrational, as in Example 2.12, then its concise binary expansion will not
repeat, and so we must work with the full binary probability matrix, which has infinitely many
columns. Any DDG tree for p has infinitely many levels, and neither the matrix nor the tree can be
finitely encoded. Probability distributions whose samplers cannot be finitely encoded are not the
focus of the sampling algorithms in this paper.

p1
p2
p3

=

1/π
1/e

1 − 1/π − 1/e

=

. 0 1 0 1 0 0 0 . . .

. 0 1 0 1 1 1 1 . . .

. 0 1 0 1 0 0 0 . . .

Binary probability matrix

123

213
2

. . .

Entropy-optimal DDG tree

Example 2.12 (Knuth and Yao [1976]). Consider the distribution p ≔ (1/π , 1/e, 1 − 1/π − 1/e)
over {1, 2, 3}. The binary probability matrix has infinitely many columns and the corresponding
DDG tree shown above has infinitely many levels, and neither can be finitely encoded.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:10 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

2.3 Sampling Algorithms with Limited Computational Resources

The previous examples present three classes of sampling algorithms, which are mutually exclusive
and collectively exhaustive: Example 2.10 shows a sampler that halts after consuming at most k bits
from the source and has a finite DDG tree; Example 2.11 shows a sampler that needs an unbounded
number of bits from the source and has an infinite DDG tree that can be finitely encoded; and
Example 2.12 shows a sampler that needs an unbounded number of bits from the source and has an
infinite DDG tree that cannot be finitely encoded. The algorithms presented in this paper do not
consider target distributions and samplers that cannot be finitely encoded.

In practice, any sampler A for a distribution p of interest that is implemented in a finite-resource
system must correspond to a DDG tree T with a finite encoding. As a result, the output probability
of the sampler is typically an approximation to p. This approximation arises from the fact that
finite-resource machines do not have unbounded memory to store or even lazily construct DDG
trees with an infinite number of levelsÐa necessary condition for perfectly sampling from an
arbitrary target distributionÐlet alone construct entropy-optimal ones by computing the infinite
binary expansion of each pi . Even for a target distribution whose probabilities are rational numbers,
the size of the entropy-optimal DDG tree may be significantly larger than the available resources on
the system (Theorem 3.5). Informally speaking, a łlimited-precisionž sampler A is able to represent
each probability pi using no more than k binary digits. The framework of DDG trees allows us to
precisely characterize this notion in terms of the maximum depth of any leaf in the generating tree
of A, which corresponds to the largest number of bits used to encode some pi .

Definition 2.13 (Precision of a sampling algorithm). Let A be any sampler andT ≔ (S, r ,n, c,δ) its
DDG tree. We say that A uses k bits of precision (or that A is a k-bit sampler) if S is finite and the
longest simple path through δ starting from the root r to any leaf node l has exactly k edges.

Remark 2.14. Suppose A uses k bits of precision. If δ is cycle-free, as in Example 2.10, then A

halts after consuming no more than k bits from the source and has output probabilities that are
dyadic rationals. If δ contains a back-edge, as in Example 2.11, then A can consume an unbounded
number of bits from the source and has output probabilities that are general rationals.

Given a target distribution p, there may exist an exact sampling algorithm for p using k bits of
precision which is entropy-suboptimal and for which the entropy-optimal exact sampler requires
k ′ > k bits of precision. Example 2.11 presents such an instance: the entropy-suboptimal DDG tree
has depth k = 4 whereas the entropy-optimal DDG tree has depth k ′ = 5. Entropy-suboptimal exact
samplers typically require polynomial precision (in the number of bits used to encode p) but can be
slow and wasteful of random bits (Example 5.1), whereas entropy-optimal exact samplers are fast
but can require precision that is exponentially large (Theorem 3.5). In light of these spaceśtime
trade-offs, this paper considers the problem of finding the łmost accuratež entropy-optimal sampler
for a target distribution p when the precision specification is set to a fixed constant (recall from
Section 1 that fixing the precision independently of p necessarily introduces sampling error).

Problem 2.15. Given a target probability distribution p ≔ (p1, . . . ,pn), a measure of statistical

error ∆, and a precision specification of k ≥ 1 bits, construct a k-bit entropy-optimal sampler T̂ whose
output probabilities p̂ achieve the smallest possible error ∆(p, p̂).
In the context of Problem 2.15, we refer to p̂ as a closest approximation to p, or as a closest-

approximation distribution to p, and say that T̂ is an optimal approximate sampler for p.
For any precision specification k , the k-bit entropy-optimal samplers that yield some closest

approximation to a given target distribution are not necessarily closer to p than all k-bit entropy-
suboptimal samplers. The next proposition, however, shows they obtain the smallest error among
the class of all samplers that always halt after consuming at most k random bits from the source.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:11

Proposition 2.16. Given a target p ≔ (p1, . . . ,pn), an error measure ∆, and k ≥ 1, suppose T̂ is a
k-bit entropy-optimal sampler whose output distribution is a ∆-closest approximation to p. Then p̂

is closer to p than the output distribution p̃ of any sampler T̃ that halts after consuming at most k
random bits from the source.

Proof. Suppose for a contradiction that there is an approximation p̃ to p which is the output
distribution of some sampler (either entropy-optimal or entropy-suboptimal) that consumes no
more than k bits from the source such that ∆(p, p̃) < ∆(p, p̂). But then all entries in p̃ must be

k-bit dyadic rationals. Thus, any entropy-optimal DDG tree T̃ for p̃ has depth k and no back-edges,

contradicting the assumption that the output distribution p̂ of T̂ is a closest approximation to p. □

Remark 2.17. In light of Proposition 2.16, we will also consider the restriction of Problem 2.15
to k-bit entropy-optimal samplers whose DDG trees do not have back-edges, which yields an
entropy-optimal sampler in the class of samplers that halt after consuming at most k random bits.

2.4 Pitfalls of Naively Truncating the Target Probabilities

Let us momentarily consider the class of samplers from Proposition 2.16. Namely, for given a preci-
sion specification k and target distribution p, solve Problem 2.15 over the class of all algorithms that
halt after consuming at most k random bits (and thus have output distributions whose probabilities
are dyadic rationals). This section shows examples of how naively truncating the target probabilities
pi to have k bits of precision (as in, e.g., Ladd [2009]; Dwarakanath and Galbraith [2014]) can fail to
deliver accurate limited-precision samplers for various target distributions and error measures.

More specifically, the naive truncation initializes p̂i = (0.p1p2 . . .pk)2 = ⌊2kpi ⌋/2k . As the p̂i may
not sum to unity, lower-order bits can be arbitrarily incremented until the terms sum to one (this
normalization is implicit when using floating-point computations to implement limited-precision

inversion sampling, as in Algorithm 2). The p̂i can be organized into a probability matrix P̂, which

is the truncation of the full probability matrix P to k columns. The matrix P̂ can then be used to
construct a finite entropy-optimal DDG tree, as in Example 2.10. While such a truncation approach
may be sensible when the error of the approximate probabilities p̂i is measured using total variation
distance, the error in the general case can be highly sensitive to the setting of lower-order bits
after truncation, depending on the target distribution p, the precision specification k , and the error
measure ∆. We next present three conceptual examples that highlight these numerical issues for
common measures of statistical error that are used in various applications.

Example 2.18 (Round-off with relative entropy divergence). Suppose the error measure is relative
entropy (Kullback-Leibler divergence), ∆(p, p̂) ≔ ∑n

i=1 log(p̂i/pi)pi , which plays a key role in
information theory and data compression [Kullback and Leibler 1951]. Suppose n, k and p are such
that n ≤ 2k and there exists i where pi = ϵ ≪ 1/2k . Then setting p̂i so that 2kp̂i = ⌊2kpi ⌋ = 0 and
failing to increment the lower-order bit of p̂i results in an infinite divergence of p̂ from p, whereas,
from the assumption that n ≤ 2k , there exist approximations that have finite divergence.

In the previous example, failing to increment a low-order bit results in a large (infinite) error. In
the next example, choosing to increment a low-order bit results in an arbitrarily large error.

Example 2.19 (Round-off with Pearson chi-square divergence). Suppose the error measure is
Pearson chi-square, ∆(p, p̂) ≔ ∑n

i=1(pi − p̂i)2/pi , which is central to goodness-of-fit testing in

statistics [Pearson 1900]. Suppose that k and p are such that there exists i where pi = c/2k + ϵ ,
for 0 < ϵ ≪ 1/2k for some integer 0 ≤ c ≤ 2k − 1. Then setting p̂i so that 2

kp̂i = ⌊2kpi ⌋ = c (not
incrementing the lower-order bit) gives a small contribution to the error, whereas setting p̂+i so that

2kp̂+i = ⌊2kpi ⌋ = c + 1 (incrementing the lower-order bit) gives a large contribution to the error.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:12 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

More specifically, the relative error of selecting p̂+i instead of p̂i is arbitrarily large:

(pi − p̂+i)2/(pi − p̂i)2 = (c/2k + ϵ − c/2k − 1/2k)2/(c/2k + ϵ − c/2k)2

= (1/2k − ϵ)2/ϵ2 ≈ 1/(2kϵ)2 ≫ 1.

The next example shows that the first k bits of pi can be far from the globally optimal k-bit
approximation, even in higher-precision regimes where 1/2k ≤ min(p1, . . . ,pn).

Example 2.20 (Round-off with Hellinger divergence). Suppose the error measure is the Hellinger

divergence, ∆(p, p̂) ≔ ∑n
i=1(
√
pi−

√
p̂i)2, which is used in fields such as information complexity [Bar-

Yossef et al. 2004]. Let k = 16 and n = 1000, with p1 = 5/8 and p2 = · · · = pn = 3/8(n − 1). Let
(p̂1, . . . p̂n) be the k-bit approximation that minimizes ∆(p, p̂). It can be shown that 2kp̂1 = 40788
whereas ⌊2kp1⌋ = 40960, so that

��⌊2kp1⌋ − 2kp̂1
��
= 172.

In light of these examples, we turn our attention to solving Problem 2.15 by truncating the
target probabilities in a principled way that avoids these pitfalls and finds a closest-approximation
distribution for any target probability distribution, error measure, and precision specification.

3 CHARACTERIZING THE SPACE OF ENTROPY-OPTIMAL SAMPLING ALGORITHMS

This section presents several results about the class of entropy-optimal k-bit sampling algorithms
over which Problem 2.15 is defined. These results form the basis of the algorithm for finding a closest-
approximation distribution p̂ in Section 4 and the algorithms for constructing the corresponding

entropy-optimal DDG tree T̂ in Section 5, which together will form the solution to Problem 2.15.
Section 2.4 considered sampling algorithms that halt after consuming at most k random bits (so

that each output probability is an integer multiple of 1/2k) and showed that naively discretizing the
target distribution can result in poor approximations. The DDG trees of those sampling algorithms
are finite: they have depth k and no back-edges. For entropy-optimal DDG trees that use k ≥ 1
bits of precision (Definition 2.13) and have back-edges, the output distributions (Definition 2.4) are
described by a k-bit number. The k-bit numbers x are those such that for some integer l satisfying
0 ≤ l ≤ k , there is some element (x1, . . . ,xk) ∈ {0, 1}l × {0, 1}k−l , where the first l bits correspond
to a finite prefix and the final k − l bits correspond to an infinitely repeating suffix, such that
x = (0.x1 . . . xlxl+1 . . . xk)2. Write Bkl for the set of rationals in [0, 1] describable in this way.

Proposition 3.1. For integers k and l with 0 ≤ l ≤ k , define Zkl ≔ 2k − 2l1l<k . Then

Bkl =

{
0

Zkl
,
1

Zkl
, . . . ,

Zkl − 1
Zkl

,
Zkl

Zkl
1l<k

}
. (6)

Proof. For l = k , the number system Bkl = Bkk is the set of dyadic rationals in [0, 1) with
denominator Zkk = 2k . For 0 ≤ l < k , any element x ∈ Bkl when written in base 2 has a (possibly
empty) non-repeating prefix and a non-empty infinitely repeating suffix, so that x has binary
expansion (0.a1 . . . alsl+1 . . . sk)2. The first two lines of equalities (Eqs. (7) and (8)) imply Eq. (9):

2l (0.a1 . . . al)2 = (a1 . . . al)2 =
∑l−1

i=0 al−i2
i
, (7)

(2k−l − 1)(0.sl+1 . . . sk)2 = (sl+1 . . . sk)2 =
∑k−(l+1)

i=0 sk−i2
i
, (8)

x = (0.a1 . . . al)2 + 2−l (0.sl+1 . . . sk)2 =
(2k−l − 1)∑l−1

i=0 al−i2
i
+

∑k−(l+1)
i=0 sk−i2

i

2k − 2l
. (9)

□

Remark 3.2. For a rational x ∈ [0, 1], we take a representative ((x1, . . . ,xl), (xl+1, . . . ,xk)) ∈ Bkl
that is both concise (Definition 2.8) and chosen such that the number k of digits is as small possible.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:13

Remark 3.3. When 0 ≤ l ≤ k , we have Bkl ⊆ Bk+1,l+1, since if x ∈ Bkl then Proposition 3.1

furnishes an integer c such that x = c/(2k − 2l1l<k) = 2c/(2k+1 − 2l+11l<k) ∈ Bk+1,l+1. Further, for
k ≥ 2, we have Bk,k−1 \ {1} = Bk−1,k−1 ⊆ Bkk , since any infinitely repeating suffix comprised of a
single digit can be folded into the prefix, except when the prefix and suffix are all ones.

Theorem 3.4. Let p ≔ (p1, . . . ,pn) be a non-degenerate rational distribution for some integer
n > 1. The precision k of the shortest entropy-optimal DDG (pseudo)tree with output distribution p is
the smallest integer such that every pi is an integer multiple of 1/Zkl (hence in Bkl) for some l ≤ k .

Proof. Suppose that T is a shortest entropy-optimal DDG (pseudo)tree and let k be its depth
(note that k ≥ 1, as k = 0 implies p is degenerate). Assume n = 2. From Theorem 2.9, Definition 2.13,
and the hypothesis that the transition function δ of T encodes that shortest possible DDG tree, we
have that for each i = 1, 2, the probability pi is a rational number where the number of digits in the
shortest prefix and suffix of the concise binary expansion is at most k . Therefore, we can write

p1 = (0.a1 . . . al1sl1+1 . . . sk), p2 = (0.w1 . . .wl2ul2+1 . . .uk), (10)

where li and k − li are the number of digits in the shortest prefix and suffix, respectively, of each pi .
If l1 = l2 then the conclusion follows from Proposition 3.1. If l1 = k − 1 and l2 = k then the

conclusion follows from Remark 3.3 and the fact that p1 , 1, p2 , 1. Now, from Proposition 3.1, it
suffices to establish that l1 = l2 ≕ l , so that p1 and p2 are both integer multiples of 1/Zkl . Suppose
for a contradiction that l1 < l2 and l1 , k − 1. Write p1 = a/c and p2 = b/d where each summand is
in reduced form. By Proposition 3.1, we have c = 2k − 2l1 and d = 2k − 2l21l2<k . Then as p1 +p2 = 1
we have ad + bc = cd . If c , d then either b has a positive factor in common with d or a with c ,
contradicting the summands being in reduced form. But c = d contradicts l1 < l2.
The case where n > 2 is a straightforward extension of this argument. □

An immediate consequence of Theorem 3.4 is that all back-edges in an entropy-optimal DDG tree
that uses k bits of precision must originate at level k−1 and end at the same level l < k−1. The next
result, Theorem 3.5, shows that at most Z − 1 bits of precision are needed by an entropy-optimal
DDG tree to exactly flip a coin with rational probability p = c/Z , which is exponentially larger
than the log(Z) bits needed to encode Z . Theorem 3.6 shows that this bound is tight for many Z
and, as we note in Remark 3.7, is likely tight for infinitely many Z . These results highlight the need
for approximate entropy-optimal sampling from a computational complexity standpoint.

Theorem 3.5. LetM1, . . . ,Mn be n positive integers that sum to Z and let p ≔ (M1/Z , . . . ,Mn/Z).
Any exact, entropy-optimal sampler whose output distribution is p needs at most Z − 1 bits of precision.

Proof. By Theorem 3.4, it suffices to find integers k ≤ Z − 1 and l ≤ k such that Zkl is a multiple
of Z , which in turn implies that any entropy-optimal sampler for p needs at most Z − 1 bits.
Case 1: Z is odd. Consider k = Z − 1. We will show that Z divides 2Z−1 − 2l for some l such

0 ≤ l ≤ Z −2. Let ϕ be Euler’s totient function, which satisfies 1 ≤ ϕ(Z) ≤ Z −1 = k . Then 2ϕ(Z) ≡ 1
(mod Z) as gcd(Z , 2) = 1. Put l = Z − 1 − ϕ(Z) and conclude that Z divides 2Z−1 − 2Z−1−ϕ(Z).
Case 2: Z is even. Let t ≥ 1 be the maximal power of 2 dividing Z , and write Z = Z ′2t . Consider

k = Z ′ − 1 + t and l = j + t where j = (Z ′ − 1) − ϕ(Z ′). As in the previous case applied to Z ′, we
have that Z ′ divides 2Z

′−1 − 2j , and so Z divides 2k − 2l . We have 0 ≤ l ≤ k as 1 ≤ ϕ(Z) ≤ Z − 1.
Finally, k = Z ′ + t − 1 ≤ Z ′2t − 1 = Z − 1 as t < 2t . □

Theorem 3.6. LetM1, . . . ,Mn be n positive integers that sum to Z and put p = (M1/Z , . . . ,Mn/Z).
If Z is prime and 2 is a primitive root modulo Z , then any exact, entropy-optimal sampler whose output
distribution is p needs exactly Z − 1 bits of precision.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:14 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

Proof. Since 2 is a primitive root modulo Z , the smallest integer a for which 2a −1 ≡ 0 (mod Z)
is precisely ϕ(Z) = Z − 1. We will show that for any k ′ < Z − 1 there is no exact entropy-optimal
sampler that uses k ′ bits of precision. By Theorem 3.5, if there were such a sampler, then Zk ′l must
be a multiple of Z for some l ≤ k ′. If l < k ′, then Zk ′l = 2k

′ − 2l . Hence 2k ′ ≡ 2l (mod Z) and
so 2k

′−l ≡ 1 (mod Z) as Z is odd. But k ′ < Z − 1 = ϕ(Z), contradicting the assumption that 2 is
a primitive root modulo Z . If l = k ′, then Zk ′l = 2k

′
, which is not divisible by Z since we have

assumed that Z is odd (as 2 is not a primitive root modulo 2). □

Remark 3.7. The bound in Theorem 3.5 is likely the tightest possible for infinitely many Z .
Assuming Artin’s conjecture, there are infinitely many primes Z for which 2 is a primitive root,
which in turns implies by Theorem 3.6 that any entropy-optimal DDG tree must have Z levels.

4 OPTIMAL APPROXIMATIONS OF DISCRETE PROBABILITY DISTRIBUTIONS

Returning to Problem 2.15, we next present an efficient algorithm for finding a closest-approximation
distribution p̂ to any target distribution p, using Theorem 3.4 to constrain the set of allowable
distributions to those that are the output distribution of some entropy-optimal k-bit sampler.

4.1 f -divergences: A Family of Statistical Divergences

We quantify the error of approximate sampling algorithms using a broad family of statistical
error measures called f -divergences [Ali and Silvey 1966], as is common in the random variate
generation literature [Cicalese et al. 2006]. This family includes well-known divergences such as
total variation (which corresponds to Euclidean L1 norm), relative entropy (used in information
theory [Kullback and Leibler 1951]), Pearson chi-square (used in statistical hypothesis testing [Pear-
son 1900]), JensenśShannon (used in text classification [Dhillon et al. 2003]), and Hellinger (used
in cryptography [Steinberger 2012] and information complexity [Bar-Yossef et al. 2004]).

Definition 4.1 (Statistical divergence). Let n be a positive integer and Sn be the (n−1)-dimensional
probability simplex, i.e., the set of all probability distributions over [n]. A statistical divergence
∆ : Sn × Sn → [0,∞] is any mapping from pairs of distributions on [n] to non-negative extended
real numbers, such that for all p, q ∈ Sn we have ∆(p, q) = 0 if and only if pi = qi (i = 1, . . . ,n).

Table 1. Common statistical divergences expressed as f -divergences.

Divergence Measure Formula ∆д(p, q) Generator д(t)
Total Variation 1

2

∑n
i=1 |qi − pi | 1

2 |t − 1|
Hellinger Divergence 1

2

∑n
i=1(
√
pi −
√
qi)2 (

√
t − 1)2

Pearson Chi-Squared
∑n

i=1 (qi − pi)2/qi (t − 1)2

Triangular Discrimination
∑n

i=1 (pi − qi)2/(pi + qi) (t − 1)2/(t + 1)
Relative Entropy

∑n
i=1 log(qi/pi)qi t log t

α-Divergence 4(1 −∑n
i=1(p

(1−α)/2
i q1+αi))/(1 − α2) 4(1 − t (1+α)/2)/(1 − α2)

Total Variation Relative Entropy Reverse Relative Entropy Hellinger Divergence Alpha Divergence Matern Jeffrey Divergence

Fig. 1. Plots of generating functions д for various f -divergences, a subset of which are shown in Table 1.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:15

Definition 4.2 (f -divergence). An f -divergence is any statistical divergence of the form

∆д(p, q) ≔
∑n

i=1 д(qi/pi)pi , (11)

for some convex function д : (0,∞) → R with д(1) = 0. The function д is called the generator of ∆д .

For concreteness, Table 1 expresses several statistical divergence measures as f -divergences
and Figure 1 shows plots of generating functions. The class of f -divergences is closed under
several operations; for example, if ∆д(p, q) is an f -divergence then so is the dual ∆д∗ (q, p), where
д∗(t) = tд(1/t) is the perspective of д. A technical review of these concepts can be found in Liese
and Vajda [2006, Section III]. In this paper, we address Problem 4.6 assuming the error measure ∆ is
an f -divergence, which in turn allows us to optimize any error measure that is a 1-1 transformation
of an underlying f -divergence.

4.2 Problem Statement for Finding Closest-Approximation Distributions

Recall that Theorem 3.4 establishes that the probability distributions that can be simulated exactly
by an entropy-optimal DDG tree with k bits of precision have probabilities pi of the formMi/Zkl ,
whereMi is a non-negative integer and Zkl = 2k − 2l1k<l is the denominator of the number system
Bkl . This notion is a special case of the following concept.

Definition 4.3 (Z -type distribution [Cover and Thomas 2006]). For any positive integer Z , a proba-
bility distribution p over [n] is said to be Z -type distribution if

pi ∈
{
0

Z
,
1

Z
,
2

Z
, . . . ,

Z

Z

}
(i = 1, . . . ,n). (12)

Definition 4.4. For positive integer n and non-negative integer Z , define the set

M[n,Z] ≔
{
(M1, . . . ,Mn)

�� Mi ≥ 0, Mi ∈ Z,
∑n

i=1Mi = Z
}
, (13)

which can be thought of as the set of all possible assignments of Z indistinguishable balls into n
distinguishable bins such that each bin i hasMi balls.

Remark 4.5. Each element M ∈ M[n,Z] may be identified with a Z -type distribution q over
[n] by letting qi ≔ Mi/Z (i = 1, . . . ,n), and thus adopt the notation ∆д(p,M) to indicate the
f -divergence between probability distributions p and q (cf. Eq. (11)).

By Theorem 3.4 and Remark 4.5, Problem 2.15 is a special case of the following problem, since
the output distribution of any k-bit entropy-optimal sampler is Z -type, where Z ∈ {Zk0, . . . ,Zkk }.

Problem 4.6. Given a target distribution p over [n], an f -divergence ∆д , and a positive integer Z ,
find a tuple M = (M1, . . . ,Mn) ∈ M[n,Z] that minimizes the divergence

∆д(p,M) =
n∑

i=1

д

(
Mi

Zpi

)
pi . (14)

As the setM[n,Z] is combinatorially large, Problem 4.6 cannot be solved efficiently by enu-
meration. In the next section, we present an algorithm that finds an assignment M that minimizes
the objective function (14) among the elements ofM[n,Z]. By Theorem 3.4, for any precision
specification k ≥ 0, using Z = Zkl for each l = 0, . . . ,k and then selecting the value of l for which
Eq. (14) is smallest corresponds to finding a closest-approximation distribution p̂ for the class of
k-bit entropy-optimal samplers, and thus solves the first part of Problem 2.15.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:16 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

Algorithm 3 Finding an error-minimal Z -type probability distribution.

Input: Probability distribution p ≔ (p1, . . . ,pn); integer Z > 0; and f -divergence ∆д .
Output: Numerators M ≔ (M1, . . . ,Mn) of Z -type distribution that minimizes ∆д(p,M).
1. For each i = 1, . . . ,n:

1.1 If д
(
⌊Zpi ⌋
Zpi

)
≤ д

(
⌊Zpi ⌋+1
Zpi

)
then setMi ≔ ⌊Zpi ⌋;

Else setMi ≔ ⌊Zpi ⌋ + 1.
2. ForW ∈ M[n,M1 + · · · +Mn], i ∈ [n], and δ ∈ {+1,−1}, define the function

ϵ(W, i,δ) ≔ pi [д((Wi + δ)/(Zpi)) − д(Wi/(Zpi))] , (15)

which is the cost of settingWi ←Wi + δ (or∞ if (Wi + δ) < {0, . . . ,Z }).
3. Repeat until convergence:

Let (j, j ′) ≔ argmin(i,i′)∈[n]2 |i,i′ {ϵ(M, i,+1) + ϵ(M, i ′,−1)}.
If ϵ(M, j,+1) + ϵ(M, j ′,−1) < 0 then:

UpdateMj ← Mj + 1.
UpdateMj′ ← Mj′ − 1.

4. Let S ≔ (M1 + · · ·+Mn) −Z be the number of units that need to be added toM (if S < 0)
or subtracted from M (if S > 0) in order to ensure that M sums to Z .

5. If S = 0, then return M as the optimum.
6. Let δS ≔ 1[S < 0] − 1[S > 0].
7. Repeat S times:

Let j ≔ argmini=1, ...,n(ϵ(M, i,δS)).
UpdateMj ← Mj + δS .

8. Return M as the optimum.

4.3 An Efficient Optimization Algorithm

Algorithm 3 presents an efficient procedure that solves Problem 4.6. We now state the main theorem.

Theorem 4.7. For any probability distribution p, f -divergence ∆д , and denominator Z > 0, the
distribution returned by Algorithm 3 minimizes the objective function (14) over all Z -type distributions.

The remainder of this section contains the proof of Theorem 4.7. Section 4.3.1 establishes
correctness and Section 4.3.2 establishes runtime.

4.3.1 Theoretical Analysis: Correctness. In this section, let p,n,Z , andд be defined as in Algorithm 3.

Definition 4.8. Let t > 0 be an integer andM ∈ M[n, t]. For integers a and b, define

∆
i [a → b;M,Z] ≔ pi

[
д

(
Mi + b

Zpi

)
− д

(
Mi + a

Zpi

)]
(i = 1, . . . ,n). (16)

For typographical convenience, we write ∆i [a → b;M] (or ∆i [a → b]) when Z (andM) are clear
from context. We define ∆i [a → b] ≔ ∞ whenever (Mi + b) or (Mi + a) are not in {0, . . . , t}.

Remark 4.9. The convexity of д implies that for any real number j,

д

(
Mi + j + 1

Zpi

)
− д

(
Mi + j

Zpi

)

1/(Zpi)
≤

д

(
Mi + j + 2

Zpi

)
− д

(
Mi + j + 1

Zpi

)

1/(Zpi)
(i = 1, . . . ,n). (17)

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:17

Letting j range over the integers gives

· · · < ∆
i [−2→ −1] < ∆

i [−1→ 0] < ∆
i [0→ 1] < ∆

i [1→ 2] < ∆
i [2→ 3] < · · · . (18)

By telescoping (18), if a < b < c then

∆
i [a → b] < ∆

i [a → c] . (19)

Finally, it is immediate from the definition that ∆i [a → b] = −∆i [b → a] for all a and b.

Theorem 4.10. Let t > 0 be an integer andM ≔ (M1, . . . ,Mn) be any assignment inM[n, t]. If,
given initial values M the loop defined in Step 3 of Algorithm 3 terminates, then the final values of M
minimize ∆д(p, ·) over the setM[n, t].

Proof. We argue that the locally optimal assignments performed at each iteration of the loop
are globally optimal. Assume toward a contradiction that the loop in Step 3 terminates with a
suboptimal assignment (W1, . . . ,Wn) ∈ M[n, t]. Then there exist indices i and j with 1 ≤ i < j ≤ n

such that for some positive integers a and b,

pjд

(
Wj + a

Zpj

)
+ piд

(
Wi − b
Zpj

)
< pjд

(
Wj

Zpj

)
+ piд

(
Wi

Zpj

)
(20)

⇐⇒ ∆
j [0→ a] + ∆i [0→ −b] < 0 (21)

⇐⇒ ∆
j [0→ a] < −∆i [0→ −b] (22)

⇐⇒ ∆
j [0→ a] < ∆

i [−b → 0] . (23)

Combining (23) with (19) gives

∆
j [0→ 1] < ∆

j [0→ a] < ∆
i [−b → 0] < ∆

i [−1→ 0] , (24)

which implies ϵj (+1) + ϵi (−1) < 0, and so the loop can execute for one more iteration. □

We now show that the value ofM at the termination of the loop in Step 7 of Algorithm 3 optimizes
the objective function overM[n,Z].

Theorem 4.11. For some positive integer t < Z , suppose that M ≔ (M1, . . . ,Mn) minimizes the
objective function ∆д(p, ·) over the setM[n, t]. Then M+ defined by M+i ≔ Mi + 1i=u minimizes
∆д(p, ·) overM[n, t + 1], where

u ≔ argmin
i=1, ...,n

{
pi

[
д

(
Mi + 1

Zpi

)
− д

(
Mi

Zpi

)]}
. (25)

Proof. Assume, for a contradiction, that there existsM′ ≔ (M ′1, . . . ,M ′n) that minimizes ∆д(p, ·)
overM[n, t + 1] with ∆д(p,M′) < ∆д(p,M+). ClearlyM′ , M+. We proceed in cases.

Case 1: M ′u = Mu . Then there exists integers j , t and a ≥ 1 such thatM ′j = Mj + a. Hence

∆
u [0→ 1] < ∆

j [0→ 1] ≤ ∆
j [(a − 1) → a] = −∆j [a → (a − 1)] (26)

=⇒ ∆
u [0→ 1] + ∆j [a → (a − 1)] < 0, (27)

where the first inequality of (26) follows from the minimality of u in (25) and the second inequality
of (26) follows from (18). Therefore, setting M ′u ← Mu + 1 and M ′j ← Mj + (a − 1) gives a net
reduction in the cost, a contradiction to the optimality ofM′.
Case 2: M ′u = Mu +1. Assume without loss of generality (for this case) thatu = 1. SinceM′ , M+,

there exists an index j > 1 such that M ′j , Mj . There are t + 1 − (M1 + 1) = t − M1 remaining

units to distribute among (M ′2, . . . ,M ′n). From the optimality ofM, the tail (M2, . . . ,Mn) minimizes∑n
i=2 piд(Mi/Zpi) among all tuples using t −M1 units; otherwise a more optimal solution could be

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:18 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

obtained by holdingM1 fixed and optimizing (M2, . . . ,Mn). It follows that the tail (M ′2, . . . ,M ′n) of
M′ is less optimal than the tail (M2, . . . ,Mn) ofM+, a contradiction to the optimality ofM′.
Case 3: M ′u = Mu + c for some integer c ≥ 2. Then there exists some j , t such thatM ′j = Mj −a

for some integer a ≥ 1. From the optimality ofM, any move must increase the objective, i.e.,

∆
u [0→ 1] > ∆

j [−1→ 0] . (28)

Combining (18) with (28) gives

∆
u [(c − 1) → c] ≥ ∆

u [0→ 1] > ∆
j [−1→ 0] ≥ ∆

j [−a → −(a − 1)] (29)

=⇒ ∆
u [c → (c − 1)] + ∆j [−a → −(a − 1)] < 0 (30)

Therefore, settingM ′u ← Mu + (c − 1) andM ′j ← Mj − (a − 1) gives a net reduction in the cost, a

contradiction to the optimality of M′.
Case 4: M ′u = Mu − a for some integer a ≥ 1. This case is symmetric to the previous one. □

By a proof symmetric to that of Theorem 4.11, we obtain the following.

Corollary 4.12. IfMminimizes ∆д(p, ·) overM[n, t] for some t ≤ Z , then the assignmentM− with
M−i ≔ Mi − 1i=u minimizes ∆д(p, ·) overM[n, t − 1], where u ≔ argmini=1, ...,n ∆

i [0→ −1;M,Z].
4.3.2 Theoretical Analysis: Runtime. We next establish that Algorithm 3 halts by showing the loops
in Step 3 and Step 4 execute for at most n iterations. Recall that Theorem 4.10 established that if
the loop in Step 3 halts, then it halts with an optimal assignment. The next two theorems together
establish this loop halts in at most n iterations.

Theorem 4.13. In the loop in Step 3 of Algorithm 3, there is no index j ∈ [n] for which Mj is
incremented at some iteration of the loop and then decremented at a later iteration.

Proof. The proof is by contradiction. Suppose that iteration s is the first iteration of the loop
where some index j was decremented, having only experienced increments (if any) in the previous
iterations 1, 2, . . . , s − 1. Let r ≤ s − 1 be the iteration at which j was most recently incremented,
and j ′′ the index of the element which was decremented at iteration r so that

∆
j [0→ 1;Mr] + ∆j′′ [0→ −1;Mr] < 0, (31)

where Mq denotes the assignment at the beginning of any iteration q (q = 1, . . . , s).
The following hold:

∆
j′ [0→ 1;Ms] + ∆j [0→ −1;Ms] < 0, (32)

∆
j [0→ 1;Mr] = −∆j [0→ −1;Ms] , (33)

∆
j′ [0→ 1;Mr] ≤ ∆

j′ [0→ 1;Ms] , (34)

where (32) follows from the fact that j is decremented at iteration s and j ′ is the corresponding index
which was incremented that gives a net decrease in the error; (33) follows from the hypothesis that
r was the most recent iteration at which j was incremented; and (34) follows from the hypothesis
on iteration s , which implies that j ′ must have only experienced increments at iterations 1, . . . , s − 1
and the property of ∆j′ from (18). These together yield

∆
j′ [0→ 1;Mr] ≤ ∆

j′ [0→ 1;Ms] < −∆j [0→ 1;Ms] = ∆
j [0→ 1;Mr] , (35)

where the first inequality follows from (34), the second inequality from (32), and the final equality
from (33). But (35) implies that the pair of indices (j, j ′′) selected (31) at iteration r was not an
optimal choice, a contradiction. □

Theorem 4.14. The loop in Step 3 of Algorithm 3 halts in at most n iterations.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:19

Proof. Theorem 4.13 establishes that once an item is decremented it will never incremented at a
future step; and once an item is incremented it will never be decremented at a future step. To prove
the bound of halting within n iterations, we show that there are at most n increments/decrements
in total. We proceed by a case analysis on the generating function д.

Case 1: д > 0 is a positive generator. In this case, we argue that the values (M1, . . . ,Mn) obtained
in Step 1 are already initialized to the global minimum, and so the loop in Step 3 is never entered.
By the hypothesis д > 0, it follows that д is decreasing on (0, 1) and increasing on (1,∞):

д

(
0

Zpi

)
> · · · > д

(
⌊Zpi ⌋
Zpi

)
, д

(
⌊Zpi ⌋ + 1

Zpi

)
< · · · < д

(
Z

Zpi

)
. (36)

Therefore, the function дi (m) ≔ piд(m/(Zpi)) attains its minimum at eitherm = ⌊Zpi ⌋ orm =
⌊Zpi ⌋ + 1. Since the objective function is a linear sum of the дi , minimizing each term individually
attains the global minimum. The loop in Step 3 thus executes for zero iterations.
Case 2: д > 0 on (1,∞) and д < 0 on an interval (γ , 1) for some 0 < γ < 1. The main indices i of

interest are those for which

γ <
⌊Zpi ⌋
Zpi

< 1 <
⌊Zpi ⌋ + 1

Zpi
, (37)

since all indices for which д(⌊Zpi ⌋/(Zpi)) > 0 and д((⌊Zpi ⌋ + 1)/(Zpi)) > 0 are covered by the
previous case. Therefore we may assume that

γ ≤ min
i=1, ...,n

(
⌊Zpi ⌋
Zpi

)
, (38)

with д increasing on (γ ,∞). (The proof for general γ is a straightforward extension of the proof
presented here.) We argue that the loop maintains the invariantMi ≤ ⌊Zpi ⌋+1 for each i = 1, . . . ,n.
The proof is by induction on the iterations of the loop. For the base case, observe that

д

(
⌊Zpi ⌋
Zpi

)
< 0 < д

(
⌊Zpi ⌋ + 1

Zpi

)
(i = 1, . . . ,n), (39)

which follows from the hypothesis on д in this case. The values after Step 1 are thusMi = ⌊Zpi ⌋
for each i = 1, . . . ,n. The first iteration performs one increment/decrement so the bound holds.

For the inductive case, assume that the invariant holds for iterations 2, . . . , s−1. Assume, towards
a contradiction, that in iteration s there existsMj = ⌊Zpj ⌋ + 1 andMj is incremented. LetMu be
the corresponding element that is decremented. We analyze two cases onMu .

Subcase 2.1: Mu/(Zpu) ≤ 1. ThenMu = ⌊Zpu ⌋ − a for some integer a ≥ 0. But then

(Mu − a − 1)/Zpu < (Mu − a)/Zpu < 1 < (Mj + 1)/Zpj < (Mj + 2)/Zpj (40)

and

pjд

(
Mj + 2

Zpj

)
+ puд

(
Mu − a − 1

Zpu

)
< pjд

(
Mj + 1

Zpj

)
+ puд

(
Mu − a
Zpu

)
(41)

⇐⇒
д

(
Mj + 2

Zpj

)
− д

(
Mj + 1

Zpj

)

1/(Zpj)
<

д

(
Mu − a
Zpu

)
− д

(
Mu − a − 1

Zpu

)

1/(Zpu)
, (42)

a contradiction to the convexity of д.
Subcase 2.2: 1 ≤ Mu/(Zpu). By the inductive hypothesis, it must be that Mu = ⌊Zpu ⌋ + 1.

Since the net error of the increment and corresponding decrement is negative in the if branch of
Step 3, ∆j [1→ 2] + ∆l [1→ 0] < 0, which implies

∆
j [1→ 2] < −∆l [1→ 0] = ∆

l [0→ 1] . (43)

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:20 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

Since ∆j [0→ 1] < ∆
j [1→ 2] from (18), it follows thatMj should have been incremented at two

previous iterations before having incrementedMu ← Mu + 1, contradicting the minimality of the
increments at each iteration.
Since each Mi is one greater than the initial value at the termination of the loop, and at each

iteration one value is incremented, the loop terminates in at most n iterations.
Case 3: д > 0 on (0, 1) and д < 0 on some interval (1,γ) for 1 < γ ≤ ∞. The proof is symmetric

to the previous case, with initial valuesMi = ⌊Zpi ⌋ + 1 from Step 1 and invariantMi ≥ ⌊Zpi ⌋. □

Remark 4.15. The overall cost of Step 3 is O(n logn), since (j, j ′) can be found in O(logn) time
by performing order-preserving insertions and deletions on a pair of initially sorted lists.

Theorem 4.16. The value S defined in Step 4 of Algorithm 3 always satisfies −(n − 1) ≤ S ≤ n − 1.

Proof. The smallest value of S is obtained when eachMi = ⌊Zpi ⌋, in which case

0 ≤
n∑

i=1

(Zpi − ⌊Zpi ⌋) ≔
n∑

i=1

χ (Zpi) ≤ n − 1, (44)

where the first inequality follows from ⌊x⌋ ≤ x and the final inequality from the fact that 0 ≤
χ (x) < 1 so that the integer

∑n
i=1 χ (Zpi) < n. Therefore, −S ≤ (n − 1) =⇒ −(n − 1) ≤ S . Similarly,

the largest value of S is obtained when eachMi = ⌊Zpi ⌋ + 1, so that

n∑

i=1

(⌊Zpi ⌋ + 1 − Zpi) =
n∑

i=1

(1 − χ (Zpi)) = n −
n∑

i=1

χ (Zpi) ≤ n − 1. (45)

Therefore, S ≤ n − 1, where the final inequality uses the fact that χ (Zpi) , 0 for some i (otherwise,
Mi = ⌊Zpi ⌋ would be the optimum for each i). □

Theorems 4.10ś4.16 together imply Theorem 4.7. Furthermore, using the implementation given
in Remark 4.15, the overall runtime of Algorithm 3 is order n logn.
Returning to Problem 2.15, from Theorems 3.4 and Theorem 4.7, the approximation error can

be minimized over the set of output distributions of all entropy-optimal k-bit samplers as follows:
(i) for each j = 0, . . . ,k , letMj be the optimal Zk j -type distribution for approximating p returned by
Algorithm 3; (ii) let l = argmin0≤j≤k ∆д(p,Mj); (iii) set p̂i ≔ Ml i/Zkl (i = 1, . . . ,n). The optimal

probabilities for any sampler that halts after consuming at most k bits (as in Proposition 2.16)
are given by p̂i ≔ Mki/Zkk . The next theorem establishes that, when the f -divergence is total
variation, the approximation error decreases proportionally to 1/Z (the proof is in the appendix).

Theorem 4.17. If ∆д is the total variation divergence, then any optimal solution M returned by
Algorithm 3 satisfies ∆д(p,M) ≤ n/2Z .

5 CONSTRUCTING ENTROPY-OPTIMAL SAMPLERS

Now that we have described how to find a closest-approximation distribution for Problem 4.6 using
Algorithm 3, we next describe how to efficiently construct an entropy-optimal sampler.

Suppose momentarily that we use the rejection method (Algorithm 1) described in Section 1.1,
which can sample exactly from any Z -type distribution, which includes all distributions returned
by Algorithm 3. Since any closest-approximation distribution that is the output distribution of a
k-bit entropy-optimal sampler has denominator Z = Zkl ≤ 2k , rejection sampling needs exactly k
bits of precision. The expected number of trials is 2k/Z and k random bits are used per trial, so that
k2k/Z ≤ 2k bits per sample are consumed on average. The following example illustrates that the
entropy consumption of the rejection method can be exponentially larger than the entropy of p.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:21

Example 5.1. Let p = (a1/2k , . . . ,an/2k) with n = k . An entropy-optimal sampler uses at most
logn bits per sample (Theorem 2.9), whereas rejection (Algorithm 1) uses n bits per sample.

We thus turn our attention toward constructing an entropy-optimal sampler that realizes the
entropy-optimality guarantees from Theorem 2.9. For the data structures in this section we use a
zero-based indexing system. For positive integers l and k , letM ≔ (M0, . . . ,Mn−1) be the return
value of Algorithm 3 given denominator Zkl . Without loss of generality, we assume that (i) k , l ,
andMi have been reduced so that some probabilityMi/Zkl is in lowest terms; and (ii) for each j

we haveMj < Zkl (ifMj = Zkl for some j, then the sampler is degenerate: it always returns j).
Algorithm 4 shows the first stage of the construction, which returns the binary probability matrix

P of M. The ith row contains the first k bits in the concise binary expansion ofMi/Zkl , where first
l columns encode the finite prefix and the final k − l columns encode the infinitely repeating suffix.
Algorithm 5 shows the second stage, which converts P from Algorithm 4 into an entropy-optimal
DDG tree T . From Theorem 2.9, T has a node labeled r at level c + 1 if and only if P[r , c] = 1 (recall
the root is at level 0, so column c of P corresponds to level c+1 ofT). TheMakeLeafTable function
returns a hash table L that maps the level-order integer index i of any leaf node in a complete binary
tree to its label L[i] ∈ {1, . . . ,n} (the index of the root is zero). The labeling ensures that leaf nodes
are filled right-to-left and are labeled in increasing order. Next, we define a node data structure
with fields left, right, and label, indicating the left child, right child, and outcome label (for leaf
nodes). The MakeTree function builds the tree T from L, returning the root node. The function
stores the list A of ancestors at level l in right-to-left order, and constructs back-edges from any
non-leaf node at level k − 1 to the next available ancestor at level l to encode the recurring subtree.
Algorithm 6 shows the third stage, which converts the root node of the entropy-optimal DDG

tree T returned from Algorithm 5 into a sampling-efficient encoding enc. The PackTree function
fills the array enc such that for an internal node i , enc[i] and enc[i + 1] store the indexes of enc for
the left and right child (respectively) if i is a branch; and for an leaf node i , enc[i] stores the label
(as a negative integer). The field node.loc tracks back-edges, pointing to the ancestor instead of
making a recursive call whenever a node has been visited by a previous recursive call.
Now that preprocessing is complete, Algorithm 7 shows the main sampler, which uses the enc

data structure from Algorithm 6 and the flip() primitive to traverse the DDG tree starting from
the root (at enc[0]). Since PackTree uses negative integers to encode the labels of leaf nodes, the
SampleEncoding function returns the outcome −enc[c] whenever enc[c] < 0. Otherwise, the
sampler goes to the left child (at enc[c]) if flip() returns 0 or the right child (at enc[c + 1]) if flip()
returns 1. The resulting sampler is very efficient and only stores the linear array enc in memory,
whose size is order nk . (The DDG tree of an entropy-optimal k-bit sampler is a complete depth-k
binary tree with at most n nodes per level, so there are at most nk leaf nodes and nk branch nodes.)

For completeness, we also present Algorithm 8, which implements an entropy-optimal sampler
by operating directly on the n × k matrix P returned from Algorithm 4. This algorithm is based
on a recursive extension of the Knuth and Yao sampler given in Roy et al. [2013], where we allow
for an infinitely repeating suffix by resetting the column counter c to l whenever c = k − 1 is at
the last columns. (The algorithm in Roy et al. [2013] is designed for hardware and samples from a
probability matrix with a finite number of columns and no repeating suffixes. Unlike the focus of this
paper, Roy et al. [2013] does not deliver closest-approximation distributions for limited-precision
sampling.) Algorithm 7 is significantly more efficient as its runtime is dictated by the entropy
(upper bounded by logn) whereas the runtime of Algorithm 8 is upper bounded by n logn due to
the order n inner loop. Figure 4 in Section 6.2.3 shows that, when implemented in software, the
increase in algorithmic efficiency from using a dense encoding can deliver wall-clock gains of up
to 5000x on a representative sampling problem.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:22 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

Algorithm 4 Building the probability matrix for a Zkl -type probability distribution.

Input: Integers k, l with 0 ≤ l ≤ k ; integers (M0, . . .Mn−1) with sum Zkl ≔ 2k − 2l1l<k .
Output: n × k probability matrix P of distribution (M0/Zkl , . . . ,Mn−1/Zkl).
1. Repeat for each i = 0, . . . ,n − 1:

1.1. If l = k , then let xi ≔ Mi and yi ≔ 0;
Else if l = 0, then let xi ≔ 0 and yi ≔ Mi ;
Else if 0 < l < k , then let xi ≔

⌊
Mi/(2k−l − 1)

⌋
,yi ≔ Mi − (2k−l − 1)xi .

1.2. Let ai be the length-l binary string encoding xi ,
1.3. Let si be the length k − l binary string encoding yi .
1.4. Let bi ≔ ai ⊕ si be their concatenation.

2. Return the n × k matrix P ≔

b01 b12 . . . b0,k−1
.
.
.

.

.

.
.
.
.

.

.

.

bn−1,1 bn−1,2 . . . bn−1,k−1

.

Algorithm 5 Building an entropy-optimal DDG tree from a probability matrix.

Input: n × k matrix P representing n k-bit binary expansions with length-l suffix.
Output: root node of discrete distribution generating tree for P, from Theorem 2.9.

1. Define the following functions:

function MakeLeafTable(P) ▷ returns map of node indices to outcomes
L← ∅; i ← 2 ▷ initialize dictionary and root index

for c = 0, . . . ,k − 1 do ▷ for each level c + 1 in the tree
for r = 0, . . . ,n − 1 do ▷ for each outcome r

if P[r , c] = 1 then ▷ if the outcome is a leaf
L[i] ← r + 1 ▷ mark i with the outcome
i ← i − 1 ▷ move i one node left

i ← 2i + 2 ▷ index of next first leaf node
return L

function MakeTree(i,k, l ,A,L) ▷ returns DDG tree with labels L
node← Node() ▷ initialize node for current index
if i ∈ L then ▷ if node is a leaf

node.label ← L[i] ▷ label it with outcome
else ▷ if node is a branch

level ← ⌊log2(i + 1)⌋ ▷ compute level of current node
if level = l then A.Append(node) ▷ add node to list of ancestors

node.right ← A.Pop(0) if [level = k − 1 and (2i + 2) < L] ▷ make right child
else MakeTree(2i + 2,k, l ,A,L)

node.left ← A.Pop(0) if [level = k − 1 and (2i + 1) < L] ▷ make left child
else MakeTree(2i + 1,k, l ,A,L)

return node

2. Let L← MakeLeafTable(P).
3. Let root ← MakeTree(0,k, l , [],L).
4. Return root.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:23

Algorithm 6 Building a sampling-efficient linear encoding from a DDG tree.

Input: root node of a discrete distribution generating tree.
Output: Dense linear array enc that encodes the branch and leaf nodes of the tree.

1. Define the following function:

function PackTree(enc, node, offset) ▷ returns sampling-efficient data structure
node.loc ← offset ▷ mark node at this location
if node.label , Nil then ▷ node is a leaf

enc[offset] ← −node.label ▷ label it with outcome
return offset + 1 ▷ return the next offset

if node.left.loc , Nil then ▷ left child has been visited
enc[offset] ← node.left.loc ▷ mark location of left child
w ← offset + 2 ▷ setw two cells to the right

else

enc[offset] ← offset + 2 ▷ point to left child
w ← PackTree[enc, node.left, offset + 2] ▷ recursively build left subtree

if node.right.loc , Nil then ▷ right child has been visited
enc[offset + 1] ← node.right.loc ▷ mark location of right child

else

enc[offset + 1] ← w ▷ point to right child
w ← PackTree(enc, node.right,w) ▷ recursively build right subtree

returnw ▷ return next empty cell

2. Create array enc[] and call PackTree(enc, root, 0).
3. Return enc.

Algorithm 7 Sampling a DDG tree given the
linear encoding from Algorithm 6.

function SampleEncoding(enc)
Let c ← 0
while True do

b ← flip

c ← enc[c + b]
if enc[c] < 0 then

return −enc[c]

Algorithm 8 Sampling a DDG tree given the
probability matrix from Algorithm 4.

function SampleMatrix(P,k, l)
d ← 0
c ← 0
while True do

b ← flip

d ← 2d + (1 − b)
for r = 0, . . . ,n − 1 do

d ← d − P[r][c]
if d = −1 then

return r + 1
if c = k − 1 then

c ← l

else

c ← c + 1

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:24 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

6 EXPERIMENTAL RESULTS

We next evaluate the optimal limited-precision sampling algorithms presented in this paper. Sec-
tion 6.1 investigates how the error and entropy consumption of the optimal samplers vary with
the parameters of common families of discrete probability distributions. Section 6.2 compares the
optimal samplers with two limited-precision baselines samplers, showing that our algorithms are
up to 1000x-10000x more accurate, consume up to 10x fewer random bits per sample, and are
10xś100x faster in terms of wall-clock time. Section 6.3 compares our optimal samplers to exact
samplers on a representative binomial distribution, showing that exact samplers can require high
precision or consume excessive entropy, whereas our optimal approximate samplers can use less
precision and/or entropy at the expense of a small sampling error. The appendix contains a study
of how the closest-approximation error varies with the precision specification and entropy of the
target distribution, as measured by three different f -divergences. The online artifact contains the
experiment code. All C algorithms used for measuring performance were compiled with gcc level
3 optimizations, using Ubuntu 16.04 on AMD Opteron 6376 1.4GHz processors.

6.1 Characterizing Error and Entropy for Families of Discrete Distributions

We study how the approximation error and entropy consumption of our optimal approximate sam-
plers vary with the parameter values of four families of probability distributions: (i) Binomial(n,p):
the number of heads in n independent tosses of a biased p-coin; (ii) Beta Binomial(n,α , β): the
number of heads in n independent tosses of a biased p-coin, where p is itself randomly drawn
from a Beta(α , β) distribution; (iii) Discrete Gaussian(n,σ): a discrete Gaussian over the integers
{−n, . . . ,n} with variance σ 2; and (iv) Hypergeometric(n,m,d): the number of red balls obtained
after d draws (without replacement) from a bin that hasm red balls and n −m blue balls.

Figure 2 shows how the closest-approximation error (top row) and entropy consumption (bottom
row) vary with two of the parameters of each family (x and y-axes) when using k = 32 bits of
precision. Since Beta Binomial and Hypergeometric have three parameters, we fix n = 80 and vary
the remaining two parameters. Closest-approximation distributions are obtained from Algorithm 3,
using Z = 232 and the Hellinger divergence (which is most sensitive at medium entropies). The
plots show that, even with the same family, the closest-approximation error is highly dependent on
the target distribution and the interaction between parameter values. For example, in Figure 2a

0.0 0.1 0.2 0.3 0.4 0.5

Coin Weight

10

20

30

40

50

60

70

80

90

N
u
m
b
er

o
f
T
ri
al
s

Theoretically Optimal Error

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

0.0 0.1 0.2 0.3 0.4 0.5

Coin Weight

10

20

30

40

50

60

70

80

90

N
u
m
b
er

o
f
T
ri
al
s

Number of Bits per Sample

3

4

5

6

(a) Binomial

1 2 3 4 5 6 7 8 9 10

Beta

1

2

3

4

5

6

7

8

9

10

A
lp
h
a

Theoretically Optimal Error

10
−16

10
−14

10
−12

10
−10

1 2 3 4 5 6 7 8 9 10

Beta

1

2

3

4

5

6

7

8

9

10

A
lp
h
a

Number of Bits Per Sample

3

4

5

6

7

8

(b) Beta Binomial (n = 80)

10 20 30 40 50

Variance

10

20

30

40

50

N
u
m
b
er

o
f
O
u
tc
o
m
es

Theoretically Optimal Error

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10 20 30 40 50

Variance

10

20

30

40

50

N
u
m
b
er

o
f
O
u
tc
o
m
es

Number of Bits per Sample

4.0

4.5

5.0

5.5

6.0

6.5

(c) Discrete Gaussian

10 20 30 40 50 60 70

Number of Draws

10

20

30

40

50

60

70

N
u
m
b
er

o
f
R
ed

B
al
ls

Theoretically Optimal Error

10
−32

10
−28

10
−24

10
−20

10
−16

10
−12

10 20 30 40 50 60 70

Number of Draws

10

20

30

40

50

60

70

N
u
m
b
er

o
f
R
ed

B
al
ls

Number of Bits Per Sample

2.5

3.0

3.5

4.0

4.5

5.0

(d) Hypergeometric (n = 80)

Fig. 2. Characterization of the theoretically optimal approximation error (top row) and average number of bits

per sample (bottom row) for four common families of probability distributions using k = 32 bits of precision.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:25

(top panel), the black spikes at coin weight 0.25 and 0.50 correspond to pairs (n,p) where the
binomial distribution can be sampled exactly. Moreover, for a fixed coin weight (x-axis), the error
increases as the number of trials (y-axis) increases. The rate at which the error increases with
the number of trials is inversely proportional to the coin weight, which is mirrored by the fact
that the average number of bits per sample (bottom panel) varies over a wider range and at a
faster rate at low coin weights than at high coin weights. In Figure 2c, for a fixed level of variance
(x-axis), the error increases until the number of outcomes (y-axis) exceeds the variance, after
which the tail probabilities become negligible. In Figure 2d when the number of red ballsm and
number of draws d are equal to roughly half of the population size n, the bits per sample and
approximation error are highest (grey in center of both panels). This relationship stands in contrast
to Figure 2b, where approximation error is lowest (black/purple in lower left of top panel) when
bits per sample is highest (grey in lower left of bottom panel). The methods presented in this paper
enable rigorous and systematic assessments of the effects of bit precision on theoretically-optimal
entropy consumption and sampling error, as opposed to empirical, simulation-based assessments
of entropy and error which can be very noisy in practice (e.g., Jonas [2014, Figure 3.15]).

6.2 Comparing Error, Entropy, and Runtime to Baseline Limited-Precision Algorithms

We next show that the proposed sampling algorithm is more accurate, more entropy-efficient, and
faster than existing limited-precision sampling algorithms. We briefly review two baselines below.

Inversion sampling. Recall from Section 1.1 that inversion sampling is a universal method based
on the key property in Eq. (1). In the k-bit limited-precision setting, a floating-point number U ′

(with denominator 2k) is used to approximate a real uniform variate U . The GNU C++ standard
library [Lea 1992] v5.4.0 implements inversion sampling as in Algorithm 2 (using ≤ instead of <).3

AsW ∼ Uniform({0, 1/2k , . . . , (2k − 1)/2k }), it can be shown that the limited-precision inversion

sampler has the following output probabilities p̂i , where p̃j ≔
∑j

s=1 ps (j = 1, . . . ,n) and 2 ≤ i ≤ n:

p̂1 ∝ ⌊2kp̃1⌋ + 1p̃1,1; p̂i ∝
{
max(0, ⌈2kp̃i ⌉ − ⌊2kp̃i−1⌋) (if 2kp̃i = ⌊2kp̃i ⌋ and p̃i , 1)
max(0, ⌈2kp̃i ⌉ − ⌊2kp̃i−1⌋ − 1) (otherwise)

. (46)

Interval algorithm [Han and Hoshi 1997]. This method implements inversion sampling by recur-
sively partitioning the unit interval [0, 1] and using the cumulative distribution of p to lazily find
the bin in which a uniform random variable falls. We refer to Uyematsu and Li [2003, Algorithm 1]
for a limited-precision implementation of the interval algorithm using k-bit integer arithmetic.

6.2.1 Error Comparison. Both the inversion and interval samplers use at most k bits of precision,
which, from Proposition 2.16, means that these algorithms are less accurate than the optimal
approximate samplers from Algorithm 3 (using Z = 2k) and less entropy-efficient than the sampler
in Algorithm 7. To compare the errors, 500 distributions are obtained by sweeping through a
grid of values that parameterize the shape and dimension for each of six families of probability
distributions. For each target distribution, probabilities from the inversion method (from Eq. (46)),
the interval method (computed by enumeration), and the optimal approximation (from Algorithm 3)
are obtained using k = 16 bits of precision. In Figure 3, the x-axis shows the approximation error
(using the Hellinger divergence) of each method relative to the theoretically-optimal error achieved
by our samplers. The y-axis shows the fraction of the 500 distributions whose relative error is less
than or equal to the value on the x-axis. The results show that, for this benchmark set, the output
distributions of inversion and interval samplers are up to three orders of magnitude less accurate
relative to the output distribution of the optimal k-bit approximation delivered by our algorithm.

3Steps 1 and 2 are implemented in generate_canonical and Step 3 is implemented in discrete_distribution::operator() using a
linear scan; see /gcc-5.4.0/libstdc++v3/include/bits/random.tcc in https://ftp.gnu.org/gnu/gcc/gcc-5.4.0/gcc-5.4.0.tar.gz.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

https://ftp.gnu.org/gnu/gcc/gcc-5.4.0/gcc-5.4.0.tar.gz

36:26 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

Table 2. Comparison of the average number of input bits per sample used by inversion sampling, interval

sampling, and the proposed method, in each of the six parameterized families using k = 16 bits of precision.

Distribution Average Number of Bits per Sample

Inversion Sampler (Alg. 2) Interval Sampler [Uyematsu and Li 2003] Optimal Sampler (Alg. 7)

Benford 16 6.34 5.71

Beta Binomial 16 4.71 4.16

Binomial 16 5.05 4.31

Boltzmann 16 1.51 1.03

Discrete Gaussian 16 6.00 5.14

Hypergeometric 16 4.04 3.39

10
0

10
1

10
2

Relative Approximation Error

0

20

40

60

80

100

%
o
f
D
is
tr
ib
u
ti
o
n
s

Benford

Inversion Sampler

Interval Sampler

Optimal Sampler

10
0

10
1

10
2

10
3

10
4

Relative Approximation Error

0

20

40

60

80

100

%
o
f
D
is
tr
ib
u
ti
o
n
s

Beta Binomial

10
0

10
1

10
2

10
3

Relative Approximation Error

0

20

40

60

80

100

%
o
f
D
is
tr
ib
u
ti
o
n
s

Binomial

10
0

10
1

10
2

10
3

Relative Approximation Error

0

20

40

60

80

100

%
o
f
D
is
tr
ib
u
ti
o
n
s

Boltzmann

10
0

10
1

10
2

Relative Approximation Error

0

20

40

60

80

100

%
o
f
D
is
tr
ib
u
ti
o
n
s

Discrete Gaussian

10
0

10
1

10
2

Relative Approximation Error

0

20

40

60

80

100

%
o
f
D
is
tr
ib
u
ti
o
n
s

Hypergeometric

Fig. 3. Comparison of the approximation error of limited-precision implementations of interval sampling

(green) and inversion sampling (blue) relative to error obtained by the optimal sampler (red), for six families

of probability distributions using k = 16 of bits precision. The x-axis shows the approximation error of each

sampler relative to the optimal error. The y-axis shows the fraction of 500 distributions from each family

whose relative error is less than or equal to the corresponding value on the x-axis.

6.2.2 Entropy Comparison. Next, we compare the efficiency of each sampler measured in terms
of the average number of random bits drawn from the source to produce a sample, shown in
Table 2. Since these algorithms are guaranteed to halt after consuming at most k random bits, the
average number of bits per sample is computed by enumerating over all 2k possible k-bit strings
(using k = 16 gives 65536 possible input sequences from the random source) and recording, for
each sequence of input bits, the number of consumed bits until the sampler halts. The inversion
algorithm consumes all k available bits of entropy, unlike the interval and optimal samplers, which
lazily draw bits from the random source until an outcome can be determined. For all distributional
families, the optimal sampler uses fewer bits per sample than are used by interval sampling.

6.2.3 Runtime Comparison. We next assess the runtime performance of our sampling algorithms as
the dimension and entropy of the target distribution increases. For each n ∈ {10, 100, 1000, 10000},
we generate 1000 distributions with entropies ranging from 0, . . . , log(n). For each distribution,
we measure the time taken to generate a sample based on 100000 simulations according to four
methods: the optimal sampler using SampleEncoding (Algorithm 7); the optimal sampler using

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:27

0 1 2 3

Entropy of Target Distribution

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

S
ec
o
n
d
s
p
er

S
am

p
le

10 Dimensional Distributions

Optimal (Matrix, Alg. 8)

Inversion (Linear)

Inversion (Binary)

Optimal (Encoding, Alg. 7)

0 2 4 6

Entropy of Target Distribution

100 Dimensional Distributions

0.0 2.5 5.0 7.5 10.0

Entropy of Target Distribution

1000 Dimensional Distributions

0 5 10

Entropy of Target Distribution

10000 Dimensional Distributions

Fig. 4. Comparison of wall-clock time per sample and order of growth of two implementations of the optimal

samplers (using Algorithms 7 and 8) with inversion sampling (using linear and binary search in Algorithm 2).

Table 3. Comparison of runtime and number of calls to the random number generator using limited-precision

entropy-optimal and inversion sampling to generate 100 million samples from 100 dimensional distributions

Method Entropy of Target Distribution Number of PRNG Calls PRNG Wall-Clock Time (ms)

Optimal Approximate

Sampler (Alg. 7)

0.5 7,637,155 120

2.5 11,373,471 160

4.5 18,879,900 260

6.5 24,741,348 350

Inversion Sampler (Alg. 2) (all) 100,000,000 1410

SampleMatrix (Algorithm 8); the inversion sampler using a linear scan (Algorithm 2, as in the
GNU C++ standard library); and the inversion sampler using binary search (fast C implementation).
Figure 4 shows the results, where the x-axis is the entropy of the target distribution and the y-axis
is seconds per sample (log scale). In general, the difference between the samplers increases with the
dimension n of the target distribution. For n = 10, the SampleEncoding sampler executes a median
of over 1.5x faster than any other sampler. For n = 10000, SampleEncoding executes a median of
over 3.4x faster than inversion sampling with binary search and over 195x faster than the linear
inversion sampler implemented in the C++ library. In comparison with SampleMatrix [Roy et al.
2013], SampleEncoding is faster by a median of 2.3x (n = 10) to over 5000x (n = 10000).

The worst runtime scaling is given by SampleMatrix which, although entropy-optimal, grows
order nH (p) due to the inner loop through the rows of the probability matrix. In contrast, Sam-
pleEncoding uses the dense linear array described in Section 5 and is asymptotically more efficient:
its runtime depends only on the entropy H (p) ≤ logn. As for the inversion methods, there is a
significant gap between the runtime of SampleEncoding (orange) and the binary inversion sampler
(red) at low values of entropy, which is especially visible at n = 1000 and n = 10000. The binary
inversion sampler scales order logn independently of the entropy, and is thus less performant than
SampleEncoding when H (p) ≪ logn (the gap narrows as H (p) approaches logn).
Table 3 shows the wall-clock improvements from using Algorithm 7. Floating-point sampling

algorithms implemented in standard software libraries typically make one call to the pseudorandom
number generator per sample, consuming a full 32-bit or 64-bit pseudorandom word, which in
general is highly wasteful. (As a conceptual example, sampling Bernoulli(1/2) requires sampling
only one random bit, but comparing an approximately-uniform floating-point numberU ′ < 0.5 as
in inversion sampling uses e.g., 64 bits.) In contrast, the optimal approximate sampler (Algorithm 7)
is designed to lazily consume random bits (following Lumbroso [2013], our implementation of flip
stores a buffer of pseudorandom bits equal to the word size of the machine) which results in fewer
function calls to the underlying pseudorandom number generator and 4xś12x less wall-clock time.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

36:28 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

Table 4. Precision, entropy consumption, and sampling error of Knuth and Yao sampling, rejection sampling,

and optimal approximate sampling, at various levels of precision for the Binomial(50, 61/500) distribution.
Method Precision k(l) Bits per Sample Error (L1)

Exact Knuth and Yao Sampler (Thm. 2.9) 5.6 × 10104(100) 5.24 0.0

Exact Rejection Sampler (Alg. 1) 449(448) 735 0.0

Optimal Approximate

Sampler (Alg. 3+7)

4(4) 5.03 2.03 × 10−1
8(4) 5.22 1.59 × 10−2
16(0) 5.24 6.33 × 10−5
32(12) 5.24 1.21 × 10−9
64(29) 5.24 6.47 × 10−19

6.3 Comparing Precision, Entropy, and Error to Exact Sampling Algorithms

Recall that two algorithms for sampling from Z -type distributions (Definition 4.3) are: (i) exact
Knuth and Yao sampling (Theorem 2.9), which samples from any Z -type distribution using at
most H (p) + 2 bits per sample and precision k described in Theorem 3.4; and (ii) rejection sam-
pling (Algorithm 1), which samples from any Z -type distribution using k bits of precision (where
2k−1 < Z ≤ 2k) using k2k/Z bits per sample. Consider the Binomial(50, 61/500) distribution p,
which is the number of heads in 50 tosses of a biased coin whose probability of heads is 61/500.
The probabilities are pi ≔

(50
i

)
(61/500)i (39/500)n−i (i = 0, . . . ,n) and p is a Z -type distribution

with Z = 8.881 784 197 001 252 323 389 053 344 726 562 5 × 10134. Table 4 shows a comparison of the
two exact samplers to our optimal approximate samplers. The first column shows the precision k(l),
which indicates k bits are used and l (where 0 ≤ l ≤ k) is the length of the repeating suffix in the
number system Bkl (Section 3). Recall that exact samplers use finite but arbitrarily high precision.
The second and third columns show bits per sample and sampling error, respectively.

Exact Knuth and Yao sampler. This method requires a tremendous amount of precision to
generate an exact sample (following Theorem 3.5), as dictated by the large value of Z for the
Binomial(50, 61/500) distribution. The required precision far exceeds the amount of memory avail-
able on modern machines. Although at most 5.24 bits per sample are needed on average (two more
than the 3.24 bits of entropy in the target distribution), the DDG tree has more than 10104 levels.
Assuming that each level is a byte, storing the sampler would require around 1091 terabytes.

Exact rejection sampler. This method requires 449 bits of precision (roughly 56 bytes), which
is the number of bits needed to encode common denominator Z . This substantial reduction in
precision as compared to the Knuth and Yao sampler comes at the cost of higher number of bits per
sample, which is roughly 150x higher than the information-theoretically optimal rate. The higher
number of expected bits per sample leads to wasted computation and higher runtime in practice
due to excessive calls to the random number generator (as illustrated in Table 3).

Optimal approximate sampler. For precision levels ranging from k = 4 to 64, the selected value of
l delivers the smallest approximation error across executions of Algorithm 3 on inputs Zkk , . . . ,Zk0.
At each precision, the number of bits per sample has an upper bound that is very close to the
upper bound of the optimal rate, since the entropies of the closest-approximation distributions are
very close to the entropy of the target distribution, even at low precision. Under the L1 metric, the
approximation error decreases exponentially quickly with the increase in precision (Theorem 4.17).

These results illustrate that exact Knuth and Yao sampling can be infeasible in practice, whereas
rejection sampling requires less precision (though higher than what is typically available on low
precision sampling devices [Mansinghka and Jonas 2014]) but is wasteful in terms of bits per sample.
The optimal approximate samplers are practical to implement and use significantly less precision
or bits per sample than exact samplers, at the expense of a small approximation error that can be
controlled based on the accuracy and entropy constraints of the application at hand.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

Optimal Approximate Sampling from Discrete Probability Distributions 36:29

7 CONCLUSION

This paper has presented a new class of algorithms for optimal approximate sampling from discrete
probability distributions. The samplers minimize both statistical error and entropy consumption
among the class of all entropy-optimal samplers and bounded-entropy samplers that operate within
the given precision constraints. Our samplers lead to improvements in accuracy, entropy-efficiency,
and wall-clock runtime as compared to existing limited-precision samplers, and can use significantly
fewer computational resources than are needed by exact samplers.

Many existing programming languages and systems include libraries and constructs for random
sampling [Lea 1992; MathWorks 1993; R Core Team 2014; Galassi et al. 2019]. In addition to the
areas of scientific computing mentioned in Section 1, relatively new and prominent directions in
the field of computing that leverage random sampling include probabilistic programming languages
and systems [Gordon et al. 2014; Saad and Mansinghka 2016; Staton et al. 2016; Cusumano-Towner
et al. 2019]; probabilistic program synthesis [Nori et al. 2015; Saad et al. 2019]; and probabilistic
hardware [de Schryver et al. 2012; Dwarakanath and Galbraith 2014; Mansinghka and Jonas 2014].
In all these settings, the efficiency and accuracy of random sampling procedures play a key role in
many implementation techniques. As uncertainty continues to play an increasingly prominent role
in a range of computations and as programming languages move towards more support for random
sampling as one way of dealing with this uncertainty, trade-offs between entropy consumption,
sampling accuracy, numerical precision, and wall-clock runtime will form an important set of
design considerations for sampling procedures. Due to their theoretical optimality properties,
ease-of-implementation, and applicability to a broad set of statistical error measures, the algorithms
in this paper are a step toward a systematic and practical approach for navigating these trade-offs.

ACKNOWLEDGMENTS

This research was supported by a philanthropic gift from the Aphorism Foundation.

REFERENCES

Julia Abrahams. 1996. Generation of Discrete Distributions from Biased Coins. IEEE Trans. Inf. Theory 42, 5 (Sept. 1996),

1541ś1546.

S. M. Ali and S. D. Silvey. 1966. A General Class of Coefficients of Divergence of One Distribution from Another. J. R. Stat.

Soc. B. 28, 1 (Jan. 1966), 131ś142.

Ziv Bar-Yossef, Thathachar S. Jayram, Ravi Kumar, and D. Sivakumar. 2004. An Information Statistics Approach to Data

Stream and Communication Complexity. J. Comput. Syst. Sci. 68, 4 (June 2004), 702ś732.

Kurt Binder (Ed.). 1986. Monte Carlo Methods in Statistical Physics (2 ed.). Topics in Current Physics, Vol. 7. Springer-Verlag,

Berlin.

Antonio Blanca and Milena Mihail. 2012. Efficient Generation ϵ -close to G(n, p) and Generalizations. (April 2012).

arXiv:1204.5834

Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. 1998. Complexity and Real Computation. Springer-Verlag, New

York.

Manuel Blum. 1986. Independent Unbiased Coin Flips from a Correlated Biased Source: A Finite State Markov Chain.

Combinatorica 6, 2 (June 1986), 97ś108.

Karl Bringmann and Tobias Friedrich. 2013. Exact and Efficient Generation of Geometric Random Variates and Random

Graphs. In ICALP 2013: Proceedings of the 40th International Colloquium on Automata, Languages and Programming (Riga,

Latvia). Lecture Notes in Computer Science, Vol. 7965. Springer, Heidelberg, 267ś278.

Karl Bringmann and Konstantinos Panagiotou. 2017. Efficient Sampling Methods for Discrete Distributions. Algorithmica

79, 2 (Oct. 2017), 484ś508.

Ferdinando Cicalese, Luisa Gargano, and Ugo Vaccaro. 2006. A Note on Approximation of Uniform Distributions from

Variable-to-Fixed Length Codes. IEEE Trans. Inf. Theory 52, 8 (Aug. 2006), 3772ś3777.

Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory (2 ed.). John Wiley & Sons, Inc., Hoboken.

Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: A General-purpose

Probabilistic Programming System with Programmable Inference. In PLDI 2019: Proceedings of the 40th ACM SIGPLAN

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

http://arxiv.org/abs/1204.5834

36:30 Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka

Conference on Programming Language Design and Implementation (Phoenix, AZ, USA). ACM, New York, 221ś236.

Christian de Schryver, Daniel Schmidt, Norbert Wehn, Elke Korn, Henning Marxen, Anton Kostiuk, and Ralf Korn. 2012. A

Hardware Efficient Random Number Generator for Nonuniform Distributions with Arbitrary Precision. Int. J. Reconf.

Comput. 2012, Article 675130 (2012), 11 pages.

Luc Devroye. 1982. A Note on Approximations in Random Variate Generation. J. Stat. Comput. Simul. 14, 2 (1982), 149ś158.

Luc Devroye. 1986. Non-Uniform Random Variate Generation. Springer-Verlag, New York.

Luc Devroye and Claude Gravel. 2015. Sampling with Arbitrary Precision. (Feb. 2015). arXiv:1502.02539

Inderjit S. Dhillon, Subramanyam Mallela, and Rahul Kumar. 2003. A Divisive Information-Theoretic Feature Clustering

Algorithm for Text Classification. J. Mach. Learn. Res. 3 (March 2003), 1265ś1287.

Dragan Djuric. 2019. Billions of Random Numbers in a Blink of an Eye. Retrieved June 15, 2019 from https://dragan.rocks/

articles/19/Billion-random-numbers-blink-eye-Clojure

Chaohui Du and Guoqiang Bai. 2015. Towards Efficient Discrete Gaussian Sampling For Lattice-Based Cryptography. In FPL

2015: Proceedings of the 25th International Conference on Field Programmable Logic and Applications (London, UK). IEEE

Press, Piscataway, 1ś6.

Nagarjun C. Dwarakanath and Steven D. Galbraith. 2014. Sampling from Discrete Gaussians for Lattice-Based Cryptography

On a Constrained Device. Appl. Algebr. Eng. Comm. 25, 3 (June 2014), 159ś180.

Peter Elias. 1972. The Efficient Construction of an Unbiased Random Sequence. Ann. Math. Stat. 43, 3 (June 1972), 865ś870.

János Folláth. 2014. Gaussian Sampling in Lattice Based Cryptography. Tatra Mount. Math. Pub. 60, 1 (Sept. 2014), 1ś23.

Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick Alken, Michael Booth, Fabrice Rossi, and

Rhys Ulerich. 2019. GNU Scientific Library. Free Software Foundation.

Paul Glasserman. 2003. Monte Carlo Methods in Financial Engineering. Stochastic Modeling and Applied Probability, Vol. 53.

Springer Science+Business Media, New York.

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic Programming. In

FOSE 2014: Proceedings of the on Future of Software Engineering (Hyderabad, India). ACM, New York, 167ś181.

Te Sun Han and Mamoru Hoshi. 1997. Interval Algorithm for Random Number Generation. IEEE Trans. Inf. Theory 43, 2

(March 1997), 599ś611.

Te Sun Han and Sergio Verdú. 1993. Approximation Theory of Output Statistics. IEEE Trans. Inf. Theory 39, 3 (May 1993),

752ś772.

John Harling. 1958. Simulation Techniques in Operations ResearchÐA Review. Oper. Res. 6, 3 (June 1958), 307ś319.

Eric Jonas. 2014. Stochastic Architectures for Probabilistic Computation. Ph.D. Dissertation. Massachusetts Institute of

Technology.

Donald E. Knuth and Andrew C. Yao. 1976. The Complexity of Nonuniform Random Number Generation. In Algorithms

and Complexity: New Directions and Recent Results, Joseph F. Traub (Ed.). Academic Press, Inc., Orlando, FL, 357ś428.

Dexter Kozen. 2014. Optimal Coin Flipping. In Horizons of the Mind. A Tribute to Prakash Panangaden: Essays Dedicated to

Prakash Panangaden on the Occasion of His 60th Birthday. Lecture Notes in Computer Science, Vol. 8464. Springer, Cham,

407ś426.

Dexter Kozen and Matvey Soloviev. 2018. Coalgebraic Tools for Randomness-Conserving Protocols. In RAMiCS 2018:

Proceedings of the 17th International Conference on Relational and Algebraic Methods in Computer Science (Groningen, The

Netherlands). Lecture Notes in Computer Science, Vol. 11194. Springer, Cham, 298ś313.

S. Kullback and R. A. Leibler. 1951. On Information and Sufficiency. Ann. Math. Stat. 22, 1 (March 1951), 79ś86.

Anthony J. C. Ladd. 2009. A Fast Random Number Generator for Stochastic Simulations. Comput. Phys. Commun. 180, 11

(2009), 2140ś2142.

Dopug Lea. 1992. User’s Guide to the GNU C++ Library. Free Software Foundation, Inc.

Josef Leydold and Sougata Chaudhuri. 2014. rvgtest: Tools for Analyzing Non-Uniform Pseudo-Random Variate Generators.

https://CRAN.R-project.org/package=rvgtest R package version 0.7.4.

Friedrich Liese and Igor Vajda. 2006. On Divergences and Informations in Statistics and Information Theory. IEEE Trans. Inf.

Theory 52, 10 (Oct. 2006), 4394ś4412.

Jun S. Liu. 2001. Monte Carlo Strategies in Scientific Computing. Springer, New York.

Jérmie Lumbroso. 2013. Optimal Discrete UniformGeneration fromCoin Flips, andApplications. (April 2013). arXiv:1304.1916

Vikash Mansinghka and Eric Jonas. 2014. Building Fast Bayesian Computing Machines Out of Intentionally Stochastic

Digital Parts. (Feb. 2014). arXiv:1402.4914

The MathWorks. 1993. Statistics Toolbox User’s Guide. The MathWorks, Inc.

John F. Monahan. 1985. Accuracy in Random Number Generation. Math. Comput. 45, 172 (Oct. 1985), 559ś568.

Aditya V. Nori, Sherjil Ozair, SriramK. Rajamani, and Deepak Vijaykeerthy. 2015. Efficient Synthesis of Probabilistic Programs.

In PLDI 2015: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Portland, OR, USA). ACM, New York, 208ś217.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

http://arxiv.org/abs/1502.02539
https://dragan.rocks/articles/19/Billion-random-numbers-blink-eye-Clojure
https://dragan.rocks/articles/19/Billion-random-numbers-blink-eye-Clojure
https://CRAN.R-project.org/package=rvgtest
http://arxiv.org/abs/1304.1916
http://arxiv.org/abs/1402.4914

Optimal Approximate Sampling from Discrete Probability Distributions 36:31

Sung-il Pae and Michael C Loui. 2006. Randomizing Functions: Simulation of a Discrete Probability Distribution Using a

Source of Unknown Distribution. IEEE Trans. Inf. Theory 52, 11 (Nov. 2006), 4965ś4976.

Karl Pearson. 1900. On the Criterion That a Given System of Deviations from the Probable in the Case of a Correlated

System of Variables Is Such That It Can Be Reasonably Supposed to Have Arisen from Random Sampling. Philos. Mag. 5

(July 1900), 157ś175.

Yuval Peres. 1992. Iterating von Neumann’s Procedure for Extracting Random Bits. Ann. Stat. 20, 1 (March 1992), 590ś597.

R Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,

Vienna, Austria. http://www.R-project.org/

James R. Roche. 1991. Efficient Generation of Random Variables from Biased Coins. In ISIT 1991: Proceedings of the IEEE

International Symposium on Information Theory (Budapest, Hungary). IEEE Press, Piscataway, 169ś169.

Sinha S. Roy, Frederik Vercauteren, and Ingrid Verbauwhede. 2013. High Precision Discrete Gaussian Sampling on FPGAs. In

SAC 2013: Proceedings of the 20th International Conference on Selected Areas in Cryptography (Burnaby, Canada). Lecture

Notes in Computer Science, Vol. 8282. Springer, Berlin, 383ś401.

Feras Saad and Vikash Mansinghka. 2016. Probabilistic Data Analysis with Probabilistic Programming. (Aug. 2016).

arXiv:1608.05347

Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K. Mansinghka. 2019. Bayesian

Synthesis of Probabilistic Programs for Automatic Data Modeling. Proc. ACM Program. Lang. 3, POPL, Article 37 (Jan.

2019), 32 pages.

Claude E. Shannon. 1948. A Mathematical Theory of Communication. Bell Sys. Tech. Journ. 27, 3 (July 1948), 379ś423.

Warren D. Smith. 2002. How To Sample from a Probability Distribution. Technical Report DocNumber17. NEC Research.

Sam Staton, Hongseok Yang, FrankWood, Chris Heunen, and Ohad Kammar. 2016. Semantics for Probabilistic Programming:

Higher-order Functions, Continuous Distributions, and Soft Constraints. In LICS 2016: Proceedings of the 31st Annual

ACM/IEEE Symposium on Logic in Computer Science (New York, NY, USA). ACM, New York, 525ś534.

John Steinberger. 2012. Improved Security Bounds for Key-Alternating Ciphers via Hellinger Distance. Technical Report

Report 2012/481. Cryptology ePrint Archive.

Quentin F. Stout and Bette Warren. 1984. Tree Algorithms for Unbiased Coin Tossing with a Biased Coin. Ann. Probab. 12, 1

(Feb. 1984), 212ś222.

Tomohiko Uyematsu and Yuan Li. 2003. Two Algorithms for Random Number Generation Implemented by Using Arithmetic

of Limited Precision. IEICE Trans. Fund. Elec. Comm. Comp. Sci 86, 10 (Oct. 2003), 2542ś2551.

Sridhar Vembu and Sergio Verdú. 1995. Generating Random Bits from an Arbitrary Source: Fundamental Limits. IEEE Trans.

Inf. Theory 41, 5 (Sept. 1995), 1322ś1332.

John von Neumann. 1951. Various Techniques Used in Connection with Random Digits. In Monte Carlo Method, A. S.

Householder, G. E. Forsythe, and H. H. Germond (Eds.). National Bureau of Standards Applied Mathematics Series,

Vol. 12. U.S. Government Printing Office, Washington, DC, Chapter 13, 36ś38.

Michael D. Vose. 1991. A Linear Algorithm for Generating Random Numbers with a Given Distribution. IEEE Trans. Softw.

Eng. 17, 9 (Sept. 1991), 972ś975.

Alistair J. Walker. 1974. New Fast Method for Generating Discrete Random Numbers with Arbitrary Frequency Distributions.

Electron. Lett. 10, 8 (April 1974), 127ś128.

Alastair J. Walker. 1977. An Efficient Method for Generating Discrete Random Variables with General Distributions. ACM

Trans. Math. Softw. 3, 3 (Sept. 1977), 253ś256.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 36. Publication date: January 2020.

http://www.R-project.org/
http://arxiv.org/abs/1608.05347

	Abstract
	1 Introduction
	1.1 Existing Methods for Exact and Approximate Sampling
	1.2 Optimal Approximate Sampling
	1.3 Contributions

	2 Computational models of sampling algorithms
	2.1 The Random Bit Model
	2.2 Preliminaries
	2.3 Sampling Algorithms with Limited Computational Resources
	2.4 Pitfalls of Naively Truncating the Target Probabilities

	3 Characterizing the space of entropy-optimal sampling algorithms
	4 Optimal approximations of discrete probability distributions
	4.1 f-divergences: A Family of Statistical Divergences
	4.2 Problem Statement for Finding Closest-Approximation Distributions
	4.3 An Efficient Optimization Algorithm

	5 Constructing entropy-optimal samplers
	6 Experimental results
	6.1 Characterizing Error and Entropy for Families of Discrete Distributions
	6.2 Comparing Error, Entropy, and Runtime to Baseline Limited-Precision Algorithms
	6.3 Comparing Precision, Entropy, and Error to Exact Sampling Algorithms

	7 Conclusion
	Acknowledgments
	References

