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Abstract

We present KumQuat, a system for automatically generating
data parallel implementations of Unix shell commands and
pipelines. The generated parallel versions split input streams,
execute multiple instantiations of the original pipeline com-
mands to process the splits in parallel, then combine the
resulting parallel outputs to produce the final output stream.
KumQuat automatically synthesizes the combine operators,
with a domain-specific combiner language acting as a strong
regularizer that promotes efficient inference of correct com-
biners.
We evaluate KumQuat on 70 benchmark scripts that to-

gether have a total of 427 stages. KumQuat synthesizes a
correct combiner for 113 of the 121 unique commands that
appear in these benchmark scripts. The synthesis times vary
between 39 seconds and 331 seconds with a median of 60
seconds. We present experimental results that show that
these combiners enable the effective parallelization of our
benchmark scripts.

1 Introduction

The Unix shell, working in tandem with the wide range
of commands it supports, provides a convenient program-
ming environment for many stream processing computa-
tions. Shell commands—which can be written in multiple
languages—typically execute sequentially on a single pro-
cessor. This sequential execution often leaves available data
parallelism, in which a command operates on different parts
of an input stream in parallel, unexploited. This observation
has motivated the development of systems that exploit data
parallelism in shell pipelines [18, 26]. A key prerequisite is
obtaining the combiners required to merge the resulting mul-
tiple parallel output streams correctly into a single output
stream. Previous systems rely on developers to manually
implement such combiners and associate them with their
corresponding shell commands [18, 26].
We present a new system, KumQuat, for automatically

exploiting data parallelism available in Unix pipelines. Work-
ingwith the commands in the pipeline as black boxes, KumQuat
automatically generates inputs that explore the behavior of
the command to infer and automatically generate a combiner
for the command. This capability enables KumQuat to auto-
matically generate data parallel versions of Unix pipelines,

including pipelines that contain new commands or command
options for which combiners were previously unavailable.

KumQuat targets commands that can be expressed as data
parallel divide-and-conquer computations with two phases:1
the first phase executes the original, unmodified command
in parallel on disjoint parts of the input; the second phase
combines the partial results from the first phase to obtain
the final output. KumQuat generates candidate combiners,
then repeatedly feeds selected inputs to parallelized versions
of the command that use the candidate combiners. A com-
parison of the resulting outputs with corresponding outputs
from the original serial version of the command enables
KumQuat to identify a correct combiner for the command.
A domain-specific combiner language acts as a strong regu-
larizer that promotes efficient learning of correct combiners.
The resulting (automatically generated) parallel computa-
tion executes directly in the same environment and with the
same program and data locations as the original sequential
command.

This paper makes the following contributions:
• Algorithm:We present a new algorithm that automati-
cally synthesizes combiners for parallel and distributed
versions of Unix commands. The resulting synthesized
combiners enable the automatic generation of parallel and
distributed versions of Unix commands and pipelines.
• Domain-Specific Language:We present a domain-spe-
cific language for combiner operators. This language sup-
ports both the class of combiner operators relevant to
this domain and an efficient algorithm for automatically
synthesizing these combiner operators.
• Correct Combiners: We present theorems (Theorem 2
and Theorem 4) that characterize when the combiner syn-
thesis algorithm will identify a correct combiner for a
given set of parallel output streams.
We also present an analysis of the interaction between our
input generation algorithm, our benchmark commands,
and our combiner synthesis algorithm. This analysis iden-
tifies why KumQuat generates correct combiners for the

1There is no requirement that the actual internal implementation must
be structured as a divide-and-conquer computation — because KumQuat
interacts with the command as a black box, the requirement is instead only
that the computation that it implements can be expressed in this way.
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113 of 121 benchmark commands for which correct com-
biners exist, identifies command patterns that ensure cor-
rect combiner synthesis and correct data parallel execu-
tion, and provides insight into the rationale behind the
KumQuat design and the reasons why the KumQuat de-
sign can effectively exploit data parallelism available in
its target class of commands.
• Experimental Results:We present experimental results
that characterize the effectiveness of KumQuat on a set of
70 benchmark scripts that together have a total of 477 com-
mands, among which 121 are unique and process an input
stream. The results show that KumQuat can effectively
synthesize combiners for the majority of our benchmark
commands and that these synthesized combiners enable
effective parallelizations of our benchmark Unix pipelines.

2 Example

Figure 1 presents an example pipeline that we use to illus-
trate KumQuat. The pipeline implements a computation that
counts the frequency of words in an input document. The
six commands in the pipeline (1) read the input document,
(2) break the document into lines of words, (3) translate the
words into lower case, (4) sort the words, (5) remove dupli-
cates and prepend each unique word with a count, and (6)
sort the words on their counts in reverse order.

The pipeline conforms to a standard Unixmodel that struc-
tures computations as pipelines of building-block commands
that process character streams. The example commands pro-
cess the streams as lines of words, with the lines and words
separated by delimiters, in the example newline and space.
As the commands process lines, words, or characters, they
apply a function to each unit and either output the result
of the function (commands “tr -cs A-Za-z ’\n’” and
“tr A-Z a-z”), sort the units according to a certain order
(commands “sort” and “sort -rn”), or accumulate a result
that is output when the command finishes reading the input
stream and terminates (command “uniq -c”).
To exploit the data parallelism available in this computa-

tion, KumQuat splits the input data stream into substreams,
then instantiates the commands to process the input sub-
streams in parallel. The result is a set of parallel output
substreams that must then be combined to obtain the single
final output stream of the command.
Different commands often require different combine op-

erators. The combine operator for command “tr A-Z a-z”
simply concatenates the output substreams. The combine
operator for command “tr -cs A-Za-z ’\n’” concatenates
the output substreams, then reruns the command on this
concatenated stream.2 Note that tr commands with different
flags may have different combine operators. The combine
operators for sort commands apply an appropriate merge
2Simple concatenation is incorrect due to potential empty lines at the split
boundary.

cat $IN | tr -cs A-Za-z '\n' | tr A-Z a-z |

sort | uniq -c | sort -rn

Figure 1. Example pipeline that computes word frequen-
cies [2, 26].

function, which may depend on the sort flag that specifies
the comparison function. The “uniq -c” command produces
a stream of (count, word) pairs. Given two streams y1 and y2,
the combine operator compares the word in the last line of
y1 with the word in the first line of y2. If they are the same, it
concatenates y1 and y2 but combines the last and first lines to
include the sum of the two word counts. Otherwise it simply
concatenates y1 and y2. As these examples highlight, select-
ing an appropriate combine operator for each command is a
critical step for obtaining a correct parallel execution.
The default KumQuat parallel computation applies the

combine operator after the parallel execution of each com-
mand to obtain a single output stream for that command.
In many cases, however, it is possible to enhance parallel
performance by eliminating intermediate combine operators
so that the output substreams for one command feed directly
into the input substreams for the direct parallel execution
of the next command. KumQuat therefore applies an opti-
mization that automatically eliminates intermediate combine
operators when possible (Section 3.5).
Model of Computation: KumQuat targets commands 𝑓
that have a combine operator 𝑔 that satisfies

𝑓 (x1 ++ x2) = 𝑔(𝑓 (x1), 𝑓 (x2))
for all input streams x1, x2, where the streams are (poten-
tially recursively) structured as units separated by delimiters.
KumQuat currently targets character streams structured
as lines with the newline delimiter, so that x1 and x2 ter-
minate with newlines. ++ denotes string concatenation. A
key step in the parallelization of 𝑓 is the synthesis of a cor-
rect combiner 𝑔 for 𝑓 . To focus the synthesis algorithm on a
productive space of candidate combiners, KumQuat works
with combiners expressible in a domain-specific combiner
language (Figure 3).
Combiner Synthesis: To infer a combiner 𝑔 for a com-
mand 𝑓 , KumQuat works with a set of candidate combiner
functions. In the current KumQuat implementation, this set
consists of all combiner functions with seven or fewer nodes
in the DSL abstract syntax tree. KumQuat repeatedly gen-
erates input streams x1 and x2, feeds the input streams to
the serial and parallel versions of 𝑓 instantiated with can-
didate combiners 𝑔, and compares the resulting serial and
parallel outputs to discard candidate combiners 𝑔 that do
not satisfy the equation 𝑓 (x1 ++ x2) = 𝑔(𝑓 (x1), 𝑓 (x2)). The
input stream generation algorithm is designed to produce
inputs that quickly find and discard incorrect combiners (see
below). With these generated inputs, we have found that the
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combiner synthesis algorithm typically converges quickly to
a few semantically equivalent correct combiners (Section 4).
Input Generation: KumQuat uses a set of input shapes
to specify the format of each generated input stream. An
input shape specifies the number of lines in the input stream,
the number of words per line, and the number of characters
per word. The input shape also specifies how diverse these
input units are, in terms of the percentage of distinct lines,
words, and characters. These input shapes are designed to
generate meaningful inputs for commands that conform to
our model of computation. A goal is to efficiently generate
counterexample inputs that cause the command to produce
counterexample outputs that enable KumQuat to identify
and discard incorrect candidate combiners.

The design of input shapes is inspired by the observation
that certain input shapes cause commands to produce out-
puts that enable KumQuat to identify and discard incorrect
combiners. For example, when 𝑓 = (tr -cs A-Za-z ’\n’)
and 𝑔 = concat, a counterexample input has x1 ending
with a newline and x2 starting with a newline. In this case,
𝑓 (x1) also ends with a newline and 𝑓 (x2) also starts with
a newline, so 𝑔(𝑓 (x1), 𝑓 (x2)) has two consecutive newlines
at the concatenation point. But because “tr -cs A-Za-z
’\n’” eliminates consecutive newlines, these two consec-
utive newlines do not appear in 𝑓 (x1 ++ x2). Therefore
𝑓 (x1 ++ x2) ≠ 𝑔(𝑓 (x1), 𝑓 (x2)) and KumQuat eliminates
concat as a potential combiner. Such counterexample inputs
can be generated by input shapes whose number of words
per line and number of characters per word are small.

As another example, when 𝑓 = (uniq -c) and𝑔 = concat,
a counterexample input has x1 ending with a nonempty line
𝑙 and x2 starting with the same line 𝑙 . In this case, 𝑓 (x1) ends
with a line with a padded integer 𝑛1 on the left and the con-
tent 𝑙 on the right. Meanwhile, 𝑓 (x2) starts with a line with
a padded integer 𝑛2 on the left and the content 𝑙 on the right.
Hence 𝑔(𝑓 (x1), 𝑓 (x2)) has two consecutive lines at the con-
catenation point, whose contents on the right are both 𝑙 . But
because “uniq -c” merges consecutive duplicate lines, these
two consecutive lines whose right sides equal do not appear
in 𝑓 (x1 ++ x2). Therefore 𝑓 (x1 ++ x2) ≠ 𝑔(𝑓 (x1), 𝑓 (x2)) and
KumQuat eliminates concat as a potential combiner. Such
counterexample inputs can be generated by input shapes
whose percentage of distinct lines is small.

The synthesis algorithm starts with a predefined seed in-
put shape, around which the algorithm generates a space of
mutated input shapes. For each such input shape, KumQuat
generates a set of input streams and feeds them to the original
command. Some of these input streams may cause KumQuat
to discard candidate combiners that violate the divide-and-
conquer property. The sizes of the sets of discarded candi-
dates for different input shapes induce a gradient over the
input shapes. KumQuat follows this gradient to find input
shapes that maximize its ability to quickly find and discard

Figure 2. KumQuat system workflow includes splitting an
original serial pipeline into commands, synthesizing com-
biners for each of these commands, and reassembling the
commands and synthesized combiners into a new parallel
pipeline.

incorrect combiners. KumQuat continues this process until
it executes several gradient steps that do not discard any
remaining candidate combiners. In our example this process
quickly produces the correct combiners described above for
the commands in our example pipeline (and typically also
for the commands in our benchmark scripts, see Section 4).
New Data-Parallel Pipeline: KumQuat parses the orig-
inal pipeline, splits it into individual commands, synthe-
sizes combiners for these commands, and compiles them
into a new data parallel pipeline (Figure 2). In our example
KumQuat synthesizes combiners for all commands in the
pipeline. The combiner for the command “tr -cs A-Za-z
’\n’” is rerun. Because this command does not significantly
reduce the size of the output stream (in comparison with
the input stream), parallelizing the command with the rerun
combiner reduces the overall performance. KumQuat there-
fore executes this command sequentially, with the input file
piped directly into the command. All other commands exe-
cute in parallel. KumQuat applies the intermediate combiner
elimination optimization to eliminate the combiner for the
“tr A-Z a-z” command. The resulting optimized pipeline
has one sequential stage and three parallel stages (one of
which executes the “tr A-Z a-z” and “sort” commands
with no intermediate combiner).

On a 3GB benchmark input, the serial execution time is
2089 seconds. The unoptimized parallel execution time with
16 way parallelism is 196 seconds, with a parallel speedup of
10.7×. The optimized parallel execution time is 146 seconds
with a speedup of 14.4× (see Section 4).

3 Design

KumQuat is designed to work with commands that imple-
ment deterministic computations over input streams that
are structured as units separated by delimiters. KumQuat
targets commands 𝑓 that have a combine operator 𝑔 in a
domain-specific combiner language that satisfies

𝑓 (x1 ++ x2) = 𝑔(𝑓 (x1), 𝑓 (x2))
for all input streams x1, x2, where the streams terminate with
newlines. KumQuat generates input streams to collect out-
puts from 𝑓 , which are used to eliminate incorrect candidate
combiners. Note that the combiners do not directly operate



, , Jiasi Shen, Martin Rinard, and Nikos Vasilakis

𝑔 ∈ Combiner𝑓 := 𝑏 | 𝑠 | 𝑟
𝑏, 𝑏1, 𝑏2 ∈ RecOp := add | concat | first | second

| front 𝑑 𝑏 | back 𝑑 𝑏 | fuse 𝑑 𝑏

𝑠 ∈ StructOp := stitch 𝑏 | stitch2 𝑑 𝑏1 𝑏2 | offset 𝑑 𝑏

𝑟 ∈ RunOp𝑓 := rerun𝑓 | merge <flags>
𝑑 ∈ Delim := ‘\𝑛‘ | ‘\𝑡 ‘ | ‘ ‘ | ‘, ‘

Figure 3. Combiners synthesizable by KumQuat.

on the input streams generated by KumQuat, but instead
operate on the command outputs. We present details of the
DSL semantics, definitions, and theorems in the appendix.

3.1 The KumQuat Combiner DSL

To capture the space of possible combiners, KumQuat de-
fines and uses a domain-specific language (DSL) presented
in Figure 3. A combiner in KumQuat’s DSL is an expression,
which is a binary operation that accepts two streams y1 and
y2 as arguments.
Definition 3.1. A stream is a string that ends with a newline
character ‘\𝑛‘, Stream = {𝑥 ++ ‘\𝑛‘ | 𝑥 ∈ String}.
Definition 3.2. A command 𝑓 : Stream → Stream is a
function that takes a stream as input and produces a stream
as output.

The DSL has three classes of operators: RecOp, StructOp,
andRunOp𝑓 .RecOp defines recursive operators and includes
numeric addition (add), string concatenation (concat), se-
lection (first and second), and delimiter-based composite
operators (front, back, fuse). The front (or back) operator
removes a delimiter at the front (or back) of y1 and y2, ap-
plies a child operator, and attaches the original delimiter to
the front (or back) of the combined result. The fuse operator
applies a child operator piecewise on elements in y1 and
y2 that are separated by a delimiter, after which piecewise
results are connected back with the original delimiter.

StructOp defines operators that apply RecOp operators
on structured streams (stitch, stitch2, and offset). These op-
erators depend on the values at certain locations in y1 and
y2. The stitch (or stitch2) operator compares y1’s last line
with y2’s first line, then behaves differently conditioned on
whether these two lines (or whether the second field from
these two lines) equal. The offset operator uses the first field
in the last line of y1 to adjust the first field in every line of
y2.

RunOp𝑓 defines operators that require command execu-
tions (rerun𝑓 and merge). The rerun𝑓 command reexecutes
command 𝑓 on the concatenataion of y1 and y2. The merge
command invokes a standard Unix merge command that
takes two pre-sorted streams and interleaves them into a
sorted merged stream. The “<flags>” parameter represents a
set of known flags specific to command 𝑓 .

Figure 6 presents several rules of the big-step execution
semantics for the DSL. The transition function⇒ maps a
DSL expression to its output value.

3.2 Combiner Synthesis

The synthesizer starts with an initial search space of can-
didate combiners in Combiner𝑓 . The algorithm generates a
set of input streams, uses them to execute 𝑓 , observes the
outputs, and uses the observations to do two things: (1) re-
move implausible candidates and (2) choose an input shape
for the next round of input generation. We formalize these
definitions below.
Definition 3.3. An input pair ⟨x1, x2⟩ consists of two strings
x1, x2 ∈ String. An output tuple ⟨y1, y2, y12⟩ consists of three
strings y1, y2, y12 ∈ String.
Definition 3.4. An input stream pair ⟨x1, x2⟩ consists of two
streams x1, x2 ∈ Stream. An observation ⟨y1, y2, y12⟩ consists
of three streams y1, y2, y12 ∈ Stream.
Definition 3.5. Executing command 𝑓 with an input stream
pair ⟨x1, x2⟩ produces the observation ⟨𝑓 (x1), 𝑓 (x2), 𝑓 (x1 ++ x2)⟩.
For a set of input stream pairs 𝑋 , 𝑓 (𝑋 ) denotes the set of
observations obtained from executing 𝑓 with 𝑋 , 𝑓 (𝑋 ) =

{⟨𝑓 (x1), 𝑓 (x2), 𝑓 (x1 ++ x2)⟩ | ⟨x1, x2⟩ ∈ 𝑋 }.
Our current KumQuat implementation allows the user to

specify the initial search space with the maximum AST size
in the combiner DSL.
Definition 3.6. The size of a combiner 𝑔 ∈ Combiner𝑓 is
denoted as |𝑔| and defined as two (each combiner operates
on two arguments) plus the number of times that the AST
of 𝑔 applies a production to expand a “RecOp”, “StructOp”,
or “RunOp𝑓 ” symbol.
Definition 3.7. 𝐺𝑛 = {𝑔 ∈ Combiner𝑓 | |𝑔| ≤ 𝑛} denotes
the set of combiners that are under size 𝑛.
We next define legal inputs and plausible combiners.

Definition 3.8. For 𝑔 ∈ Combiner𝑓 , 𝐿(𝑔) denotes the set of
legal strings for which 𝑔 is defined. For example:

𝐿 (add) = [‘0‘ − ‘9‘]+

𝐿 (front 𝑑 𝑏) = {𝑑 ++ 𝑦 | 𝑦 ∈ 𝐿 (𝑏) }
𝐿 (fuse 𝑑 𝑏) = {𝑦1 ++ 𝑑 ++ 𝑦2 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦𝑘

| 𝑦1 ≠ nil, 𝑦𝑘 ≠ nil, and 𝑦𝑖 ∈ 𝐿 (𝑏) and 𝑑 ∉ 𝑦𝑖

for all 𝑖 = 1, . . . , 𝑘, where 𝑘 ≥ 2}

For any y1, y2 ∈ 𝐿(𝑔), the evaluation 𝑔 y1 y2 =⇒𝑒 𝑣 succeeds
for some 𝑣 ∈ String.
Definition 3.9. A combiner 𝑔 ∈ Combiner𝑓 is plausible for
output tuples 𝑌 , denoted as 𝑃 (𝑔,𝑌 ), if y1, y2 ∈ 𝐿(𝑔) and
𝑔 y1 y2 =⇒𝑒 y12 for all ⟨y1, y2, y12⟩ ∈ 𝑌 .
Definition 3.10. A combiner 𝑔 ∈ Combiner𝑓 is correct with
respect to input pairs 𝑋 if 𝑃 (𝑔, 𝑓 (𝑋 )). 𝐺 𝑓 ,𝑋

𝑛 = {𝑔 ∈ 𝐺𝑛 |
𝑃 (𝑔, 𝑓 (𝑋 ))} denotes the combiners for command 𝑓 that are
under size 𝑛 and are correct with respect to input pairs 𝑋 .
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𝑖1 = strToInt y1 𝑖2 = strToInt y2

add y1 y2 =⇒𝑒 intToStr (𝑖1 + 𝑖2)

concat y1 y2 =⇒𝑒 y1 ++ y2

first y1 y2 =⇒𝑒 y1

𝑏 (delFront 𝑑 y1) (delFront 𝑑 y2) =⇒𝑒 𝑣

(front 𝑑 𝑏) y1 y2 =⇒𝑒 𝑑 ++ 𝑣

ℎ1, 𝑡1 = splitFirst 𝑑 y1 ℎ2, 𝑡2 = splitFirst 𝑑 y2 𝑡1 ≠ nil 𝑡2 ≠ nil

𝑑 ∈ 𝑡1 𝑑 ∈ 𝑡2 𝑏 ℎ1 ℎ2 =⇒𝑒 𝑣 (fuse 𝑑 𝑏) 𝑡1 𝑡2 =⇒𝑒 𝑣′

(fuse 𝑑 𝑏) y1 y2 =⇒𝑒 𝑣 ++ 𝑑 ++ 𝑣′

𝑦′1, 𝑙1 = splitLastLine y1 𝑙2, 𝑦′2 = splitFirstLine y2 𝑙1 = 𝑙2 𝑏 𝑙1 𝑙2 =⇒𝑒 𝑣

(stitch 𝑏) y1 y2 =⇒𝑒 𝑦′1 ++ ‘\𝑛‘ ++ 𝑣 ++ ‘\𝑛‘ ++ 𝑦′2

𝑣 = (unixMerge <flags>) y1 y2
(merge <flags>) y1 y2 =⇒𝑒 𝑣 rerun𝑓 y1 y2 =⇒𝑒 𝑓 (y1 ++ y2)

𝑏,𝑏1, 𝑏2 ∈ RecOp 𝑑 ∈ Delim y1, y2, 𝑦
′
1, 𝑦
′
2, 𝑣, 𝑣

′, 𝑣1, 𝑣2, ℎ,ℎ1, ℎ2, 𝑡, 𝑡1, 𝑡2, 𝑙1, 𝑙2 ∈ String 𝑖1, 𝑖2 ∈ Int

Figure 4. Semantics of the combiner DSL (selected rules).

Data: Command 𝑓 , max combiner size 𝑛
Result: Synthesized plausible combiners
𝐶0 ← AllCandidates(𝑛)
for 𝑟 = 1, 2, . . . do

𝐼𝑟 ← GetEffectiveInputs(𝑓 ,𝐶𝑟−1, RandomShape())
𝐶𝑟 ← FilterCandidates(𝑓 ,𝐶𝑟−1, 𝐼𝑟 )
if 𝐶𝑟 = ∅ then

return nil

end

if not MakingProgress( [𝐶0, . . . ,𝐶𝑟 ]) then
return 𝐶𝑟

end

end

Algorithm 1: Procedure Synthesize, which implements
KumQuat’s core synthesis algorithm. The procedure
takes a command and synthesizes a combiner for the
command that is correct with respect to a range of gen-
erated input pairs.

Combiner Synthesis: Algorithm 1 presents KumQuat’s
combiner synthesis algorithm, which takes a black-box com-
mand 𝑓 and an integer 𝑛. It starts by preparing a set𝐶0 of the
initial search space. The algorithm then performs multiple
rounds of filtering on the candidates.
Variable 𝐶𝑟 holds the set of combiners that are correct

with respect to all seen input pairs, i.e., the set 𝐺 𝑓 ,𝐼
𝑛 where

𝐼 =
⋃𝑟

𝑟 ′=1 𝐼𝑟 ′ . Algorithm 1 terminates if either (1) no candidate
combiners remain, in which case it returns nil and reports
an error, or (2) no progress is made in a number of rounds,
in which case it returns the set of plausible combiners.
Input Generation: We next present how the inputs are
generated for Algorithm 1 to filter candidates. A key goal of
input generation is to generate a variety of input streams that
exercise a wide range of the functionality of the command 𝑓 .
The KumQuat input generation algorithm is driven by mu-
tations to an input shape, from which KumQuat generates
random inputs. The mutations are chosen by how effectively
their resulting inputs eliminate incorrect candidate combin-
ers.

Data: Command 𝑓 , candidate combiners 𝐶 , input shape 𝑠0
Result: Input stream pairs, generated from mutating 𝑠0, for

eliminating incorrect candidates in 𝐶
𝐼 ← Empty set
for𝑚 = 1, . . . , 𝑀 do

for 𝑗 = 1, . . . , 12 do
𝑠
𝑗

𝑚−1 ← MutateShape(𝑠𝑚−1, 𝑗)
𝐼
𝑗

𝑚−1 ← GetInputStreamPairs(𝑠 𝑗
𝑚−1)

Add 𝐼 𝑗
𝑚−1 to 𝐼

end

𝑗 ′ ← IndexBestMutation(𝐶, 𝐼1
𝑚−1, . . . , 𝐼

12
𝑚−1)

𝑠𝑚 ← 𝑠
𝑗 ′

𝑚−1
end

return 𝐼
Algorithm 2: Procedure GetEffectiveInputs, which mu-
tates input shapes to generate input stream pairs.

Definition 3.11. An input shape 𝑠 = ⟨𝑠𝐿, 𝑠𝑊 , 𝑠𝐶⟩ ∈ Shape
specifies the configurations for three dimensions of an input:
the lines in each input as separated by newline characters
(𝑠𝐿 ∈ Config), the words in each line as separated by spaces
(𝑠𝑊 ∈ Config), and the characters in each word (𝑠𝐶 ∈ Config).
The configuration for each dimension is of the form ⟨𝑙, 𝑢, 𝑑⟩
and specifies three bounds: the minimum element count
(𝑙 ∈ Int), the maximum element count (𝑢 ∈ Int), and the per-
centage of distinct elements (𝑑 ∈ Percent) on that dimension.
Definition 3.12. A stream 𝑥 satisfies an input shape 𝑠 ∈
Shape, denoted as 𝑥 ∼ 𝑠 , if 𝑥 conforms to the bounds specified
in 𝑠 . An input stream pair ⟨x1, x2⟩ satisfies an input shape
𝑠 ∈ Shape, denoted as ⟨x1, x2⟩ ∼ 𝑠 , if (x1 ++ x2) ∼ 𝑠 .

Algorithm 2 presents KumQuat’s input generation algo-
rithm. The procedure takes a black-box command 𝑓 , a set
of candidate combiners 𝐶 , and an initial input shape 𝑠0; it
mutates the input shape iteratively, generating input streams
along the way.

The iterative mutation process is inspired by gradient de-
scent. The𝑚-th iteration (𝑚 = 1, . . . , 𝑀) mutates the input
shape 𝑠𝑚−1 using one of twelve potential mutations. These
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potential mutations are along three dimensions (lines, words,
and characters) and four directions (more/fewer elements,
more/less varied). Procedure MutateShape takes an initial
input shape and a mutation index, then returns a new in-
put shape mutated as specified. For the 𝑗-th potential mu-
tation ( 𝑗 = 1, . . . , 12), Algorithm 2 uses the mutated input
shape 𝑠 𝑗

𝑚−1 to generate a set of input stream pairs 𝐼 𝑗
𝑚−1. In

other words, the variable 𝐼 𝑗
𝑚−1 satisfies ⟨𝑖1, 𝑖2⟩ ∼ 𝑠

𝑗

𝑚−1 for all
⟨𝑖1, 𝑖2⟩ ∈ 𝐼 𝑗𝑚−1.
Algorithm 2 then evaluates the effectiveness of all of the

input shape mutations. It returns the index, 𝑗 ′, of the most
effective set. The 𝑗 ′-th mutation then produces the input
shape for the next iteration, 𝑠𝑚 = 𝑠

𝑗 ′

𝑚−1. The procedure re-
peats these operations for𝑀 iterations. Finally the procedure
returns the set of all observed input pairs, 𝐼 =

⋃
𝑗,𝑚 𝐼

𝑗

𝑚−1.
Preprocessing: The current KumQuat implementation
preprocesses command scripts to obtain a set of literals
for generating inputs and input shapes. For example, “grep
’light.light’” does not produce any outputs unless the
input stream contains lines that match the regular expression
’light.light’. KumQuat extracts this regular expression
and generates a dictionary of strings that match. It then
uses this dictionary as elements for generating input streams
based on input shapes. The command “sed 100q” copies
input to output when the input stream contains at most 100
lines. When the input stream contains more lines, the com-
mand removes the trailing lines. KumQuat obtains the num-
ber 100 as a literal and uses it to generate initial input shapes
where one dimension is close to this number. KumQuat then
mutates this initial input shape to obtain a range of different
input streams that exercise different behavior in the original
command.

KumQuat also checks whether the original command can
process three test input streams without errors: a list of un-
sorted English words separated by newlines, the same list
of words but sorted, and a list of legal file names separated
by newlines. Most of our benchmark commands can process
all three test input streams without errors. Benchmark com-
mands that use “comm” print an error with the first test input
stream but succeed with the second. Based on this outcome,
KumQuat generates only sorted input streams for these com-
mands during combiner synthesis. Benchmark commands
that use “xargs” print an error with the first two test input
streams but succeed with the third. Based on this outcome,
KumQuat configures a dictionary of legal file names and
uses the dictionary to generate input streams for these com-
mands.
Multiple Plausible Combiners: Recall that Algorithm 1
returns the set of plausible combiners (Definition 3.9 and Def-
inition 3.10). Let𝐺 be the set of returned plausible combiners.

If 𝐺 = ∅, the synthesizer reports an error. If 𝐺 contains ex-
actly one combiner, the synthesizer returns the combiner
directly.
If 𝐺 contains more than one combiner, the synthesizer

builds a composite combiner using the following subset of𝐺 .
If 𝐺 ∩ RecOp ≠ ∅, the synthesizer uses the set 𝐺 ∩ RecOp.
Otherwise, if 𝐺 ∩ StructOp ≠ ∅, the synthesizer uses the
set 𝐺 ∩ StructOp. Otherwise, 𝐺 ∩ RunOp𝑓 ≠ ∅ and the syn-
thesizer uses the set 𝐺 ∩ RunOp𝑓 . Let this nonempty subset
be {𝑔1, 𝑔2, . . . , 𝑔𝑚} (𝑚 ≥ 1). KumQuat uses it to construct a
composite combiner as follows. For any y1, y2, if they belong
to the domain of𝑔1, then return𝑔1 (y1, y2). Else if they belong
to the domain of 𝑔2, return 𝑔2 (y1, y2). . . .Otherwise, return
𝑔𝑚 (y1, y2). We show in Section 3.3 that, if the correct com-
biner for 𝑓 is among a certain set, then the order in which
these combiners are composed together does not matter—
the resulting composite combiner is semantically equivalent
regardless of the order. Alternatively, if the domain of one
of these plausible combiners is the superset of any other
plausible combiner’s domain, then it suffices to return only
the combiner with the largest domain.

3.3 Conditions for Synthesizing Correct Combiners

We present theorems that characterize when the combiner
synthesis algorithm will identify a correct combiner for a
given set of parallel output streams.
Broadly speaking, when the combiner involves numeri-

cal addition (add), the corresponding stream fragments on
which the numerical addition applies are required to be
nonzero in some observations. When the combiner involves
string concatenation (concat), the corresponding fragments
on which the string concatenation applies are required to
be nonempty in some observations. When the combiner in-
volves selection (first and second), the corresponding stream
fragments on which the selection applies are required to
contain non-delimiter and non-zero characters in some ob-
servations.

Combiners that process formatted streams may nest these
three classes of basic operators inside more complex opera-
tors (front, back, fuse, stitch, stitch2, offset). For these com-
biners, their requirements for sufficient observations include
a specification of the formatting as well as a specification of
the deformatted fragments.
Definition 3.13. For𝑔1, 𝑔2 ∈ Combiner𝑓 ,𝑔1 and𝑔2 are equiv-
alent by intersection, denoted as 𝑔1 ≡∩ 𝑔2, if for all y1, y2 ∈
𝐿(𝑔1) ∩ 𝐿(𝑔2), 𝑔1 y1 y2 =⇒𝑒 𝑣 and 𝑔2 y1 y2 =⇒𝑒 𝑣 for some
𝑣 .
Definition 3.14. A combiner 𝑔 ∈ Combiner𝑓 is correct for
command 𝑓 if 𝑃 (𝑔, 𝑓 (𝑋 )) holds for all input stream pairs 𝑋 .
Definition 3.15.We define two sets of representative com-
biners for command 𝑓 ,𝐺rec = {𝑔a, 𝑔c, 𝑔f, 𝑔s, 𝑔ba, 𝑔fa, 𝑔bfa, 𝑔fbfa,
𝑔fc} ⊂ RecOp and𝐺struct = {𝑔sf, 𝑔saf, 𝑔oa} ⊂ StructOp, whose
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elements include: 𝑔c = concat, 𝑔ba = (back 𝑑 add), 𝑔sf =

(stitch first), and 𝑔saf = (stitch2 𝑑 add first).
Definition 3.16. For combiner 𝑔 ∈ 𝐺rec ∪𝐺struct and any set
of output tuples 𝑌 , 𝐸 (𝑔,𝑌 ) denotes a conservative predicate
that is true only if 𝑌 is sufficient for eliminating incorrect
candidates when the correct combiner is 𝑔.
Definition 3.17. For any set of output tuples 𝑌 , 𝐸rec (𝑌 ) de-
notes a conservative predicate that is true only if 𝑌 is suffi-
cient for eliminating incorrect candidates when the correct
combiner 𝑔 ∈ 𝐺rec.
Definition 3.18. For any set of output tuples 𝑌 , 𝑇 (𝑌 ) de-
notes a predicate that is true only if 𝑌 is interpretable as a
table.
Definition 3.19. For any set of output tuples 𝑌 , 𝐸struct (𝑌 )
denotes a conservative predicate that is true only if 𝑌 is suf-
ficient for eliminating incorrect candidates when the correct
combiner 𝑔 ∈ 𝐺struct.
Definition 3.20. For a command 𝑓 , integer 𝑘 , and set of
output tuples 𝑌 , the set of plausible combiners 𝑃𝑘 (𝑌 ) = {𝑔 ∈
Combiner𝑓 | |𝑔| ≤ 𝑘 and 𝑃 (𝑔,𝑌 )}.
Theorem 1. For any combiner 𝑔 ∈ 𝐺rec, set of output tuples
𝑌 such that 𝑃 (𝑔,𝑌 ) and 𝐸 (𝑔,𝑌 ), and 𝑔′ ∈ RecOp, we have
𝑃 (𝑔′, 𝑌 ) implies 𝑔′ ≡∩ 𝑔.
Theorem 2. For any command 𝑓 , set of input streams 𝑋 ,
combiner 𝑔 ∈ 𝐺rec, combiner 𝑔′ ∈ RecOp, and integer 𝑘 , if
the following conditions hold:
• 𝐸rec (𝑓 (𝑋 )),
• 𝑔 is correct for 𝑓 ,
• y1, y2 ∈ 𝐿(𝑔′) for all ⟨y1, y2, y12⟩ ∈ 𝑓 (𝑋 ), and
• 𝑘 ≥ |𝑔′ |,
then 𝑔′ ∈ 𝑃𝑘 (𝑓 (𝑋 )) ∩ RecOp if and only if 𝑔′ ≡∩ 𝑔.
Theorem 3. For any combiner 𝑔 ∈ 𝐺struct, set of output
tuples 𝑌 such that 𝑃 (𝑔,𝑌 ) and 𝐸 (𝑔,𝑌 ), and 𝑔′ ∈ StructOp,
we have 𝑃 (𝑔′, 𝑌 ) implies 𝑔′ ≡∩ 𝑔.
Theorem 4. For any command 𝑓 , set of input streams 𝑋 ,
combiner 𝑔 ∈ 𝐺struct, combiner 𝑔′ ∈ StructOp, and integer 𝑘 ,
if the following conditions hold:
• 𝐸struct (𝑓 (𝑋 )),
• 𝑔 is correct for 𝑓 ,
• y1, y2 ∈ 𝐿(𝑔′) for all ⟨y1, y2, y12⟩ ∈ 𝑓 (𝑋 ), and
• 𝑘 ≥ |𝑔′ |,
then 𝑔′ ∈ 𝑃𝑘 (𝑓 (𝑋 )) ∩ StructOp if and only if 𝑔′ ≡∩ 𝑔.

3.4 Input Generation and Correct Combiners

Our target commands often consist of two components: unit-
based computation and delimiter-based formatting. Unit-
based computation often determines how a combiner applies
the add, concat, first, and second operators to certain frag-
ments of the output substreams. Delimiter-based formatting
often determines how a combiner uses the front, back, fuse,

stitch, stitch2, and offset operators. We focus on three broad
classes of unit-based computation that appear in our bench-
mark commands.
Counting Lines,Words, orCharacters: ManyUnix com-
mands output formatted counts of certain lines, words, or
characters. Benchmark commands that implement this pat-
tern include “wc -l,” “grep -c [regex],” and “uniq -c.”
For each of these wc and grep commands, a correct com-

biner is (back 𝑑 add). By Theorem 1 and Theorem 2, as
long as the command outputs satisfy the requirements for
(back 𝑑 add), any synthesized plausible combiner in RecOp

will be equivalent to (back 𝑑 add) when processing streams
that belong to the combiner’s domain. For the uniq com-
mand, a correct combiner is (stitch2 ‘ ‘ add first). By Theo-
rem 3 and Theorem 4, as long as the command outputs col-
lected by KumQuat satisfy the requirements for (stitch2 ‘ ‘
add first), any synthesized plausible combiner in StructOp

will be equivalent to (stitch2 ‘ ‘ add first) when processing
streams that belong to the combiner’s domain.
Both of these correct combiners use add nested inside

other operators. Because these other operators process for-
matting, the remaining deformatted fragments in the output
substreams are therefore processed by add. Here we focus
on identifying the correct add operator for processing these
deformatted fragments. The requirement is (conceptually)
observing nonzero values in these fragments.

KumQuat generates input streams with various numbers
of lines. Many of these lines cause the wc counter(s) to be
nonzero. For “grep -c [regex],” the KumQuat preprocess-
ing extracts literals that it uses to generate input streams
that contain matching values that cause the grep counter
to be nonzero. The resulting output streams therefore con-
tain nonzero characters even after removing the formatting,
which satisfy the requirements for identifying add correctly
as a building block of the final synthesized combiners.

For “uniq -c” the combiner contains a conditional in the
stitch2 operator that applies the add operator only when the
right-hand content in the last line of y1 equals the right-hand
content in the first line of y2. These contents correspond to
the last line of x1 and the first line of x2. KumQuat generates
input streams x1, x2 with varying percentages of distinct
lines, some of which enable the command to produce output
streams y1, y2 that contain deformatted fragments that are
processed by the add operator. Because these deormatted
fragments are always nonzero for this uniq command, they
satisfy the requirements for identifying add correctly as a
building block of the final synthesized combiner.
Mapping Input Lines to Disjoint Output Lines: Many
Unix commands apply a function to map each input line
to a sequence of output lines. Benchmark commands that
implement this pattern include: “tr ’[a-z]’ ’P’,” “tr -c
’[A-Z]’ ’\n’,” “sed s/\$/’0s’/,” “cut -c 1-4,” “cut -d
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’,’ -f 3,1,” “awk "length >= 16",” “grep ’light.\*light’,”
“grep -v ’^0$’,” “xargs cat,” and “xargs file.”

For each of these commands, a correct combiner is concat.
By Theorem 1 and Theorem 2, as long as the command
outputs collected by KumQuat satisfy the requirements for
concat, any synthesized plausible combiner in RecOpwill be
equivalent to concat when processing streams that belong
to the combiner’s domain. In this case, the requirement is
(conceptually) observing nonempty output streams.

For the tr, sed, and cut commands, KumQuat generates
input streams with various numbers of lines, many of which
cause these commands to produce nonempty outputs. For
the awk, grep, and xargs commands, KumQuat uses pre-
processing to determine that it will generate input streams
based on certain literals or file names (Definition 3.2). The
resulting input streams therefore enable these commands to
produce nonempty outputs, which satisfy the requirements
for synthesizing concat correctly.
Selecting Elements: Some Unix commands select cer-
tain elements from a list, output selected elements, and
discard others. Benchmark commands include: “uniq” and
“uniq -c.” (stitch first) is a correct combiner for “uniq”;
(stitch2 ‘ ‘ add first) is a correct combiner for “uniq -c”.
These combiners use first or second nested inside defor-

matting operators so that correct fragments are processed
by first or second. Here we focus on how to identify the
correct first or second operator. The requirement is (concep-
tually) observing non-delimiter and non-zero characters in
these fragments and observing such fragments for the two
operands to differ.
These uniq commands select one line out of any two ad-

jacent lines that equal. The combiners contain conditional
statements in the stitch and stitch2 operators that apply first
or second only when certain contents are equal. The com-
biner for “uniq” applies the first operator when the last line
in y1 equals the first line in y2. The combiner for “uniq -c”
applies the first operator when the right-hand content in the
last line of y1 equals the right-hand content in the first line
of y2. KumQuat generates input streams x1, x2 with varying
percentages of distinct lines, some of which enable these
commands to produce output streams y1, y2 that contain de-
formatted fragments that are processed by the first operator.
Also, because KumQuat generates input streams with vary-
ing numbers of words per line, some of the generated lines
contain nonzero and nondelimiter characters which enable
the command to produce such characters in the deformatted
fragments as well. These deformatted fragments therefore
satisfy the requirements for identifying first and second as
a building block of the final synthesized combiner.

3.5 Pipeline Optimization

Eliminating Intermediate Combiners: KumQuat elim-
inates unnecessary intermediate combiners as follows.

(a) Serial pipeline that consists of two commands 𝑓1, 𝑓2

(b) Unoptimized parallel pipeline that executes a combiner after
each parallel command

(c) Optimized parallel pipeline that executes multiple commands in
parallel after eliminating intermediate combiners

Figure 5. KumQuat reassembles a new parallel pipeline by
splitting the input stream, running parallel copies of the
original commands on the input substreams, and combining
the output substreams.

Theorem 5. For any commands 𝑓1, 𝑓2, input streams x1, x2 ∈
Stream, correct combiner 𝑔1 for 𝑓1, correct combiner 𝑔2 for
𝑓2 if 𝑔1 = concat and 𝑓1 (x1), 𝑓1 (x2) ∈ Stream then

𝑔2 (𝑓2 (y1), 𝑓2 (y2)) = 𝑔2 (𝑓2 (𝑓1 (x1)), 𝑓2 (𝑓1 (x2)))

for any y1, y2 ∈ Stream such that 𝑓1 (x1 ++ x2) = y1 ++ y2.
Figure 5 shows the effect of this optimization—rather than

combining after every pipeline stage, the optimized parallel
pipeline combines only once. In general, if the combiner
for a stage (command 𝑓1) concatenates the parallel output
substreams, then we can eliminate the combiner 𝑔1 for this
stage and feed the output substreams directly to the next
parallel stage 𝑓2 as input substreams. The final combined
output stream applies only the combiner 𝑔2 for the second
stage (Figure 5c). By Theorem 5, this output is identical to
the unoptimized output if 𝑔1 were in place (Figure 5b).

A prerequisite for this optimization is that the command 𝑓1
must produce output streams that terminate with newlines.
One of our benchmark commands violate this precondition:
the command “tr -d ’\n’” removes all newline characters.
Hence the optimization in Theorem 5 does not apply to this
command (KumQuat still parallelizes this command with
the concat combiner).
Combining Multiple Substreams: Although KumQuat
synthesizes combiners that process two streams, the com-
mands may be executed with 𝑘 way parallelism that pro-
duces 𝑘 output substreams (𝑘 > 2). KumQuat generalizes
the following combiners to apply to all 𝑘 substreams at the
same time. The merge <flags> combiner is implemented
in KumQuat as an invocation of a Unix script “sort -m
<flags> $*” which merges multiple sorted streams at the
same time. The concat combiner is implemented as the script
“cat $*” which concatenates multiple streams. The rerun
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combiner can also be implemented by concatenating all sub-
streams at the same time and rerunning the original com-
mand only once. For other combiners, the current KumQuat
implementation applies the combiner on two substreams
repeatedly until only one substream remains.

4 Experimental Results

We evaluate KumQuat on the following benchmarks:
• Mass-transit analytics during COVID-19: This bench-
mark set contains 4 scripts that were used to analyze real
telemetry data from bus schedules during the COVID-
19 response in a large European city [25]. The pipelines
compute several average statistics on the transit system
per day—such as daily serving hours and daily number
of vehicles. Each script has 1 pipeline. Each pipeline has
between 7 and 8 stages.3 These scripts operate on a fixed
3.4GB dataset that contains mass-transport data collected
over a single year.
• Natural language processing: This benchmark set con-
tains 22 scripts from Kenneth’s Unix-for-Poets [5], up-
dated in 2016 by a Stanford linguistic class [15]. These
scripts calculate natural-language processing metrics such
as n-grams, morphs, counts, and frequencies. Each script
has between 1 and 3 pipelines. Each pipeline has between
2 and 8 stages. These scripts are applied to 1823 books
that total 927MB from Project Gutenberg [11].
• Classic Unix One-liners: This benchmark set contains
10 pipelines written by Unix experts: a few pipelines are
from Unix legends [1, 2, 16], one from a book on Unix
scripting [24], and a few are from top Stackoverflow an-
swers [13]. Each script has between 1 and 2 pipelines, ex-
cept for a script that has only one command. Each pipeline
has between 2 and 8 stages. Inputs are script-specific and
average 1.6GB per benchmark.
• Unix50 from Bell Labs: This benchmark set contains 34
pipelines solving the Unix 50 game [14], designed to high-
light Unix’smodular philosophy [16], found onGitHub [3]
Each script has 1 pipeline, except for a script that has only
one command. Each pipeline has between 2 and 10 stages.
Inputs are script-specific and average 1.1GB per bench-
mark.

Experimental Setup: To evaluate the pipeline performance,
we implemented an infrastructure that can execute each
stage in a pipeline to completion before starting to execute
the next stage. The infrastructure configures any stage that
invokes the Unix sort utility to be serial (using the option
“–parallel=1”). Each stage’s output is redirected to a file,
which is read by the next stage as input. This infrastructure

3We count pipelines as groups of two or more commands connected by
Unix pipes. We count pipeline stages as commands in the pipeline excluding
initial “cat” commands that read input files.

provides a parameter for specifying the amount of paral-
lelism for each parallelizable stage.
We performed experiments on a server with 0.5TB of

memory and 80 × 2.27GHz Intel(R) Xeon(R) E7-8860, De-
bian GNU/Linux 9, GNU Coreutils 8.26-3, and Python 3.8.2.
We note that our benchmarks never come close to exhausting
the server’s available memory.
Performance Results: The 70 benchmark scripts have a
total of 477 commands and 427 pipeline stages.4 Table 1
presents the performance results for our automatically paral-
lelized pipelines for the two longest-running scripts in each
benchmark. In general, shorter scripts have smaller parallel
speedup. We present full results in the appendix.
The first two columns present the benchmark and script

names. The next column (Parallelized) presents the num-
ber of stages automatically parallelized by KumQuat, 𝑘 , and
the number of stages in the original pipeline, 𝑛, as a pair
“𝑘/𝑛” for each pipeline in the parentheses. Here we also re-
port the single commands that are not in pipelines, as pairs
“𝑘/1”. The pair before the parentheses presents the sum over
all pipelines in the script. The next column (Eliminated)
presents the number of parallelized stages whose combiners
are eliminated by KumQuat during optimization. Again, the
numbers in the parentheses correspond to pipelines in the
script. The number before the parentheses presents the sum
over all pipelines. Among all benchmark scripts, KumQuat
parallelizes 325 of the the 427 stages (76.1%) with synthesized
combiners. The optimization eliminates 144 of these combin-
ers (44.3%). These results highlight the ability of KumQuat
to effectively extract the parallelism implicitly present in the
benchmark pipelines.

The next column (𝑇orig) presents the execution time for the
original benchmark script, which exploit the default Unix
pipelined parallelism and deploy the default Unix sort, which
exploits 8 way parallelism. The next two columns (𝑢1 and𝑢16)
present the execution time for the unoptimized pipeline with
1 and 16 way parallelism for each data parallel command.
Since these generated pipelines always wait for each stage
to terminate before starting the next stage, 𝑢1 is the serial
execution time. The last column (𝑇16) presents the execution
time for the optimized pipeline with 16 way command paral-
lelism. Among the benchmark scripts whose serial execution
time is at least 3 minutes, the unoptimized parallel speedup
ranges between 3.5× and 14.9×, with a median speedup of
8.5×. Among these benchmark scripts, the optimized par-
allel speedup ranges between 3.8× and 26.9×, with a me-
dian speedup of 11.3× (we attribute the superlinear speedup
to pipelined parallelism exploited across consecutive paral-
lelized commands with no intermediate combiner).
Synthesis Results: We summarize the synthesis results be-
low and present full results in the appendix. The benchmarks

4See footnote 3.



, , Jiasi Shen, Martin Rinard, and Nikos Vasilakis

Table 1. Performance results for the two longest-running scripts from each benchmark

Benchmark Script Name Parallelized Eliminated 𝑇orig 𝑢1 𝑢16 𝑇16

analytics-mts 2.sh (vehicle days on road) 8/8 (8/8) 3 (3) 335 s (1.1×) 379 s 41 s (9.3×) 28 s (13.5×)
analytics-mts 3.sh (vehicle hours on road) 8/8 (8/8) 3 (3) 408 s (1.0×) 427 s 51 s (8.4×) 38 s (11.3×)
oneliners set-diff.sh 5/8

(0/1, 3/3, 2/2, 0/1, 0/1)
3
(0, 2, 1, 0, 0)

879 s (1.5×) 1308 s 144 s (9.1×) 128 s (10.2×)

oneliners wf.sh 4/5 (4/5) 1 (1) 1155 s (1.8×) 2089 s 196 s (10.7×) 145 s (14.4×)
poets 4_3b.sh (count_trigrams) 4/9

(2/4, 0/1, 0/1, 2/3)
1 (1, 0, 0, 0) 862 s (1.2×) 1049 s 275 s (3.8×) 279 s (3.8×)

poets 8.2_2.sh (bigrams_appear_twice) 4/9
(2/4, 0/1, 2/3, 0/1)

1 (1, 0, 0, 0) 645 s (1.4×) 921 s 177 s (5.2×) 91 s (10.2×)

unix50 21.sh (8.4: longest words w/o hyphens) 3/3 (3/3) 1 (1) 428 s (1.7×) 733 s 64 s (11.4×) 49 s (14.9×)
unix50 23.sh (9.1: extract word PORT) 6/6 (6/6) 4 (4) 111 s (1.8×) 202 s 23 s (8.8×) 10 s (19.8×)

contain 133 unique command/flag combinations (we refer to
them as “commands” below). Among these commands, 121
are data-processing commands that read an input stream.5
KumQuat synthesizes a combiner for 113 of the 121 unique
commands, with no combiner synthesized for the remaining
8 commands. The 8 unsupported commands include 7 com-
mands for which no correct combiner exists and 1 command
that requires a specific field of the input file to equal “2”.

The synthesis times vary between 39 seconds and 331 sec-
onds with a median of 60 seconds. The most common synthe-
sized plausible combiners, including their equivalents, are:
concat (synthesized 81 times), rerun (30 times), merge(*)
(16 times), and (back ‘\𝑛‘ add) (12 times). Other synthesized
combiners involve operators first, second, fuse, stitch, and
stitch2. For each benchmark command, the synthesized plau-
sible combiners are all equivalent when operating on the
command’s outputs. KumQuat uses the synthesized com-
biners to parallelize the benchmark scripts. The generated
parallel pipelines all produce correct outputs (same outputs
as the original scripts).

5 Related Work

We discuss related work in parallel execution of shell com-
mands and scripts, synthesis of divide-and-conquer compu-
tations, program synthesis driven by provided input/output
examples, and synthesis of Unix commands.
POSH and PaSh: The POSH and PaSh systems parallelize
and distribute Unix shell scripts [18, 26]. Both systems re-
quire combiners and both systemsworkwithmanually coded
combiners. KumQuat eliminates the need formanually coded
combiners, enabling such systems to immediately work with
new commands (or new combinations of command flags)
that require new combiners without the need to manually
develop new combiners.
Synthesis ofMapReducePrograms fromExamples: [21]
present a technique for automatically synthesizing complete
5The remaining 12 unique commands include 2 function calls, 3 commands
that do not process data streams (ls, mkfifo, and rm), and 7 commands that
process multiple input streams.

MapReduce programs given a partial specification in the
form of a set of input/output examples. KumQuat, in con-
trast, supports (but does not synthesize) commands with
much more sophisticated semantics than the synthesized
map computations in [21]. By working with existing shell
commands, KumQuat also eliminates the need for the user
to provide input/output examples.

Preserving the order in which components appear in out-
put streams is required to correctly implement the streaming
semantics of Unix pipelines. KumQuat preserves this re-
quired order by incorporating metadata into the combiners
and the parallelization. [21], in contrast, does not support
ordered streams — it targets computations that do not have
ordering constraints and can produce output components in
any order.
Automatic Parallelization ofDivide andConquerCom-

putations: Some research in this area uses program analy-
sis, typically over loops that access dense arrays or matrices,
to generate parallel divide and conquer computations [10, 19].
Other research works with a complete characterization of
the semantics of the original sequential computation [7, 8].
KumQuat, in contrast, synthesizes combiners for black-box
streaming computations. KumQuat can therefore success-
fully target much more complex computations implemented
in arbitrary programming languages. A trade-off is that the
correctness of the KumQuat combiner synthesis algorithm
relies on assumptions about the computation that the black-
box components implement.
Unix Synthesis: Prior work on synthesis for Unix shell
commands and pipelines [4, 6] is guided by examples or
natural-language specifications. Instead of automatically gen-
erating parallel or distributed versions of an existing com-
mand or pipeline, the goal is to synthesize the sequential
command itself from examples or natural language specs.
Commands and Shells: There is a series of systems that
aid developers in running commands or script fragments in
a parallel or distributed fashion. These range from simple
Unix utilities [20, 23, 27] to parallel/distributed shells [17,
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22] to data-parallel frameworks that incorporate Unix com-
mands [9, 12] These tools require developers to modify pro-
grams to make use of the tools’ APIs. KumQuat, in contrast,
aims to provide an automated solution that works directly
on sequential scripts.

6 Conclusion

KumQuat synthesizes combiners that enable the exploita-
tion of data parallelism in Unix commands and pipelines.
Our experimental results show that the KumQuat input
generation and combiner synthesis algorithms effectively
identify correct combiners for our benchmark scripts and
that these combiners enable the effective parallelization of
these scripts.
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𝑖1 = strToInt y1 𝑖2 = strToInt y2

add y1 y2 =⇒𝑒 intToStr (𝑖1 + 𝑖2)

concat y1 y2 =⇒𝑒 y1 ++ y2

first y1 y2 =⇒𝑒 y1

second y1 y2 =⇒𝑒 y2

𝑏 (delFront 𝑑 y1) (delFront 𝑑 y2) =⇒𝑒 𝑣

(front 𝑑 𝑏) y1 y2 =⇒𝑒 𝑑 ++ 𝑣

𝑏 (delBack 𝑑 y1) (delBack 𝑑 y2) =⇒𝑒 𝑣

(back 𝑑 𝑏) y1 y2 =⇒𝑒 𝑣 ++ 𝑑

ℎ1, 𝑡1 = splitFirst 𝑑 y1 ℎ2, 𝑡2 = splitFirst 𝑑 y2
𝑡1 ≠ nil 𝑡2 ≠ nil 𝑑 ∉ 𝑡1 𝑑 ∉ 𝑡2

𝑏 ℎ1 ℎ2 =⇒𝑒 𝑣 𝑏 𝑡1 𝑡2 =⇒𝑒 𝑣′

(fuse 𝑑 𝑏) y1 y2 =⇒𝑒 𝑣 ++ 𝑑 ++ 𝑣′

ℎ1, 𝑡1 = splitFirst 𝑑 y1 ℎ2, 𝑡2 = splitFirst 𝑑 y2
𝑡1 ≠ nil 𝑡2 ≠ nil 𝑑 ∈ 𝑡1 𝑑 ∈ 𝑡2
𝑏 ℎ1 ℎ2 =⇒𝑒 𝑣 (fuse 𝑑 𝑏) 𝑡1 𝑡2 =⇒𝑒 𝑣′

(fuse 𝑑 𝑏) y1 y2 =⇒𝑒 𝑣 ++ 𝑑 ++ 𝑣′

rerun𝑓 y1 y2 =⇒𝑒 𝑓 (y1 ++ y2)

𝑣 = (unixMerge <flags>) y1 y2
(merge <flags>) y1 y2 =⇒𝑒 𝑣

y1 = ‘\𝑛‘ or y2 = ‘\𝑛‘

(stitch 𝑏) y1 y2 =⇒𝑒 y1 ++ y2

𝑦′1, 𝑙1 = splitLastLine y1 𝑙2, 𝑦′2 = splitFirstLine y2 𝑙1 ≠ 𝑙2

(stitch 𝑏) y1 y2 =⇒𝑒 y1 ++ y2

𝑦′1, 𝑙1 = splitLastLine y1 𝑙2, 𝑦′2 = splitFirstLine y2 𝑙1 = 𝑙2 𝑏 𝑙1 𝑙2 =⇒𝑒 𝑣

(stitch 𝑏) y1 y2 =⇒𝑒 𝑦′1 ++ ‘\𝑛‘ ++ 𝑣 ++ ‘\𝑛‘ ++ 𝑦′2

𝑦′1, 𝑙1 = splitLastLine 𝑣1 ℎ1, 𝑡1 = splitFirst 𝑑 (delPad 𝑙1)
𝑙2, 𝑦′2 = splitFirstLine 𝑣2 ℎ2, 𝑡2 = splitFirst 𝑑 (delPad 𝑙2) 𝑡1 ≠ 𝑡2

(stitch2 𝑑 𝑏1 𝑏2) 𝑣1 𝑣2 =⇒𝑒 y1 ++ y2

𝑦′1, 𝑙1 = splitLastLine 𝑣1 ℎ1, 𝑡1 = splitFirst 𝑑 (delPad 𝑙1)
𝑙2, 𝑦′2 = splitFirstLine 𝑣2 ℎ2, 𝑡2 = splitFirst 𝑑 (delPad 𝑙2)

𝑡1 = 𝑡2 𝑏1 ℎ1 ℎ2 =⇒𝑒 ℎ 𝑏2 𝑡1 𝑡2 =⇒𝑒 𝑡 𝑣 = addPad (ℎ ++ 𝑑 ++ 𝑡 )

(stitch2 𝑑 𝑏1 𝑏2) 𝑣1 𝑣2 =⇒𝑒 𝑦′1 ++ ‘\𝑛‘ ++ 𝑣 ++ ‘\𝑛‘ ++ 𝑦′2

(helper 𝑑 𝑏) ℎ1 nil =⇒𝑒 nil

𝑙2, 𝑦′2 = splitFirstLine y2 𝑙2 = nil (helper 𝑑 𝑏) ℎ1 𝑦′2 =⇒𝑒 𝑣

(helper 𝑑 𝑏) ℎ1 y2 =⇒𝑒 ‘\𝑛‘ ++ 𝑣

𝑙2, 𝑦′2 = splitFirstLine y2 ℎ2, 𝑡2 = splitFirst 𝑑 (delPad 𝑙2)
𝑏 ℎ1 ℎ2 =⇒𝑒 ℎ 𝑣 = addPad (ℎ ++ 𝑑 ++ 𝑡2) (helper 𝑑 𝑏) ℎ1 𝑦′2 =⇒𝑒 𝑣′

(helper 𝑑 𝑏) ℎ1 y2 =⇒𝑒 𝑣 ++ ‘\𝑛‘ ++ 𝑣′

𝑦′1, 𝑙1 = splitLastNonemptyLine y1 ℎ1, 𝑡1 = splitFirst 𝑑 (delPad 𝑙1)
(helper 𝑑 𝑏) ℎ1 y2 =⇒𝑒 𝑣

(offset 𝑑 𝑏) y1 y2 =⇒𝑒 y1 ++ 𝑣

𝑏,𝑏1, 𝑏2 ∈ RecOp 𝑑 ∈ Delim y1, y2, 𝑦
′
1, 𝑦
′
2, 𝑣, 𝑣

′, 𝑣1, 𝑣2, ℎ,ℎ1, ℎ2, 𝑡, 𝑡1, 𝑡2, 𝑙1, 𝑙2 ∈ String 𝑖1, 𝑖2 ∈ Int

Figure 6. DSL Semantics. The semantics of synthesizable combiners 𝑔 ∈ Combiner𝑓 for command 𝑓 . A combiner accepts two
strings y1, y2 that are the outputs from two executions of 𝑓 . A plausible combiner 𝑔 for 𝑓 must satisfy 𝑔 y1 y2 =⇒𝑒 𝑓 (x1 ++ x2)
for all of the observed input pairs ⟨x1, x2⟩, where y1 = 𝑓 (x1) and y2 = 𝑓 (x2).

We present the combiner DSL semantics in Appendix A, a correctness result in Appendix B, performance results in
Appendix C, and combiner synthesis results in Appendix D.

A Appendix: DSL Semantics

Figure 6 presents the big-step execution semantics for the DSL. The transition function⇒ maps a DSL expression to its
output value. strToInt converts a string into an integer. intToStr converts an integer into a string. ++ concatenates two strings.
unixMerge takes a comparator flag and two strings, then uses the flag to execute the “sort -m” command to merge the two
strings. delFront and delBack each takes a delimiter and a string. delFront removes the specified delimiter from the beginning
of the string, while delBack removes the delimiter at the end of the stream. nil denotes an empty string. splitFirst, splitLast,
and splitLastNonempty each takes a delimiter and a string. splitFirst splits the string into elements separated by the delimiter,
then returns the first element as the first output. It connects the remaining elements using the delimiter as the second output.
splitLast likewise splits the string with the delimiter, then returns the last element as the second output and returns the
remaining substring as the first output. splitLastNonempty splits the string with the delimiter, then returns the last nonempty
element. delPad removes leading spaces from a string, then returns the number of removed spaces as the first output and
returns the remaining substring as the second output. calcPad takes an integer and two strings, where the integer denotes the
number of spaces that pad the first string. It returns the padding needed for the second string. addPad inserts padding before a
string.
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B Appendix: Conditions for Synthesizing Correct Combiners

Definition B.1. For 𝑔 ∈ Combiner𝑓 , 𝐿(𝑔) denotes the set of legal strings for which 𝑔 is defined.
𝐿(add) = [‘0‘ − ‘9‘]+

𝐿(concat) = String

𝐿(first) = String

𝐿(second) = String

𝐿(front 𝑑 𝑏) = {𝑑 ++ 𝑦 | 𝑦 ∈ 𝐿(𝑏)}
𝐿(back 𝑑 𝑏) = {𝑦 ++ 𝑑 | 𝑦 ∈ 𝐿(𝑏)}
𝐿(fuse 𝑑 𝑏) = {𝑦1 ++ 𝑑 ++ 𝑦2 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦𝑘

| 𝑦1 ≠ nil, 𝑦𝑘 ≠ nil, and 𝑦𝑖 ∈ 𝐿(𝑏) and 𝑑 ∉ 𝑦𝑖

for all 𝑖 = 1, . . . , 𝑘, where 𝑘 ≥ 2}
𝐿(stitch 𝑏) = {𝑦1 ++ ‘\𝑛‘ ++ . . . ++ 𝑦𝑘 ++ ‘\𝑛‘

| 𝑦𝑖 ∈ 𝐿(𝑏) and ‘\𝑛‘ ∉ 𝑦𝑖 for all 𝑖 = 1, . . . , 𝑘
where 𝑘 ≥ 1}

∪ {‘\𝑛‘}
𝐿(stitch2 𝑑 𝑏1 𝑏2) = {𝑦1 ++ ‘\𝑛‘ ++ . . . ++ 𝑦𝑘 ++ ‘\𝑛‘

| 𝑦𝑖 = 𝑝 ++ ℎ𝑖 ++ 𝑑 ++ 𝑡𝑖 and ‘\𝑛‘ ∉ 𝑦𝑖

for all 𝑖 = 1, . . . , 𝑘, where 𝑘 ≥ 1, 𝑝 ∈ [‘ ‘+ | ‘\𝑡 ‘],
ℎ𝑖 ∈ 𝐿(𝑏1), 𝑑 ∉ ℎ𝑖 , and 𝑡𝑖 ∈ 𝐿(𝑏2)}
∪ {‘\𝑛‘}

𝐿(offset 𝑑 𝑏) = {𝑦1 ++ ‘\𝑛‘ ++ . . . ++ 𝑦𝑘 ++ ‘\𝑛‘
| 𝑦𝑖 ∈ {nil, (𝑝 ++ ℎ𝑖 ++ 𝑑 ++ 𝑡𝑖 )} and ‘\𝑛‘ ∉ 𝑦𝑖

for all 𝑖 = 1, . . . , 𝑘, where 𝑘 ≥ 1, 𝑝 ∈ [‘ ‘+ | ‘\𝑡 ‘],
ℎ𝑖 ∈ 𝐿(𝑏), 𝑑 ∉ ℎ𝑖 , and 𝑡𝑖 ∈ String}

𝐿(rerun𝑓 ) = {legal inputs for 𝑓 }
𝐿(merge <flags>) = {legal inputs for (unixMerge <flags>)}

For any y1, y2 ∈ 𝐿(𝑔), the evaluation 𝑔 y1 y2 =⇒𝑒 𝑣 succeeds for some 𝑣 ∈ String.
Definition B.2. A stream is a string that ends with a newline character ‘\𝑛‘, Stream = {𝑥 ++ ‘\𝑛‘ | 𝑥 ∈ String}.
Definition B.3. A command 𝑓 : Stream→ Stream is a function that takes a stream as input and produces a stream as output.6

Definition B.4. An input pair ⟨x1, x2⟩ consists of two strings x1, x2 ∈ String. An output tuple ⟨y1, y2, y12⟩ consists of three
strings y1, y2, y12 ∈ String.
Definition B.5. An input stream pair ⟨x1, x2⟩ consists of two streams x1, x2 ∈ Stream. An observation ⟨y1, y2, y12⟩ consists of
three streams y1, y2, y12 ∈ Stream.
Definition B.6. Executing command 𝑓 with an input stream pair ⟨x1, x2⟩ produces the observation ⟨𝑓 (x1), 𝑓 (x2), 𝑓 (x1 ++ x2)⟩.
For a set of input stream pairs𝑋 , 𝑓 (𝑋 ) denotes the set of observations obtained from executing 𝑓 with𝑋 , 𝑓 (𝑋 ) = {⟨𝑓 (x1), 𝑓 (x2),
𝑓 (x1 ++ x2)⟩ | ⟨x1, x2⟩ ∈ 𝑋 }.
Definition B.7. For 𝑔1, 𝑔2 ∈ Combiner𝑓 , 𝑔1 and 𝑔2 are equivalent by intersection, denoted as 𝑔1 ≡∩ 𝑔2, if for all y1, y2 ∈
𝐿(𝑔1) ∩ 𝐿(𝑔2), 𝑔1 y1 y2 =⇒𝑒 𝑣 and 𝑔2 y1 y2 =⇒𝑒 𝑣 for some 𝑣 .
Example 1. For all 𝑑 ∈ Delim, we have (front 𝑑 concat) ≡∩ (back 𝑑 concat) and (stitch2 𝑑 first first) ≡∩ (stitch first).
Definition B.8. A combiner𝑔 ∈ Combiner𝑓 is plausible for output tuples𝑌 , denoted as 𝑃 (𝑔,𝑌 ), if y1, y2 ∈ 𝐿(𝑔) and𝑔 y1 y2 =⇒𝑒

y12 for all ⟨y1, y2, y12⟩ ∈ 𝑌 .
6Although this paper focuses on commands whose outputs terminate with newlines, the KumQuat algorithm applies also to commands whose outputs do not
terminate with newlines.
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Table 2. Representative combiners

Combiner 𝑔 Stage Conditions for 𝐸 (𝑔,𝑌 ) to be true

𝑔a = add RecOp The following conditions hold: (1) There exists ⟨y1, y2, y12 ⟩ ∈ 𝑌 such that y1 ∉ ‘0‘+. (2) There
exists ⟨y1, y2, y12 ⟩ ∈ 𝑌 such that y2 ∉ ‘0‘+.

𝑔c = concat RecOp The following conditions hold: (1) There exists ⟨y1, y2, y12 ⟩ ∈ 𝑌 such that y1 ≠ nil. (2) There
exists ⟨y1, y2, y12 ⟩ ∈ 𝑌 such that y2 ≠ nil.

𝑔f = first RecOp The following conditions hold: (1) There exists ⟨y1, y2, y12 ⟩ ∈ 𝑌 such that y1 ≠ y2. (2) There exists
⟨y1, y2, y12 ⟩ ∈ 𝑌 and 𝑐 ∈ y2 such that 𝑐 ∉ Delim ∪ {‘0‘}.

𝑔s = second RecOp The following conditions hold: (1) There exists ⟨y1, y2, y12 ⟩ ∈ 𝑌 such that y1 ≠ y2. (2) There exists
⟨y1, y2, y12 ⟩ ∈ 𝑌 and 𝑐 ∈ y1 such that 𝑐 ∉ Delim ∪ {‘0‘}.

𝑔ba = (back 𝑑 add) RecOp 𝐸 (𝑔a, 𝑌 ′) where 𝑌 ′ = { ⟨y1, y2, y12 ⟩ | ⟨(y1 ++ 𝑑), (y2 ++ 𝑑), (y12 ++ 𝑑) ⟩ ∈ 𝑌 }.
𝑔fa = (fuse 𝑑 add) RecOp 𝐸 (𝑔a, 𝑌 ′) where 𝑌 ′ = { ⟨y1,𝑖 , y2,𝑖 , y12,𝑖 ⟩ | ⟨(y1,1 ++ 𝑑 ++ . . . ++ 𝑑 ++ y1,𝑛), (y2,1 ++ 𝑑 ++ . . . ++

𝑑 ++ y2,𝑛), (y12,1 ++ 𝑑 ++ . . . ++ 𝑑 ++ y12,𝑛) ⟩ ∈ 𝑌, where 𝑑 ∉ 𝑦1
𝑗
and 𝑑 ∉ 𝑦2

𝑗
for all 𝑗 =

1, . . . , 𝑛, and 𝑖 ∈ {1, . . . , 𝑛}}.
𝑔bfa = (back 𝑑1 (fuse 𝑑2 add)) RecOp 𝐸 (𝑔fa, 𝑌 ′) where 𝑌 ′ = { ⟨y1, y2, y12 ⟩ | ⟨(y1 ++ 𝑑), (y2 ++ 𝑑), (y12 ++ 𝑑) ⟩ ∈ 𝑌 }.
𝑔fbfa = (front 𝑑1 (back 𝑑2 (fuse 𝑑3 add))) RecOp 𝐸 (𝑔bfa, 𝑌 ′) where 𝑌 ′ = { ⟨y1, y2, y12 ⟩ | ⟨(𝑑 ++ y1), (𝑑 ++ y2), (𝑑 ++ y12) ⟩ ∈ 𝑌 }.
𝑔fc = (front 𝑑 concat) RecOp 𝐸 (𝑔c, 𝑌 ′) where 𝑌 ′ = { ⟨y1, y2, y12 ⟩ | ⟨(𝑑 ++ y1), (𝑑 ++ y2), (𝑑 ++ y12) ⟩ ∈ 𝑌 }.
𝑔sf = (stitch first) StructOp The following conditions hold: (1) There exists ⟨y1, y2, y12 ⟩ ∈ 𝑌 such that (splitLastLine y1) =

(𝑦′1, 𝑙) and (splitFirstLine y2) = (𝑙, 𝑦′2) where (firstChar (delPad 𝑙)) ∉ Delim ∪ {‘0‘} and
(lastChar 𝑙) ∉ Delim∪{‘0‘}. (2) If𝑌 ⊆ 𝐿 (stitch2𝑑 𝑏1 𝑏2) for some𝑑 ∈ Delim and𝑏1, 𝑏2 ∈ RecOp,
then there exists ⟨y1, y2, y12 ⟩ ∈ 𝑌 such that ℎ1 ≠ ℎ2, where (splitLastLine y1) = (𝑦′1, 𝑙1) ,
(splitFirstLine y2) = (𝑙2, 𝑦′2) , (splitFirst 𝑑 (delPad 𝑙1)) = (ℎ1, 𝑡 ) , and (splitFirst 𝑑 (delPad 𝑙2)) =
(ℎ2, 𝑡 ) .

𝑔saf = (stitch2 𝑑 add first) StructOp There exists ⟨y1, y2, y12 ⟩ ∈ 𝑌 such that (splitLastLine y1) = (𝑦′1, 𝑙) and (splitFirstLine y2) =
(𝑙, 𝑦′2) where (firstChar (delPad 𝑙)) ∉ Delim ∪ {‘0‘} and (lastChar 𝑙) ∉ Delim ∪ {‘0‘}.

𝑔oa = (offset 𝑑 add) StructOp The following conditions hold: (1) There exists ⟨y1, y2, y12 ⟩ ∈ 𝑌 such that (splitLastLine y1) =
(𝑦′1, 𝑙1) , (splitFirstLine y2) = (𝑙2, 𝑦′2) , and (splitFirstLine 𝑦′2) = (𝑙′2, 𝑦′′2 ) , where
(firstChar (delPad 𝑙1)) ∉ Delim ∪ {‘0‘}, 𝑙2 ≠ nil, and 𝑙′2 ≠ nil. (2) 𝐸 (𝑔a, 𝑌 ′) where
𝑌 ′ = { ⟨ℎ1, ℎ2, 𝑦′12 ⟩ | ⟨y1, y2, y12 ⟩ ∈ 𝑌, (splitLastLine y1) = (𝑦′1, 𝑙1), (splitFirstLine y2) =

(𝑙2, 𝑦′2), (splitFirst 𝑑 (delPad 𝑙1)) = (ℎ1, 𝑡1), and (splitFirst 𝑑 (delPad 𝑙2)) = (ℎ2, 𝑡2) }.

Definition B.9. A combiner 𝑔 ∈ Combiner𝑓 is correct for command 𝑓 if 𝑃 (𝑔, 𝑓 (𝑋 )) holds for all input stream pairs 𝑋 .
Remark. Note that this definition does not require 𝑃 (𝑔,𝑌 ) for all sets of output tuples 𝑌 .
Definition B.10. 𝐶 (𝑑,𝑦) denotes the number of times that 𝑑 ∈ Delim occurs in 𝑦 ∈ String. We write 𝑑 ∈ 𝑦 when 𝐶 (𝑑,𝑦) > 0
and write 𝑑 ∉ 𝑦 when 𝐶 (𝑑,𝑦) = 0.
Definition B.11. We define two sets of representative combiners for command 𝑓 , 𝐺rec = {𝑔a, 𝑔c, 𝑔f, 𝑔s, 𝑔ba, 𝑔fa, 𝑔bfa, 𝑔fbfa, 𝑔fc} ⊂
RecOp and 𝐺struct = {𝑔sf, 𝑔saf, 𝑔oa} ⊂ StructOp, whose elements are defined as follows:

𝑔a = add ∈ RecOp
𝑔c = concat ∈ RecOp
𝑔f = first ∈ RecOp
𝑔s = second ∈ RecOp
𝑔ba = (back 𝑑 add) ∈ RecOp
𝑔fa = (fuse 𝑑 add) ∈ RecOp
𝑔bfa = (back 𝑑1 (fuse 𝑑2 add)) ∈ RecOp
𝑔fbfa = (front 𝑑1 (back 𝑑2 (fuse 𝑑3 add))) ∈ RecOp
𝑔fc = (front 𝑑 concat) ∈ RecOp
𝑔sf = (stitch first) ∈ StructOp
𝑔saf = (stitch2 𝑑 add first) ∈ StructOp
𝑔oa = (offset 𝑑 add) ∈ StructOp

Definition B.12. For combiner 𝑔 ∈ 𝐺rec ∪𝐺struct and any set of output tuples 𝑌 , 𝐸 (𝑔,𝑌 ) denotes a conservative predicate that
is true only if 𝑌 is sufficient for eliminating incorrect candidates when the correct combiner is 𝑔. We define these predicates in
Table 2.
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Definition B.13. For any set of output tuples 𝑌 , 𝐸rec (𝑌 ) denotes a conservative predicate that is true only if 𝑌 is sufficient for
eliminating incorrect candidates when the correct combiner 𝑔 ∈ 𝐺rec. 𝐸rec (𝑌 ) is true if and only if the following conditions
hold:
• There exists ⟨y1, y2, y12⟩ ∈ 𝑌 such that y1 ≠ y2.
• There exists ⟨y1, y2, y12⟩ ∈ 𝑌 and 𝑐 ∈ y1 such that 𝑐 ∉ Delim ∪ {‘0‘}.
• There exists ⟨y1, y2, y12⟩ ∈ 𝑌 and 𝑐 ∈ y2 such that 𝑐 ∉ Delim ∪ {‘0‘}.
Definition B.14. For any set of output tuples 𝑌 ,𝑇 (𝑌 ) denotes a predicate that is true only if 𝑌 is interpretable as a table.𝑇 (𝑌 )
is true if and only if there exists 𝑝 ∈ [‘ ‘+ | ‘\𝑡 ‘] and 𝑑 ∈ Delim such that for all ⟨y1, y2, y12⟩ ∈ 𝑌 , each line in y1, y2, y12 is either
nil or of the form (𝑝 ++ ℎ ++ 𝑑 ++ 𝑡) for some ℎ, 𝑡 ∈ String.
Definition B.15. For any set of output tuples 𝑌 , 𝐸struct (𝑌 ) denotes a conservative predicate that is true only if 𝑌 is sufficient for
eliminating incorrect candidates when the correct combiner 𝑔 ∈ 𝐺struct. 𝐸struct (𝑌 ) is true if and only if the following conditions
hold:
• There exists ⟨y1, y2, y12⟩ ∈ 𝑌 such that (splitLastLine y1) = (𝑦 ′1, 𝑙), (splitFirstLine y2) = (𝑙, 𝑦 ′2), and (splitFirstLine 𝑦 ′2) =
(𝑙 ′2, 𝑦 ′′2 ), where (firstChar (delPad 𝑙)) ∉ Delim ∪ {‘0‘}, (lastChar 𝑙) ∉ Delim ∪ {‘0‘}, and 𝑙 ′2 ≠ nil.
• If 𝑇 (𝑌 ) then 𝐸rec (𝑌 ′), where 𝑌 ′ = {⟨ℎ1, ℎ2, 𝑦 ′12⟩ | ⟨y1, y2, y12⟩ ∈ 𝑌, (splitLastLine y1) = (𝑦 ′1, 𝑙1), (splitFirstLine y2) = (𝑙2, 𝑦 ′2),
(splitFirst 𝑑 (delPad 𝑙1)) = (ℎ1, 𝑡), and (splitFirst 𝑑 (delPad 𝑙2)) = (ℎ2, 𝑡)}.

Definition B.16. The size of a combiner 𝑔 ∈ Combiner𝑓 is denoted as |𝑔| and defined as two (each combiner operates on two
arguments) plus the number of times that the AST of 𝑔 applies a production to expand a “RecOp”, “StructOp”, or “RunOp𝑓 ”
symbol.
Example 2. We have |𝑔a | = 3, |𝑔fbfa | = 6, and |𝑔saf | = 5.
Definition B.17. For a command 𝑓 , integer 𝑘 , and set of output tuples 𝑌 , the set of plausible combiners 𝑃𝑘 (𝑌 ) = {𝑔 ∈
Combiner𝑓 | |𝑔| ≤ 𝑘 and 𝑃 (𝑔,𝑌 )}.
Proposition B.1. If combiner 𝑔 ∈ Combiner𝑓 is correct for command 𝑓 , then y1, y2 ∈ 𝐿(𝑔) holds for all ⟨y1, y2, y12⟩ ∈ 𝑓 (𝑋 )
where 𝑋 is any set of input stream pairs.
Proposition B.2. For any combiner 𝑔 ∈ 𝐺rec and set of output tuples 𝑌 , if 𝑃 (𝑔,𝑌 ) and 𝐸rec (𝑌 ) then 𝐸 (𝑔,𝑌 ).

Proof. By induction on the derivation of 𝑔. □

Proposition B.3. For any 𝑑 ∈ Delim and 𝑏1, 𝑏2 ∈ RecOp, 𝑌 ⊆ 𝐿(stitch2 𝑑 𝑏1 𝑏2) implies 𝑇 (𝑌 ). For any 𝑑 ∈ Delim and
𝑏 ∈ RecOp, 𝑌 ⊆ 𝐿(offset 𝑑 𝑏) implies 𝑇 (𝑌 ).
Proposition B.4. For any combiner 𝑔 ∈ 𝐺struct and set of output tuples 𝑌 , if 𝑃 (𝑔,𝑌 ) and 𝐸struct (𝑌 ) then 𝐸 (𝑔,𝑌 ).
Proposition B.5. For any integers 𝑘1, 𝑘2 such that 0 < 𝑘1 < 𝑘2, we have 𝑃𝑘1 (𝑌 ) ⊆ 𝑃𝑘2 (𝑌 ) for all sets of output tuples 𝑌 .
Proposition B.6. If combiner 𝑔 ∈ Combiner𝑓 is correct for command 𝑓 , then 𝑔 ∈ 𝑃 |𝑔 | (𝑓 (𝑋 )) for all sets of input stream pairs
𝑋 .
Proposition B.7. For any integer 𝑘 ≥ 6 and set of input stream pairs 𝑋 , we have:
• If combiner 𝑔 ∈ 𝐺rec is correct for command 𝑓 , then 𝑔 ∈ 𝑃𝑘 (𝑓 (𝑋 )) ∩ RecOp.
• If combiner 𝑔 ∈ 𝐺rec is correct for command 𝑓 , then 𝑔 ∈ 𝑃𝑘 (𝑓 (𝑋 )) ∩ StructOp.
Lemma B.1. For any 𝑔 ∈ RecOp, y1, y2 ∈ String, and 𝑑 ∈ Delim, if 𝑔 y1 y2 =⇒𝑒 𝑣 and 𝑑 ∉ y1 and 𝑑 ∉ y2 then 𝑑 ∉ 𝑣 .

Proof. By induction on the derivation of 𝑔. □

Lemma B.2. For any 𝑔 ∈ RecOp, y1, y2 ∈ String, and 𝑧 ∈ String, if 𝑔 y1 y2 =⇒𝑒 𝑣 and 𝑧 ≠ nil then 𝑣 ≠ y1 ++ 𝑧 ++ y2.

Proof. By induction on the derivation of 𝑔, where the case of “𝑔 = fuse 𝑑 𝑏” uses Lemma B.1. □

Lemma B.3. For any 𝑑 ∈ Delim, 𝑏 ∈ RecOp, 𝑔 = fuse 𝑑 𝑏, y1, y2 ∈ 𝐿(𝑔), and y12 ∈ String such that 𝑔 y1 y2 =⇒𝑒 y12, we have
𝐶 (𝑑, y1) = 𝐶 (𝑑, y2) = 𝐶 (𝑑, y12).

Proof. By Definition B.8 and Definition B.1, y1, y2 ∈ 𝐿(𝑔′) = {𝑦1 ++ 𝑑 ++ 𝑦2 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦𝑘 | 𝑦𝑖 ∈ 𝐿(𝑏) and 𝑑 ∉

𝑦𝑖 for all 𝑖 = 1, . . . , 𝑘, where𝑘 ≥ 2}. Let𝑘 = 𝐶 (𝑑, y1)+1. By Figure 6,𝐶 (𝑑, y2) = 𝐶 (𝑑, y1) = 𝑘−1. Let y1 = 𝑦11 ++𝑑 ++ . . . ++𝑑 ++𝑦1
𝑘

and y2 = 𝑦21 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦2
𝑘
where 𝑦1𝑖 , 𝑦2𝑖 ∈ 𝐿(𝑏), 𝑑 ∉ 𝑦1𝑖 , and 𝑑 ∉ 𝑦2𝑖 for all 𝑖 = 1, . . . , 𝑘 . By ??, 𝑑 ∈ Delim and 𝑏 ∈ RecOp.

By Figure 6, there exists 𝑣1, . . . , 𝑣𝑘 ∈ String such that y12 = 𝑣1 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑣𝑘 and 𝑏 𝑦1𝑖 𝑦2𝑖 =⇒𝑒 𝑣𝑖 for all 𝑖 = 1, . . . , 𝑘 .
By Lemma B.1, 𝑑 ∉ 𝑣𝑖 for all 𝑖 = 1, . . . , 𝑘 . Hence 𝐶 (𝑑, y12) = 𝑘 − 1. □
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Lemma B.4. For any 𝑑 ∈ Delim, 𝑔 ∈ RecOp, and y1, y2, y12 ∈ String such that 𝑔 y1 y2 =⇒𝑒 y12, we have 𝐶 (𝑑, y12) ≤
𝐶 (𝑑, y1) +𝐶 (𝑑, y2).

Proof. By induction on the derivation of 𝑔. □

Theorem 6. For any combiner 𝑔 ∈ 𝐺rec, set of output tuples 𝑌 such that 𝑃 (𝑔,𝑌 ) and 𝐸 (𝑔,𝑌 ), and 𝑔′ ∈ RecOp, we have 𝑃 (𝑔′, 𝑌 )
implies 𝑔′ ≡∩ 𝑔.

Proof. The proof is by induction on the derivation of 𝑔.
Case 1: 𝑔 = 𝑔a. The proof performs case analysis of the values of 𝑔′. By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 . By Def-

inition B.8 and Definition B.1, y1, y2 ∈ 𝐿(𝑔) = [‘0‘ − ‘9‘]+. By Definition B.8, 𝑔 y1 y2 =⇒𝑒 y12. By Figure 6,
y12 = intToStr ((strToInt y1) + (strToInt y2)).

Case 1.1: 𝑔′ = add = 𝑔. By Definition B.7, 𝑔′ ≡∩ 𝑔.
Case 1.2: 𝑔′ = concat. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. If y1 ∉ ‘0‘+, we have (strToInt y1) > 0. Hence

strToInt (y1 ++ y2) ≥ 10 · (strToInt y1) + (strToInt y2) > (strToInt y1) + (strToInt y2). If y1 ∈ ‘0‘+, the string
(y1 ++ y2) contains leading ‘0‘ characters that are absent in the results of intToStr. Either case, we have
intToStr ((strToInt y1) + (strToInt y2)) ≠ y1 ++ y2. Assume the opposite that 𝑃 (𝑔′, 𝑌 ). By Definition B.8,
𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, y12 = y1 ++ y2. We have the desired contradiction.

Case 1.3: 𝑔′ = first. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 such
that y2 ∉ ‘0‘+. Hence (strToInt y2) > 0. We have intToStr ((strToInt y1) + (strToInt y2)) ≠ y1. Assume the
opposite that 𝑃 (𝑔′, 𝑌 ). By Definition B.8, 𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, y12 = y1. We have the desired
contradiction.

Case 1.4: 𝑔′ = second. The proof is similar to the proof of Case 1.3.
Case 1.5: 𝑔′ = front 𝑑 𝑏. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. Assume the opposite that 𝑃 (𝑔′, 𝑌 ). By

Definition B.8 and Definition B.1, y1, y2 ∈ 𝐿(𝑔′) = {𝑑 ++ 𝑦 | 𝑦 ∈ 𝐿(𝑏)}. By Figure 3, 𝑑 ∈ Delim and
𝑏 ∈ RecOp. Thus, 𝑑 ∉ [‘0‘ − ‘9‘] and 𝐿(𝑔) ∩ 𝐿(𝑔′) = ∅. We have the desired contradiction.

Case 1.6: 𝑔′ = back 𝑑 𝑏. The proof is similar to the proof of Case 1.5.
Case 1.7: 𝑔′ = fuse 𝑑 𝑏. The proof is similar to the proof of Case 1.5.

Case 2: 𝑔 = 𝑔c. The proof performs case analysis of the values of 𝑔′. By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 . By Definition B.8,
𝑔 y1 y2 =⇒𝑒 y12. By Figure 6, y12 = y1 ++ y2.

Case 2.1: 𝑔′ = add. The proof is similar to the proof of Case 1.2.
Case 2.2: 𝑔′ = concat = 𝑔. By Definition B.7, 𝑔′ ≡∩ 𝑔.
Case 2.3: 𝑔′ = first. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 such that

y2 ≠ nil. Hence y1 ++ y2 ≠ y1. Assume the opposite that 𝑃 (𝑔′, 𝑌 ). By Definition B.8, 𝑔′ y1 y2 =⇒𝑒 y12. By
Figure 6, y12 = y1. We have the desired contradiction.

Case 2.4: 𝑔′ = second. The proof is similar to the proof of Case 2.3.
Case 2.5: 𝑔′ = front 𝑑 𝑏. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. Assume the opposite that 𝑃 (𝑔′, 𝑌 ). By

Definition B.8 and Definition B.1, y1, y2 ∈ 𝐿(𝑔′) = {𝑑 ++ 𝑦 | 𝑦 ∈ 𝐿(𝑏)}. Let y1 = 𝑑 ++ 𝑦 ′1, y2 = 𝑑 ++ 𝑦 ′2 where
𝑦 ′1, 𝑦

′
2 ∈ 𝐿(𝑏). By Figure 3, 𝑑 ∈ Delim and 𝑏 ∈ RecOp. By Definition B.8, 𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, there

exists 𝑣 ∈ String such that y12 = 𝑑 ++ 𝑣 and 𝑏 𝑦 ′1 𝑦 ′2 =⇒𝑒 𝑣 . Since y12 = y1 ++ y2 = 𝑑 ++ 𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2, we
have 𝑣 = 𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2. Since 𝑑 ≠ nil, by Lemma B.2, 𝑣 ≠ 𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2. We have the desired contradiction.

Case 2.6: 𝑔′ = back 𝑑 𝑏. The proof is similar to the proof of Case 2.5.
Case 2.7: 𝑔′ = fuse 𝑑 𝑏. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. Assume the opposite that 𝑃 (𝑔′, 𝑌 ). By

Definition B.8 and Definition B.1, y1, y2 ∈ 𝐿(𝑔′) = {𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦 ′
𝑘
| 𝑦 ′1 ≠ nil, 𝑦 ′

𝑘
≠

nil, and 𝑦 ′𝑖 ∈ 𝐿(𝑏) and 𝑑 ∉ 𝑦 ′𝑖 for all 𝑖 = 1, . . . , 𝑘, where 𝑘 ≥ 2}. Let 𝑘 = 𝐶 (𝑑, y1) +1. By Figure 6,𝐶 (𝑑, y1) ≥ 1
and 𝑘 ≥ 2. By Lemma B.3,𝐶 (𝑑, y2) = 𝐶 (𝑑, y12) = 𝐶 (𝑑, y1) = 𝑘 − 1. Since y12 = y1 ++ y2,𝐶 (𝑑, y12) = 2 · (𝑘 − 1).
Since 𝑘 ≥ 2, we have 𝑘 − 1 < 2 · (𝑘 − 1). We have the desired contradiction.

Case 3: 𝑔 = 𝑔f. The proof is by induction on the derivation of 𝑔′. By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 . By Definition B.8,
𝑔 y1 y2 =⇒𝑒 y12. By Figure 6, y12 = y1.

Case 3.1: 𝑔′ = add. The proof is similar to the proof of Case 1.3.
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Case 3.2: 𝑔′ = concat. The proof is similar to the proof of Case 2.3.
Case 3.3: 𝑔′ = first = 𝑔. By Definition B.7, 𝑔′ ≡∩ 𝑔.
Case 3.4: 𝑔′ = second. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 such

that y1 ≠ y2. Assume the opposite that 𝑃 (𝑔′, 𝑌 ). By Definition B.8, 𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, y12 = y2.
We have the desired contradiction.

Case 3.5: 𝑔′ = front 𝑑 𝑏. By Definition B.8 and Definition B.1, y1, y2 ∈ 𝐿(𝑔′) = {𝑑 ++ 𝑦 | 𝑦 ∈ 𝐿(𝑏)}. Let y1 = 𝑑 ++ 𝑦 ′1,
y2 = 𝑑 ++ 𝑦 ′2 where 𝑦 ′1, 𝑦 ′2 ∈ 𝐿(𝑏). By Figure 3, 𝑑 ∈ Delim and 𝑏 ∈ RecOp. By Definition B.8, 𝑔′ y1 y2 =⇒𝑒

y12. By Figure 6, there exists 𝑣 ∈ String such that y12 = 𝑑 ++ 𝑣 and 𝑏 𝑦 ′1 𝑦 ′2 =⇒𝑒 𝑣 . Since y12 = y1 = 𝑑 ++ 𝑦 ′1,
we have 𝑏 𝑦 ′1 𝑦 ′2 =⇒𝑒 𝑦

′
1.

Let 𝑌 ′ = {⟨𝑦 ′1, 𝑦 ′2, 𝑦 ′12⟩ | ⟨(𝑑 ++ 𝑦 ′1), (𝑑 ++ 𝑦 ′2), (𝑑 ++ 𝑦 ′12)⟩ ∈ 𝑌 }. We have 𝑏 𝑦 ′1 𝑦 ′2 =⇒𝑒 𝑦
′
12 and 𝑦 ′12 = 𝑦 ′1 for all

⟨𝑦 ′1, 𝑦 ′2, 𝑦 ′12⟩ ∈ 𝑌 ′. By Definition B.8, 𝑃 (𝑏,𝑌 ′) and 𝑃 (𝑔,𝑌 ′).
By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 such that y1 ≠ y2. Let y1 = 𝑑 ++ 𝑦 ′1, y2 = 𝑑 ++ 𝑦 ′2, y12 = 𝑑 ++ 𝑦 ′12.
We have 𝑦 ′1 ≠ 𝑦 ′2 and ⟨𝑦 ′1, 𝑦 ′2, 𝑦 ′12⟩ ∈ 𝑌 ′. By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 and 𝑐 ∈ y2 such that
𝑐 ∉ Delim ∪ {‘0‘}. Let y2 = 𝑑 ++ 𝑦 ′2. Since 𝑑 ∈ Delim, we have 𝑐 ∈ 𝑦 ′2.
By Table 2, 𝐸 (𝑔,𝑌 ′). By the induction hypothesis, 𝑏 ≡∩ 𝑔.
For all 𝑦 ′1, 𝑦 ′2 ∈ 𝐿(𝑏) ∩ 𝐿(𝑔), by Definition B.7, 𝑏 𝑦 ′1 𝑦

′
2 =⇒𝑒 𝑣 and 𝑔 𝑦 ′1 𝑦

′
2 =⇒𝑒 𝑣 for some 𝑣 . By Figure 6,

𝑣 = 𝑦 ′1. By Definition B.1, 𝐿(𝑔) = String and 𝐿(𝑏) ∩ 𝐿(𝑔) = 𝐿(𝑏). Hence 𝑏 𝑦 ′1 𝑦 ′2 =⇒𝑒 𝑦
′
1 for all 𝑦 ′1, 𝑦 ′2 ∈ 𝐿(𝑏).

For all y1, y2 ∈ 𝐿(𝑔′), by Definition B.1, y1 = (𝑑 ++ 𝑦 ′1) and y2 = (𝑑 ++ 𝑦 ′2) for some 𝑦 ′1, 𝑦 ′2 ∈ 𝐿(𝑏). By Figure 6,
𝑔′ (𝑑 ++ 𝑦 ′1) (𝑑 ++ 𝑦 ′2) =⇒𝑒 𝑑 ++ 𝑦 ′1. Hence 𝑔′ y1 y2 =⇒𝑒 y1 for all y1, y2 ∈ 𝐿(𝑔′). Since 𝐿(𝑔) = String,
𝐿(𝑔′) ∩ 𝐿(𝑔) = 𝐿(𝑔′). By Definition B.7, 𝑔′ ≡∩ 𝑔.

Case 3.6: 𝑔′ = back 𝑑 𝑏. The proof is similar to the proof of Case 3.5.
Case 3.7: 𝑔′ = fuse 𝑑 𝑏. By Definition B.8 and Definition B.1, y1, y2 ∈ 𝐿(𝑔′) = {𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦 ′

𝑘
|

𝑦 ′1 ≠ nil, 𝑦 ′
𝑘
≠ nil, and 𝑦 ′𝑖 ∈ 𝐿(𝑏) and 𝑑 ∉ 𝑦 ′𝑖 for all 𝑖 = 1, . . . , 𝑘, where 𝑘 ≥ 2}. Let y1 = 𝑦11 ++ 𝑑 ++ . . . ++

𝑑 ++ 𝑦1
𝑘
for some 𝑦1𝑖 ∈ 𝐿(𝑏), where 𝑑 ∉ 𝑦1𝑖 for all 𝑖 = 1, . . . , 𝑘 . By Lemma B.3, y2 = 𝑦21 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦2

𝑘

and y12 = 𝑦121 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦12
𝑘

for some 𝑦2𝑖 ∈ 𝐿(𝑏), 𝑦12𝑖 ∈ String, where 𝑑 ∉ 𝑦2𝑖 and 𝑑 ∉ 𝑦12𝑖 for all
𝑖 = 1, . . . , 𝑘 . By Definition B.8, 𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, 𝑏 𝑦1𝑖 𝑦

2
𝑖 =⇒𝑒 𝑦12𝑖 for all 𝑖 = 1, . . . , 𝑘 . Since

y12 = y1, we have 𝑦12𝑖 = 𝑦1𝑖 for all 𝑖 = 1, . . . , 𝑘 .
Let 𝑌 ′ = {⟨𝑦1𝑖 , 𝑦2𝑖 , 𝑦12𝑖 ⟩ | ⟨(𝑦11 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦1

𝑘
), (𝑦21 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦2

𝑘
), (𝑦121 ++ 𝑑 ++

. . . ++ 𝑑 ++ 𝑦12
𝑘
)⟩ ∈ 𝑌, where 𝑑 ∉ 𝑦1𝑗 and 𝑑 ∉ 𝑦2𝑗 for all 𝑗 = 1, . . . , 𝑘, and 𝑖 =∈ {1, . . . , 𝑘}}. We have

𝑏 𝑦1𝑖 𝑦
2
𝑖 =⇒𝑒 𝑦

12
𝑖 and 𝑦12𝑖 = 𝑦1𝑖 for all ⟨𝑦1𝑖 , 𝑦2𝑖 , 𝑦12𝑖 ⟩ ∈ 𝑌 ′. By Definition B.8, 𝑃 (𝑏,𝑌 ′) and 𝑃 (𝑔,𝑌 ′).

The rest of the proof is similar to the proof of Case 3.5.

Case 4: 𝑔 = 𝑔s. The proof is similar to the proof of Case 3.
Case 5: 𝑔 = 𝑔ba. The proof is by induction on the derivation of 𝑔′. By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 . By Definition B.8

and Definition B.1, y1, y2 ∈ 𝐿(𝑔) = [‘0‘ − ‘9‘]+ 𝑑 .

Case 5.1: 𝑔′ = add. The proof is similar to the proof of Case 1.5.
Case 5.2: 𝑔′ = concat. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. By Definition B.8, 𝑔 y1 y2 =⇒𝑒 y12. By

Figure 6, y12 ∈ 𝐿(𝑔). Assume the opposite that 𝑃 (𝑔′, 𝑌 ). By Definition B.8, 𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6,
y12 = y1 ++ y2. Hence y12 ∈ [‘0‘ − ‘9‘]+ 𝑑 [‘0‘ − ‘9‘]+ 𝑑 . By Figure 3, 𝑑 ∈ Delim. Thus, 𝑑 ∉ [‘0‘ − ‘9‘] and
𝐿(𝑔) ∩ [‘0‘ − ‘9‘]+ 𝑑 [‘0‘ − ‘9‘]+ 𝑑 = ∅. We have the desired contradiction.

Case 5.3: 𝑔′ = first. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. Let y1 = 𝑦 ′1 ++ 𝑑 , y2 = 𝑦 ′2 ++ 𝑑 where 𝑦 ′1, 𝑦 ′2 ∈
[‘0‘ − ‘9‘]+. By Definition B.8, 𝑔 y1 y2 =⇒𝑒 y12. By Figure 6, 𝑔a 𝑦 ′1 𝑦 ′2 =⇒𝑒 𝑦 ′1. Assume the opposite that
𝑃 (𝑔′, 𝑌 ). By Definition B.8, 𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, y12 = y1 = 𝑦 ′1 ++ 𝑑 .
Let 𝑌 ′ = {⟨𝑦 ′1, 𝑦 ′2, 𝑦 ′12⟩ | ⟨(𝑦 ′1 ++ 𝑑), (𝑦 ′2 ++ 𝑑), (𝑦 ′12 ++ 𝑑)⟩ ∈ 𝑌 }. We have 𝑔a 𝑦 ′1 𝑦 ′2 =⇒𝑒 𝑦

′
12 and 𝑦 ′12 = 𝑦 ′1 for

all ⟨𝑦 ′1, 𝑦 ′2, 𝑦 ′12⟩ ∈ 𝑌 ′. By Definition B.8, 𝑃 (𝑔a, 𝑌 ′) and 𝑃 (𝑔′, 𝑌 ′).
By Table 2, 𝐸 (𝑔a, 𝑌 ′). We show the desired contradiction similar to the proof of Case 1.3.

Case 5.4: 𝑔′ = second. The proof is similar to the proof of Case 5.3.
Case 5.5: 𝑔′ = front 𝑑 ′ 𝑏. The proof is similar to the proof of Case 1.5.
Case 5.6: 𝑔′ = back 𝑑 ′ 𝑏 where 𝑑 ′ ≠ 𝑑 . The proof is similar to the proof of Case 1.5.
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Case 5.7: 𝑔′ = back 𝑑 𝑏. Let y1 = 𝑦 ′1 ++ 𝑑 , y2 = 𝑦 ′2 ++ 𝑑 where 𝑦 ′1, 𝑦 ′2 ∈ [‘0‘ − ‘9‘]+. By Definition B.8, 𝑔 y1 y2 =⇒𝑒

y12 and 𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, there exists 𝑣 ∈ String such that y12 = 𝑣 ++ 𝑑 , 𝑔𝑎 𝑦 ′1 𝑦 ′2 =⇒𝑒 𝑣 , and
𝑏 𝑦 ′1 𝑦

′
2 =⇒𝑒 𝑣 .

Let 𝑌 ′ = {⟨𝑦 ′1, 𝑦 ′2, 𝑦 ′12⟩ | ⟨(𝑦 ′1 ++ 𝑑), (𝑦 ′2 ++ 𝑑), (𝑦 ′12 ++ 𝑑)⟩ ∈ 𝑌 }. We have 𝑔𝑎 𝑦 ′1 𝑦 ′2 =⇒𝑒 𝑦
′
12 and 𝑏 𝑦 ′1 𝑦 ′2 =⇒𝑒

𝑦 ′12 for all ⟨𝑦 ′1, 𝑦 ′2, 𝑦 ′12⟩ ∈ 𝑌 ′. By Definition B.8, 𝑃 (𝑔a, 𝑌 ′) and 𝑃 (𝑏,𝑌 ′).
By Table 2, 𝐸 (𝑔a, 𝑌 ′). By the induction hypothesis, 𝑏 ≡∩ 𝑔a.
For all 𝑦 ′1, 𝑦 ′2 ∈ 𝐿(𝑏) ∩ 𝐿(𝑔a), by Definition B.7, 𝑏 𝑦 ′1 𝑦

′
2 =⇒𝑒 𝑣 and 𝑔a 𝑦

′
1 𝑦
′
2 =⇒𝑒 𝑣 for some 𝑣 . For all

y1, y2 ∈ 𝐿(𝑔′) ∩ 𝐿(𝑔), by Figure 6, we have 𝑔′ y1 y2 =⇒𝑒 y12 and 𝑔 y1 y2 =⇒𝑒 y12 for some y12. By
Definition B.7, 𝑔′ ≡∩ 𝑔.

Case 5.8: 𝑔′ = fuse 𝑑 ′ 𝑏 where 𝑑 ′ ≠ 𝑑 . The proof is similar to the proof of Case 1.5.
Case 5.9: 𝑔′ = fuse 𝑑 𝑏. The proof is similar to the proof of Case 5.7.

Case 6: 𝑔 = 𝑔fa. The proof is by induction on the derivation of 𝑔′.

Case 6.1: 𝑔′ = add. The proof is similar to the proof of Case 1.5.
Case 6.2: 𝑔′ = concat. The proof is similar to the proof of Case 2.7.
Case 6.3: 𝑔′ = first. The proof is similar to the proof of Case 3.7.
Case 6.4: 𝑔′ = second. The proof is similar to the proof of Case 3.7.
Case 6.5: 𝑔′ = front 𝑑 ′ 𝑏 where 𝑑 ′ ≠ 𝑑 . The proof is similar to the proof of Case 1.5.
Case 6.6: 𝑔′ = front 𝑑 𝑏. The proof is similar to the proof of Case 5.7.
Case 6.7: 𝑔′ = back 𝑑 ′ 𝑏 where 𝑑 ′ ≠ 𝑑 . The proof is similar to the proof of Case 1.5.
Case 6.8: 𝑔′ = back 𝑑 𝑏. The proof is similar to the proof of Case 5.7.
Case 6.9: 𝑔′ = fuse 𝑑 ′ 𝑏 where 𝑑 ′ ≠ 𝑑 . The proof is similar to the proof of Case 1.5.
Case 6.10: 𝑔′ = fuse 𝑑 𝑏. By Definition B.8 and Definition B.1, y1, y2 ∈ 𝐿(𝑔) ∩ 𝐿(𝑔′) = {𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2 ++ 𝑑 ++

. . . ++ 𝑑 ++ 𝑦 ′
𝑘
| 𝑦 ′1 ≠ nil, 𝑦 ′

𝑘
≠ nil, and 𝑦 ′𝑖 ∈ 𝐿(𝑔a) ∩ 𝐿(𝑏) and 𝑑 ∉ 𝑦 ′𝑖 for all 𝑖 = 1, . . . , 𝑘, where 𝑘 ≥ 2}.

Let y1 = 𝑦11 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦1
𝑘
for some 𝑦1𝑖 ∈ 𝐿(𝑏), where 𝑑 ∉ 𝑦1𝑖 for all 𝑖 = 1, . . . , 𝑘 . By Lemma B.3,

y2 = 𝑦21 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦2
𝑘
and y12 = 𝑦121 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦12

𝑘
for some 𝑦2𝑖 ∈ 𝐿(𝑏), 𝑦12𝑖 ∈ String,

where 𝑑 ∉ 𝑦1𝑖 and 𝑑 ∉ 𝑦2𝑖 for all 𝑖 = 1, . . . , 𝑘 . By Definition B.8, 𝑔 y1 y2 =⇒𝑒 y12 and 𝑔′ y1 y2 =⇒𝑒 y12. By
Figure 6, 𝑔a 𝑦1𝑖 𝑦2𝑖 =⇒𝑒 𝑦

12
𝑖 and 𝑏 𝑦1𝑖 𝑦2𝑖 =⇒𝑒 𝑦

12
𝑖 for all 𝑖 = 1, . . . , 𝑘 .

Let 𝑌 ′ = {⟨𝑦1𝑖 , 𝑦2𝑖 , 𝑦12𝑖 ⟩ | ⟨(𝑦11 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦1
𝑘
), (𝑦21 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦2

𝑘
), (𝑦121 ++ 𝑑 ++

. . . ++ 𝑑 ++ 𝑦12
𝑘
)⟩ ∈ 𝑌, where 𝑑 ∉ 𝑦1𝑗 and 𝑑 ∉ 𝑦2𝑗 for all 𝑗 = 1, . . . , 𝑘, and 𝑖 ∈ {1, . . . , 𝑘}}. We have

𝑔a 𝑦
1
𝑖 𝑦

2
𝑖 =⇒𝑒 𝑦

12
𝑖 and 𝑏 𝑦1𝑖 𝑦2𝑖 =⇒𝑒 𝑦

12
𝑖 for all ⟨𝑦1𝑖 , 𝑦2𝑖 , 𝑦12𝑖 ⟩ ∈ 𝑌 ′. By Definition B.8, 𝑃 (𝑔a, 𝑌 ′) and 𝑃 (𝑏,𝑌 ′).

By Table 2, 𝐸 (𝑔a, 𝑌 ′). By the induction hypothesis, 𝑏 ≡∩ 𝑔a.
For all 𝑦 ′1, 𝑦 ′2 ∈ 𝐿(𝑏) ∩ 𝐿(𝑔a), by Definition B.7, 𝑏 𝑦 ′1 𝑦

′
2 =⇒𝑒 𝑣 and 𝑔a 𝑦

′
1 𝑦
′
2 =⇒𝑒 𝑣 for some 𝑣 . For all

y1, y2 ∈ 𝐿(𝑔′) ∩ 𝐿(𝑔), by Figure 6, we have 𝑔′ y1 y2 =⇒𝑒 y12 and 𝑔 y1 y2 =⇒𝑒 y12 for some y12. By
Definition B.7, 𝑔′ ≡∩ 𝑔.

Case 7: 𝑔 = 𝑔bfa. The proof is similar to the proof of Case 5.
Case 8: 𝑔 = 𝑔fbfa. The proof is similar to the proof of Case 5.
Case 9: 𝑔 = 𝑔fc. By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 . By Definition B.8 and Definition B.1, y1, y2 ∈ 𝐿(𝑔) = {𝑑 ++ 𝑦 | 𝑦 ∈

String}. Let y1 = 𝑑 ++ 𝑦 ′1, y2 = 𝑑 ++ 𝑦 ′2 where 𝑦 ′1, 𝑦 ′2 ∈ String. By Figure 3, 𝑑 ∈ Delim and 𝑏 ∈ RecOp. By Definition B.8,
𝑔 y1 y2 =⇒𝑒 y12. By Figure 6, there exists 𝑣 ∈ String such that y12 = 𝑑 ++ 𝑣 and 𝑔c 𝑦 ′1 𝑦 ′2 =⇒𝑒 𝑣 . Hence 𝑣 = 𝑦 ′1 ++ 𝑦 ′2
and y12 = 𝑑 ++ 𝑦 ′1 ++ 𝑦 ′2.

Case 9.1: 𝑔′ = add. The proof is similar to the proof of Case 1.5.
Case 9.2: 𝑔′ = concat. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. Assume the opposite that 𝑃 (𝑔′, 𝑌 ). By Defini-

tion B.8, 𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, y12 = y1 ++ y2 = 𝑑 ++ 𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2. Since 𝑑 ≠ nil, we have the
desired contradiction.

Case 9.3: 𝑔′ = first. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. By Table 2, there exists 𝑦 ′1, 𝑦 ′2, 𝑦 ′12 ∈ String such that
⟨(𝑑 ++ 𝑦 ′1), (𝑑 ++ 𝑦 ′2), (𝑑 ++ 𝑦 ′12)⟩ ∈ 𝑌 and 𝑦 ′2 ≠ nil. By Definition B.8, 𝑔 (𝑑 ++ 𝑦 ′1) (𝑑 ++ 𝑦 ′2) =⇒𝑒 (𝑑 ++ 𝑦 ′12).
By Figure 6, 𝑦 ′12 = 𝑦 ′1 ++ 𝑦 ′2. Assume the opposite that 𝑃 (𝑔′, 𝑌 ). By Definition B.8, 𝑔′ (𝑑 ++ 𝑦 ′1) (𝑑 ++ 𝑦 ′2) =⇒𝑒

(𝑑 ++ 𝑦 ′12). By Figure 6, 𝑦 ′12 = 𝑦 ′1. Since 𝑦 ′2 ≠ nil, we have the desired contradiction.
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Case 9.4: 𝑔′ = second. The proof is similar to the proof of Case 9.3.
Case 9.5: 𝑔′ = front 𝑑 ′ 𝑏 where 𝑑 ′ ≠ 𝑑 . The proof is similar to the proof of Case 1.5.
Case 9.6: 𝑔′ = front 𝑑 𝑏. The proof is similar to the proof of Case 5.7.
Case 9.7: 𝑔′ = back 𝑑 ′ 𝑏 where 𝑑 ′ ≠ 𝑑 . We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. By Definition B.8 and

Definition B.1, y1, y2 ∈ 𝐿(𝑔)∩𝐿(𝑔′) = {𝑑 ++𝑦 | 𝑦 ∈ 𝐿(𝑔c)}∩{𝑦 ++𝑑 ′ | 𝑦 ∈ 𝐿(𝑏)}. For all ⟨y1, y2, y12⟩ ∈ 𝑌 there
exists 𝑦 ′1, 𝑦 ′2 ∈ String such that y1 = 𝑑 ++ 𝑦 ′1 ++ 𝑑 ′, y2 = 𝑑 ++ 𝑦 ′2 ++ 𝑑’, (𝑦 ′1 ++ 𝑑 ′) ∈ 𝐿(𝑔c), (𝑦 ′2 ++ 𝑑 ′) ∈ 𝐿(𝑔c),
(𝑑 ++ 𝑦 ′1) ∈ 𝐿(𝑏), and (𝑑 ++ 𝑦 ′2) ∈ 𝐿(𝑏).
By Definition B.8, 𝑔 y1 y2 =⇒𝑒 y12. By Figure 6, y12 = 𝑑 ++ 𝑦 ′1 ++ 𝑑 ′ ++ 𝑦 ′2 ++ 𝑑 ′. By Definition B.8,
𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, 𝑏 (𝑑 ++ 𝑦 ′1) (𝑑 ++ 𝑦 ′2) =⇒𝑒 (𝑑 ++ 𝑦 ′1 ++ 𝑑 ′ ++ 𝑦 ′2).
Since 𝑑 ′ ≠ 𝑑 , we have 𝐶 (𝑑 ′, (𝑑 ++ 𝑦 ′1)) = 𝐶 (𝑑 ′, 𝑦 ′1), 𝐶 (𝑑 ′, (𝑑 ++ 𝑦 ′2)) = 𝐶 (𝑑 ′, 𝑦 ′2), and 𝐶 (𝑑 ′, (𝑑 ++ 𝑦 ′1 ++
𝑑 ′ ++ 𝑦 ′2)) = 𝐶 (𝑑 ′, 𝑦 ′1) + 1 + 𝐶 (𝑑 ′, 𝑦 ′2) > 𝐶 (𝑑 ′, 𝑦 ′1) + 𝐶 (𝑑 ′, 𝑦 ′2), By Figure 3, 𝑑 ′ ∈ Delim and 𝑏 ∈ RecOp. By
Lemma B.4, we have the desired contradiction.

Case 9.8: 𝑔′ = back 𝑑 𝑏. By Definition B.8 and Definition B.1, y1, y2 ∈ 𝐿(𝑔) ∩ 𝐿(𝑔′) = {𝑑 ++ 𝑦 | 𝑦 ∈ 𝐿(𝑔c)} ∩ {𝑦 ++ 𝑑 |
𝑦 ∈ 𝐿(𝑏)}. For all ⟨y1, y2, y12⟩ ∈ 𝑌 there exists 𝑦 ′1, 𝑦 ′2 ∈ String such that y1 = 𝑑 ++ 𝑦 ′1 ++ 𝑑 , y2 = 𝑑 ++ 𝑦 ′2 ++ 𝑑 ,
(𝑦 ′1 ++ 𝑑) ∈ 𝐿(𝑔c), (𝑦 ′2 ++ 𝑑) ∈ 𝐿(𝑔c), (𝑑 ++ 𝑦 ′1) ∈ 𝐿(𝑏), and (𝑑 ++ 𝑦 ′2) ∈ 𝐿(𝑏).
By Definition B.8,𝑔 y1 y2 =⇒𝑒 y12. By Figure 6, y12 = 𝑑 ++𝑦 ′1 ++ 𝑑 ++𝑦 ′2 ++ 𝑑 . By Definition B.8,𝑔′ y1 y2 =⇒𝑒

y12. By Figure 6, 𝑏 (𝑑 ++ 𝑦 ′1) (𝑑 ++ 𝑦 ′2) =⇒𝑒 (𝑑 ++ 𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2).
Let 𝑌 ′ = {⟨𝑦 ′′1 , 𝑦 ′′2 , 𝑦 ′′12⟩ | ⟨(𝑦 ′′1 ++ 𝑑), (𝑦 ′′2 ++ 𝑑), (𝑦 ′′12 ++ 𝑑)⟩ ∈ 𝑌 }. We have 𝑏 𝑦 ′′1 𝑦 ′′2 =⇒𝑒 𝑦 ′′12 and 𝑦 ′′12 =

𝑦 ′′1 ++ 𝑦 ′′2 for all ⟨𝑦 ′′1 , 𝑦 ′′2 , 𝑦 ′′12⟩ ∈ 𝑌 ′. By Definition B.8, 𝑃 (𝑔c, 𝑌 ′) and 𝑃 (𝑏,𝑌 ′).
Since𝑌 ≠ ∅, we have𝑌 ′ ≠ ∅. Also, for all ⟨𝑦 ′′1 , 𝑦 ′′2 , 𝑦 ′′12⟩ ∈ 𝑌 ′ there exists𝑦 ′1, 𝑦 ′2 ∈ String such that𝑦 ′′1 = 𝑑 ++𝑦 ′1
and 𝑦 ′′2 = 𝑑 ++ 𝑦 ′2. Hence 𝑦 ′′1 ≠ nil and 𝑦 ′′2 ≠ nil.
By Table 2, 𝐸 (𝑔c, 𝑌 ′). By the induction hypothesis, 𝑏 ≡∩ 𝑔c.
For all 𝑦 ′′1 , 𝑦 ′′2 ∈ 𝐿(𝑏) ∩ 𝐿(𝑔c), by Definition B.7, 𝑏 𝑦 ′′1 𝑦 ′′2 =⇒𝑒 𝑣 and 𝑔c 𝑦 ′′1 𝑦 ′′2 =⇒𝑒 𝑣 for some 𝑣 . By Figure 6,
we have 𝑏 𝑦 ′′1 𝑦 ′′2 =⇒𝑒 (𝑦 ′′1 ++ 𝑦 ′′2 ) for all 𝑦 ′′1 , 𝑦 ′′2 ∈ 𝐿(𝑏) ∩ 𝐿(𝑔c). By Definition B.1, 𝐿(𝑔c) = String and
𝐿(𝑏) ∩ 𝐿(𝑔c) = 𝐿(𝑏). Hence 𝑏 𝑦 ′′1 𝑦 ′′2 =⇒𝑒 (𝑦 ′′1 ++ 𝑦 ′′2 ) for all 𝑦 ′′1 , 𝑦 ′′2 ∈ 𝐿(𝑏).
For all y1, y2 ∈ 𝐿(𝑔)∩𝐿(𝑔′), by Definition B.1, y1 = 𝑑 ++𝑦 ′1 ++𝑑 and y2 = 𝑑 ++𝑦 ′2 ++𝑑 for some𝑦 ′1, 𝑦 ′2 ∈ String.
Also, (𝑑 ++ 𝑦 ′1) ∈ 𝐿(𝑏) and (𝑑 ++ 𝑦 ′2) ∈ 𝐿(𝑏). Hence 𝑏 (𝑑 ++ 𝑦 ′1) (𝑑 ++ 𝑦 ′2) =⇒𝑒 (𝑑 ++ 𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2). By
Figure 6, 𝑔′ y1 y2 =⇒𝑒 𝑑 ++ 𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2 ++ 𝑑 . Hence 𝑔′ y1 y2 =⇒𝑒 y12 and 𝑔′ y1 y2 =⇒𝑒 y12, where
y12 = 𝑑 ++ 𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2 ++ 𝑑 , for all y1, y2 ∈ 𝐿(𝑔) ∩ 𝐿(𝑔′). By Definition B.7, 𝑔′ ≡∩ 𝑔.

Case 9.9: 𝑔′ = fuse 𝑑 ′ 𝑏 where 𝑑 ′ ≠ 𝑑 . We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. Recall that y1 = 𝑑 ++ 𝑦 ′1 and
y2 = 𝑑 ++ 𝑦 ′2 for some 𝑦 ′1, 𝑦 ′2 ∈ String. Since 𝑑 ′ ≠ 𝑑 , we have 𝐶 (𝑑 ′, y1) = 𝐶 (𝑑 ′, 𝑦 ′1) and 𝐶 (𝑑 ′, y2) = 𝐶 (𝑑 ′, 𝑦 ′2).
By Definition B.8,𝑔 y1 y2 =⇒𝑒 y12. By Figure 6, there exists 𝑣 ∈ String such that y12 = 𝑑 ++ 𝑣 and𝑔c 𝑦 ′1 𝑦 ′2 =⇒𝑒

𝑣 . We have 𝑣 = 𝑦 ′1 ++ 𝑦 ′2 and y12 = 𝑑 ++ 𝑦 ′1 ++ 𝑦 ′2. Since 𝑑 ′ ≠ 𝑑 , we have 𝐶 (𝑑 ′, y12) = 𝐶 (𝑑 ′, 𝑦 ′1) +𝐶 (𝑑 ′, 𝑦 ′2) =
𝐶 (𝑑 ′, y1) +𝐶 (𝑑 ′, y2).
Assume the opposite that 𝑃 (𝑔′, 𝑌 ). By Definition B.8, we have 𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, we have
𝐶 (𝑑 ′, y1) = 𝐶 (𝑑 ′, y2) ≥ 1. By Figure 3, 𝑑 ′ ∈ Delim and 𝑏 ∈ RecOp. By Lemma B.3, 𝐶 (𝑑 ′, y12) = 𝐶 (𝑑 ′, y1) =
𝐶 (𝑑 ′, y2) < 𝐶 (𝑑 ′, y1) +𝐶 (𝑑 ′, y2). We have the desired contradiction.

Case 9.10: 𝑔′ = fuse 𝑑 𝑏. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. Assume the opposite that 𝑃 (𝑔′, 𝑌 ). By
Definition B.8 and Definition B.1, y1, y2 ∈ 𝐿(𝑔′) = {𝑦 ′1 ++ 𝑑 ++ 𝑦 ′2 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦 ′

𝑘
| 𝑦 ′1 ≠ nil, 𝑦 ′

𝑘
≠

nil, and 𝑦 ′𝑖 ∈ 𝐿(𝑏) and 𝑑 ∉ 𝑦 ′𝑖 for all 𝑖 = 1, . . . , 𝑘, where 𝑘 ≥ 2}. Let y1 = 𝑦11 ++ 𝑑 ++ . . . ++ 𝑑 ++ 𝑦1
𝑘
for some

𝑦11, . . . , 𝑦
1
𝑘
∈ 𝐿(𝑏). We have 𝑦11 ≠ nil and 𝑑 ∉ 𝑦11 . Recall that y1 = 𝑑 ++ 𝑦 ′1. We have the desired contradiction.

□

Theorem 7. For any combiners 𝑔 ∈ 𝐺rec, 𝑔
′ ∈ RecOp and set of output tuples 𝑌 , if 𝐸rec (𝑌 ), 𝑃 (𝑔,𝑌 ), and 𝑃 (𝑔′, 𝑌 ), then 𝑔′ ≡∩ 𝑔.

Proof. By Theorem 6 and Proposition B.2. □

Theorem 8. For any command 𝑓 , set of input streams 𝑋 , combiner 𝑔 ∈ 𝐺rec, and combiner 𝑔′ ∈ RecOp, if the following
conditions hold:
• 𝐸rec (𝑓 (𝑋 )),
• 𝑔 is correct for 𝑓 , and
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• y1, y2 ∈ 𝐿(𝑔′) for all ⟨y1, y2, y12⟩ ∈ 𝑓 (𝑋 ),
then 𝑃 (𝑔′, 𝑓 (𝑋 )) if and only if 𝑔′ ≡∩ 𝑔.

Proof. To show that “if 𝑃 (𝑔′, 𝑓 (𝑋 )) then 𝑔′ ≡∩ 𝑔”: By Definition B.9, 𝑃 (𝑔, 𝑓 (𝑋 )). By Theorem 7, 𝑔′ ≡∩ 𝑔.
To show that “if 𝑔′ ≡∩ 𝑔 then 𝑃 (𝑔′, 𝑓 (𝑋 ))”: For all ⟨y1, y2, y12⟩ ∈ 𝑓 (𝑋 ), by Proposition B.1, y1, y2 ∈ 𝐿(𝑔). Hence y1, y2 ∈

𝐿(𝑔) ∩ 𝐿(𝑔′). By Definition B.7, 𝑔 y1 y2 =⇒𝑒 𝑣 and 𝑔′ y1 y2 =⇒𝑒 𝑣 for some 𝑣 . By Definition B.9, 𝑃 (𝑔, 𝑓 (𝑋 )). By Definition B.8,
𝑔 y1 y2 =⇒𝑒 y12. Hence 𝑣 = y12. By Definition B.8, 𝑃 (𝑔′, 𝑓 (𝑋 )). □

Theorem 9. For any command 𝑓 , set of input streams 𝑋 , combiner 𝑔 ∈ 𝐺rec, combiner 𝑔′ ∈ RecOp, and integer 𝑘 , if the
following conditions hold:
• 𝐸rec (𝑓 (𝑋 )),
• 𝑔 is correct for 𝑓 ,
• y1, y2 ∈ 𝐿(𝑔′) for all ⟨y1, y2, y12⟩ ∈ 𝑓 (𝑋 ), and
• 𝑘 ≥ |𝑔′ |,
then 𝑔′ ∈ 𝑃𝑘 (𝑓 (𝑋 )) ∩ RecOp if and only if 𝑔′ ≡∩ 𝑔.

Proof. By Theorem 8 and Definition B.17. □

Remark. Theorem 9 states that, if the specified size is large enough, if correct combiner is among 𝐺rec, and if the synthesizer
has collected sufficient observations, then the synthesizer must return either the correct combiner or its equivalent. By
Proposition B.7, we know that as long as the specified size 𝑘 ≥ 6, the synthesizer is guaranteed to return a correct combiner if
the correct combiner is among 𝐺rec.
Lemma B.5. For any set of output tuples 𝑌 , let 𝐸 (𝑌 ) be a predicate that is true if and only if the following conditions hold:
• There exists ⟨y1, y2, y12⟩ ∈ 𝑌 and 𝑐 ∈ y1 such that 𝑐 ∉ Delim ∪ {‘0‘}.
• There exists ⟨y1, y2, y12⟩ ∈ 𝑌 and 𝑐 ∈ y2 such that 𝑐 ∉ Delim ∪ {‘0‘}.
For any combiner 𝑔 ∈ {𝑔f, 𝑔s}, set of output tuples 𝑌 such that 𝑃 (𝑔,𝑌 ) and 𝐸 (𝑌 ), and 𝑔′ ∈ RecOp, if 𝑃 (𝑔′, 𝑌 ) then either 𝑔′ ≡∩ 𝑔f
or 𝑔′ ≡∩ 𝑔s.

Proof. Case 1: There exists ⟨y1, y2, y12⟩ ∈ 𝑌 such that y1 ≠ y2. By Theorem 6, 𝑔′ ≡∩ 𝑔.
Case 2: For all ⟨y1, y2, y12⟩ ∈ 𝑌 , y1 = y2. The proof is similar to the proof of Case 3 in Theorem 6.

□

Theorem 10. For any combiner 𝑔 ∈ 𝐺struct, set of output tuples 𝑌 such that 𝑃 (𝑔,𝑌 ) and 𝐸 (𝑔,𝑌 ), and 𝑔′ ∈ StructOp, we have
𝑃 (𝑔′, 𝑌 ) implies 𝑔′ ≡∩ 𝑔.

Proof. The proof performs case analysis of the values of 𝑔,𝑔′.
Case 1: 𝑔 = 𝑔sf: By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 such that (splitLastLine y1) = (𝑦 ′1, 𝑙) and (splitFirstLine y2) = (𝑙, 𝑦 ′2)

for some 𝑙 , where (firstChar (delPad 𝑙)) ∉ Delim ∪ {‘0‘} and (lastChar 𝑙) ∉ Delim ∪ {‘0‘}.

Case 1.1: 𝑔′ = stitch 𝑏: By Definition B.8, 𝑔 y1 y2 =⇒𝑒 y12 and 𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, y12 = 𝑦 ′1 ++
‘\𝑛‘ ++ 𝑣 ++ ‘\𝑛‘ ++ 𝑦 ′2 for some 𝑣 , where 𝑔f 𝑙 𝑙 =⇒𝑒 𝑣 and 𝑏 𝑙 𝑙 =⇒𝑒 𝑣 . By Figure 6, 𝑣 = 𝑙 and 𝑏 𝑙 𝑙 =⇒𝑒 𝑙 .
Let 𝑐 = lastChar 𝑙 . We have 𝑐 ∈ 𝑙 and 𝑐 ∉ Delim ∪ {‘0‘}. Let 𝑌 ′ = {⟨𝑙, 𝑙, 𝑙⟩}. By Lemma B.5, either 𝑏 ≡∩ 𝑔f or
𝑏 ≡∩ 𝑔s. Either case, by Definition B.7, we have𝑏 𝑙 ′ 𝑙 ′ =⇒𝑒 𝑙

′ for all 𝑙 ′ ∈ 𝐿(𝑏)∩𝐿(𝑔s) = 𝐿(𝑏). By Definition B.1,
𝐿(𝑔′) = 𝐿(𝑔′) ∩ 𝐿(𝑔). By Figure 6, for all y1, y2 ∈ 𝐿(𝑔′) we have 𝑔′ y1 y2 =⇒𝑒 𝑣

′ and 𝑔 y1 y2 =⇒𝑒 𝑣 for some
𝑣 . By Definition B.7, 𝑔′ ≡∩ 𝑔.

Case 1.2: 𝑔′ = stitch2 𝑑 𝑏1 𝑏2: By Definition B.8, 𝑔 y1 y2 =⇒𝑒 y12 and 𝑔′ y1 y2 =⇒𝑒 y12. By Figure 6, y12 =

𝑦 ′1 ++ ‘\𝑛‘ ++ 𝑣 ++ ‘\𝑛‘ ++𝑦 ′2 for some 𝑣 , where 𝑣 = addPad (ℎ ++ 𝑑 ++ 𝑡). Let (ℎ′, 𝑡 ′) = splitFirst 𝑑 (delPad 𝑙).
We have 𝑑 ∉ ℎ′.
By Figure 6, we have 𝑔f (ℎ′ ++ 𝑑 ++ 𝑡 ′) (ℎ′ ++ 𝑑 ++ 𝑡 ′) =⇒𝑒 (ℎ ++ 𝑑 ++ 𝑡), 𝑏1 ℎ′ ℎ′ =⇒𝑒 ℎ, and 𝑏2 𝑡 ′ 𝑡 ′ =⇒𝑒

𝑡 . Hence (ℎ′ ++ 𝑑 ++ 𝑡 ′ = ℎ ++ 𝑑 ++ 𝑡 . By Figure 3, 𝑑 ∈ Delim and 𝑏1 ∈ RecOp. By Lemma B.1, 𝑑 ∉ ℎ. Hence
ℎ′ = ℎ and 𝑡 ′ = 𝑡 . We have 𝑏1 ℎ ℎ =⇒𝑒 ℎ and 𝑏2 𝑡 𝑡 =⇒𝑒 𝑡 .
Let 𝑐1 = (firstChar (delPad 𝑙)) and 𝑐2 = lastChar 𝑙 . We have 𝑐1 ∈ ℎ, 𝑐2 ∈ 𝑡 , and 𝑐1, 𝑐2 ∉ Delim ∪ {‘0‘}.
By Definition B.8, for all ⟨y1, y2, y12⟩ ∈ 𝑌 we have y1, y2 ∈ 𝐿(𝑔′). By Table 2, then there exists ⟨y1, y2, y12⟩ ∈ 𝑌
such thatℎ1 ≠ ℎ2, where (splitLastLine y1) = (𝑦 ′1, 𝑙1), (splitFirstLine y2) = (𝑙2, 𝑦 ′2), (splitFirst𝑑 (delPad 𝑙1)) =
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(ℎ1, 𝑡), and (splitFirst 𝑑 (delPad 𝑙2)) = (ℎ2, 𝑡). By Definition B.8, Figure 6, Figure 3, and Lemma B.1,
𝑏1 ℎ1 ℎ2 =⇒𝑒 ℎ1.
Let 𝑌 ′1 = {⟨ℎ,ℎ, ℎ⟩, ⟨ℎ1, ℎ2, ℎ1⟩}. By Table 2, we have 𝐸 (𝑔f, 𝑌 ′1 ). By Figure 6, 𝑔f ℎ ℎ =⇒𝑒 ℎ and 𝑔f ℎ1 ℎ2 =⇒𝑒 ℎ1.
By Definition B.8, 𝑃 (𝑔f, 𝑌 ′1 ) and 𝑃 (𝑏1, 𝑌 ′1 ). By Figure 3, 𝑏1 ∈ RecOp. By Theorem 6, 𝑏1 ≡∩ 𝑔f.
Let 𝑌 ′2 = {⟨𝑡, 𝑡, 𝑡⟩}. By Lemma B.5, either 𝑏2 ≡∩ 𝑔f or 𝑏2 ≡∩ 𝑔s. The rest of the proof is similar to the proof of
Case 1.1.

Case 1.3: 𝑔′ = offset 𝑑 𝑏: We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. Let 𝑛1, 𝑛2, 𝑛12 be the numbers of lines in
y1, y2, y12, respectively. By Definition B.8, 𝑔 y1 y2 =⇒𝑒 y12. By Figure 6, 𝑛12 = 𝑛1 +𝑛2−1. Assume the opposite
that 𝑃 (𝑔′, 𝑌 ). By Definition B.8, 𝑔′ y1 y2 =⇒𝑒 y12. Since 𝑙 ≠ nil, by Figure 6, 𝑛12 = 𝑛1 + 𝑛2. We have the
desired contradiction.

Case 2: 𝑔 = 𝑔saf: By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 such that (splitLastLine y1) = (𝑦 ′1, 𝑙) and (splitFirstLine y2) = (𝑙, 𝑦 ′2)
for some 𝑙 , where (firstChar (delPad 𝑙)) ∉ Delim ∪ {‘0‘} and (lastChar 𝑙) ∉ Delim ∪ {‘0‘}. By Definition B.8 and
Definition B.1, 𝑙 = 𝑝 ++ ℎ ++ 𝑑 ++ 𝑡 for some 𝑝 ∈ [‘ ‘+ | ‘\𝑡 ‘], ℎ ∈ 𝐿(𝑔a) = [‘0‘ − ‘9‘]+, and 𝑡 ∈ 𝐿(𝑔f) = String.

Case 2.1: 𝑔′ = stitch 𝑏: We outline the proof below. By Definition B.8, 𝑔 y1 y2 =⇒𝑒 y12. By Figure 6, y12 =

𝑦 ′1 ++ ‘\𝑛‘ ++ 𝑣 ++ ‘\𝑛‘ ++ 𝑦 ′2 for some 𝑣 , where 𝑣 = 𝑝 ++ ℎ12 ++ 𝑑 ++ 𝑡12, 𝑔a ℎ ℎ =⇒𝑒 ℎ12, and 𝑔f 𝑡 𝑡 =⇒𝑒 𝑡12.
We have ℎ12 = (intToStr ((strToInt ℎ) + (strToInt ℎ))) and 𝑡12 = 𝑡 . By Definition B.8, 𝑔′ y1 y2 =⇒𝑒 y12. By
Figure 6, 𝑏 𝑙 𝑙 =⇒𝑒 𝑣 . Such 𝑏 ∈ RecOp does not exist. The proof is by induction on the derivation of 𝑏.

Case 2.2: 𝑔′ = stitch2 𝑑 ′ 𝑏1 𝑏2, where 𝑑 ′ ≠ 𝑑 : We show that such 𝑏1 does not exist. The proof is similar to the proof of
Case 2.1.

Case 2.3: 𝑔′ = stitch2 𝑑 𝑏1 𝑏2: We outline the proof below. By Theorem 6, 𝑏1 ≡∩ 𝑔a. By Lemma B.5, either 𝑏2 ≡∩ 𝑔f or
𝑏2 ≡∩ 𝑔s. Either case, 𝑔′ ≡∩ 𝑔.

Case 2.4: 𝑔′ = offset 𝑑 ′ 𝑏: The proof is similar to the proof of Case 1.3.

Case 3: 𝑔 = 𝑔oa: By Table 2, there exists ⟨y1, y2, y12⟩ ∈ 𝑌 such that (splitLastLine y1) = (𝑦 ′1, 𝑙1), (splitFirstLine y2) = (𝑙2, 𝑦 ′2),
and (splitFirstLine 𝑦 ′2) = (𝑙 ′2, 𝑦 ′′2 ), where (firstChar (delPad 𝑙1)) ∉ Delim ∪ {‘0‘}, 𝑙2 ≠ nil, and 𝑙 ′2 ≠ nil.

Case 3.1: 𝑔′ = stitch 𝑏: We outline the proof below. We show that 𝑃 (𝑔′, 𝑌 ) never holds in this case. Assume the opposite
that 𝑃 (𝑔′, 𝑌 ). By Definition B.8, 𝑔′ y1 y2 =⇒𝑒 y12. If 𝑙1 = 𝑙2, the proof is similar to the proof of Case 1.3. If
𝑙1 ≠ 𝑙2, by Figure 6, y12 = y1 ++ y2. By Definition B.8, 𝑔 y1 y2 =⇒𝑒 y12. By Figure 6, y12 = y1 ++ 𝑣 for some 𝑣 .
By Table 2, 𝑣 ≠ y2.

Case 3.2: 𝑔′ = stitch2 𝑑 ′ 𝑏1 𝑏2: The proof is similar to the proof of Case 3.1.
Case 3.3: 𝑔′ = offset 𝑑 ′ 𝑏, where 𝑑 ′ ≠ 𝑑 : We show that such 𝑏 does not exist. The proof is similar to the proof of Case

2.1.
Case 3.4: 𝑔′ = offset 𝑑 𝑏: We outline the proof below. Let 𝑌 ′ = {⟨ℎ1, ℎ2, 𝑦 ′12⟩ | ⟨y1, y2, y12⟩ ∈ 𝑌, (splitLastLine y1) = (𝑦 ′1,

𝑙1), (splitFirstLine y2) = (𝑙2, 𝑦 ′2), (splitFirst 𝑑 (delPad 𝑙1)) = (ℎ1, 𝑡1), and (splitFirst 𝑑 (delPad 𝑙2)) = (ℎ2, 𝑡2)}.
By Table 2, 𝐸 (𝑔a, 𝑌 ′). By Theorem 6, 𝑏 ≡∩ 𝑔a.

□

Theorem 11. For any combiners 𝑔 ∈ 𝐺struct, 𝑔
′ ∈ StructOp and set of output tuples 𝑌 , if 𝐸struct (𝑌 ), 𝑃 (𝑔,𝑌 ), and 𝑃 (𝑔′, 𝑌 ), then

𝑔′ ≡∩ 𝑔.

Proof. By Theorem 10 and Proposition B.4. □

Theorem 12. For any command 𝑓 , set of input streams 𝑋 , combiner 𝑔 ∈ 𝐺struct, and combiner 𝑔′ ∈ StructOp, if the following
conditions hold:
• 𝐸struct (𝑓 (𝑋 )),
• 𝑔 is correct for 𝑓 , and
• y1, y2 ∈ 𝐿(𝑔′) for all ⟨y1, y2, y12⟩ ∈ 𝑓 (𝑋 ),
then 𝑃 (𝑔′, 𝑓 (𝑋 )) if and only if 𝑔′ ≡∩ 𝑔.

Proof. The proof is similar to the proof of Theorem 8. □
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Theorem 13. For any command 𝑓 , set of input streams 𝑋 , combiner 𝑔 ∈ 𝐺struct, combiner 𝑔′ ∈ StructOp, and integer 𝑘 , if the
following conditions hold:
• 𝐸struct (𝑓 (𝑋 )),
• 𝑔 is correct for 𝑓 ,
• y1, y2 ∈ 𝐿(𝑔′) for all ⟨y1, y2, y12⟩ ∈ 𝑓 (𝑋 ), and
• 𝑘 ≥ |𝑔′ |,
then 𝑔′ ∈ 𝑃𝑘 (𝑓 (𝑋 )) ∩ StructOp if and only if 𝑔′ ≡∩ 𝑔.

Proof. By Theorem 12 and Definition B.17. □

Remark. Theorem 13 states that, if the specified size is large enough, if correct combiner is among𝐺struct, and if the synthesizer
has collected sufficient observations and eliminated RecOp candidates, then the synthesizer must return either the correct
combiner or its equivalent. By Proposition B.7, we know that as long as the specified size 𝑘 ≥ 6, the synthesizer is guaranteed
to return a correct combiner if the correct combiner is among 𝐺struct.

C Appendix: Performance Results

Table 3 presents the pipeline stages that are automatically parallelized by KumQuat. The first two columns present the
benchmark and script names. The next column (Parallelized) presents the number of stages automatically parallelized by
KumQuat, 𝑘 , and the number of stages in the original pipeline, 𝑛, as a pair “𝑘/𝑛” for each pipeline in the parentheses. Here we
also report the single commands that are not in pipelines, as pairs “𝑘/1”. The pair before the parentheses presents the sum
over all pipelines in the script. The next column (Eliminated) presents the number of parallelized stages whose combiners are
eliminated by KumQuat during optimization. Again, the numbers in the parentheses correspond to pipelines in the script. The
number before the parentheses presents the sum over all pipelines.
Table 4 compares the parallel execution times with the original script execution times. The first two columns present the

benchmark and script names. The next column (𝑇orig) presents the execution time for the original unmodified benchmark script.
The next column (𝑢1) presents the serial execution time. The next column (𝑢16) presents the unoptimized parallel execution
time with 16 way parallelism. The next column (𝑇16) presents the optimized parallel execution time with 16 way parallelism.
Table 5 presents the parallel execution times for unoptimized pipelines with 1, 2, 4, 8, and 16 way parallelism.
Table 6 presents the parallel execution times for optimized pipelines with 1, 2, 4, 8, and 16 way parallelism.
Among all benchmark scripts, the unoptimized parallel speedup ranges between 0.5× and 14.9×, with a median speedup

of 5.3×. The optimized parallel speedup ranges between 0.6× and 26.9×, with a median speedup of 7.1× (we attribute the
superlinear speedup to pipelined parallelism exploited across consecutive parallelized commands with no intermediate
combiner). All scripts that exhibit a slowdown have a serial execution time under 10 seconds.

Table 7 presents the performance results for benchmark scripts whose serial execution time is at least 3 minutes. In general,
shorter scripts have smaller parallel speedup.

Table 3. Pipeline commands that are parallelized with the synthesized combiners

Benchmark Script Name Parallelized Eliminated

analytics-mts 1.sh (vehicles per day) 7/7 (7/7) 3 (3)
analytics-mts 2.sh (vehicle days on road) 8/8 (8/8) 3 (3)
analytics-mts 3.sh (vehicle hours on road) 8/8 (8/8) 3 (3)
analytics-mts 4.sh (hours monitored per day) 7/7 (7/7) 3 (3)
oneliners bi-grams.sh 3/5 (3/5) 0 (0)
oneliners diff.sh 4/7 (0/1, 2/2, 2/2, 0/1, 0/1) 2 (0, 1, 1, 0, 0)
oneliners nfa-regex.sh 2/2 (2/2) 1 (1)
oneliners set-diff.sh 5/8 (0/1, 3/3, 2/2, 0/1, 0/1) 3 (0, 2, 1, 0, 0)
oneliners shortest-scripts.sh 6/7 (6/7) 5 (5)
oneliners sort-sort.sh 3/3 (3/3) 1 (1)
oneliners sort.sh 1/1 (1/1) 0 (0)
oneliners spell.sh 6/8 (6/8) 3 (3)
oneliners top-n.sh 4/6 (4/6) 1 (1)
oneliners wf.sh 4/5 (4/5) 1 (1)
poets 1_1.sh (count_words) 4/6 (4/6) 1 (1)
poets 2_1.sh (merge_upper) 5/7 (5/7) 2 (2)
poets 2_2.sh (count_vowel_seq) 5/7 (5/7) 2 (2)
poets 3_1.sh (sort) 5/7 (5/7) 1 (1)



Automatic Synthesis of Parallel Unix Commands and Pipelines with KumQuat , ,

poets 3_2.sh (sort_words_by_folding) 5/7 (5/7) 1 (1)
poets 3_3.sh (sort_words_by_rhyming) 7/9 (7/9) 2 (2)
poets 4_3.sh (bigrams) 4/8 (2/4, 0/1, 2/3) 1 (1, 0, 0)
poets 4_3b.sh (count_trigrams) 4/9 (2/4, 0/1, 0/1, 2/3) 1 (1, 0, 0, 0)
poets 6_1.sh (trigram_rec) 8/14 (4/7, 4/7) 4 (2, 2)
poets 6_1_1.sh (uppercase_by_token) 3/5 (3/5) 1 (1)
poets 6_1_2.sh (uppercase_by_type) 4/6 (4/6) 1 (1)
poets 6_2.sh (4letter_words) 7/11 (3/5, 4/6) 2 (1, 1)
poets 6_3.sh (words_no_vowels) 5/7 (5/7) 2 (2)
poets 6_4.sh (1syllable_words) 5/8 (5/8) 2 (2)
poets 6_5.sh (2syllable_words) 5/8 (5/8) 2 (2)
poets 6_7.sh (verses_2om_3om_2instances) 10/13 (3/4, 3/4, 4/5) 7 (2, 2, 3)
poets 7_2.sh (count_consonant_seq) 5/7 (5/7) 2 (2)
poets 8.2_1.sh (vowel_sequencies_gr_1K) 5/8 (5/8) 1 (1)
poets 8.2_2.sh (bigrams_appear_twice) 4/9 (2/4, 0/1, 2/3, 0/1) 1 (1, 0, 0, 0)
poets 8.3_2.sh (find_anagrams) 7/9 (2/4, 1/1, 1/1, 3/3) 1 (1, 0, 0, 0)
poets 8.3_3.sh (compare_exodus_genesis) 6/10 (3/5, 1/2, 2/3) 1 (1, 0, 0)
poets 8_1.sh (sort_words_by_n_syllables) 6/10 (3/5, 2/2, 1/3) 2 (1, 1, 0)
unix50 1.sh (1.0: extract last name) 1/1 (1/1) 0 (0)
unix50 10.sh (4.4: histogram by piece) 9/9 (9/9) 6 (6)
unix50 11.sh (4.5: histogram by piece and pawn) 9/9 (9/9) 6 (6)
unix50 12.sh (4.6: piece used most) 8/9 (8/9) 5 (5)
unix50 13.sh (5.1: extract hellow world) 3/3 (3/3) 2 (2)
unix50 14.sh (6.1: order bodies) 3/3 (3/3) 1 (1)
unix50 15.sh (7.1: number of versions) 3/3 (3/3) 2 (2)
unix50 16.sh (7.2: most frequent machine) 6/7 (6/7) 1 (1)
unix50 17.sh (7.3: decades unix released) 5/5 (5/5) 2 (2)
unix50 18.sh (8.1: count unix birth-year) 3/3 (3/3) 2 (2)
unix50 19.sh (8.2: location office) 4/4 (4/4) 3 (3)
unix50 2.sh (1.1: extract names and sort) 2/2 (2/2) 1 (1)
unix50 20.sh (8.3: four most involved) 4/4 (4/4) 3 (3)
unix50 21.sh (8.4: longest words w/o hyphens) 3/3 (3/3) 1 (1)
unix50 23.sh (9.1: extract word PORT) 6/6 (6/6) 4 (4)
unix50 24.sh (9.2: extract word BELL) 2/2 (2/2) 1 (1)
unix50 25.sh (9.3: animal decorate) 2/2 (2/2) 1 (1)
unix50 26.sh (9.4: four corners) 4/5 (4/5) 2 (2)
unix50 28.sh (9.6: follow directions) 6/10 (6/10) 3 (3)
unix50 29.sh (9.7: four corners) 2/4 (2/4) 1 (1)
unix50 3.sh (1.2: extract names and sort) 1/2 (1/2) 0 (0)
unix50 30.sh (9.8: TELE-communications) 4/8 (4/8) 2 (2)
unix50 31.sh (9.9) 4/9 (4/9) 2 (2)
unix50 32.sh (10.1: count recipients) 3/4 (3/4) 2 (2)
unix50 33.sh (10.2: list recipients) 2/3 (2/3) 1 (1)
unix50 34.sh (10.3: extract username) 7/7 (7/7) 4 (4)
unix50 35.sh (11.1: year received medal) 2/2 (2/2) 1 (1)
unix50 36.sh (11.2: most repeated first name) 7/8 (7/8) 2 (2)
unix50 4.sh (1.3: sort top first names) 4/4 (4/4) 1 (1)
unix50 5.sh (2.1: all Unix utilities) 2/2 (2/2) 1 (1)
unix50 6.sh (3.1: first letter of last names) 4/4 (4/4) 2 (2)
unix50 7.sh (4.1: number of rounds) 3/3 (3/3) 2 (2)
unix50 8.sh (4.2: pieces captured) 4/4 (4/4) 3 (3)
unix50 9.sh (4.3: pieces captured with pawn) 6/6 (6/6) 5 (5)

Total 325/427 144

Table 4. Performance results for all benchmark scripts, comparing new pipelines with original scripts

Benchmark Script Name 𝑇orig 𝑢1 𝑢16 𝑇16

analytics-mts 1.sh (vehicles per day) 333 s (1.1×) 376 s 40 s (9.4×) 29 s (13.1×)
analytics-mts 2.sh (vehicle days on road) 335 s (1.1×) 379 s 41 s (9.3×) 28 s (13.5×)
analytics-mts 3.sh (vehicle hours on road) 408 s (1.0×) 427 s 51 s (8.4×) 38 s (11.3×)
analytics-mts 4.sh (hours monitored per day) 99 s (1.7×) 167 s 28 s (6.0×) 13 s (12.8×)
oneliners bi-grams.sh 668 s (1.5×) 1007 s 118 s (8.6×) 115 s (8.7×)
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oneliners diff.sh 325 s (1.5×) 478 s 98 s (4.9×) 83 s (5.8×)
oneliners nfa-regex.sh 389 s (1.0×) 391 s 26 s (14.9×) 27 s (14.7×)
oneliners set-diff.sh 879 s (1.5×) 1308 s 144 s (9.1×) 128 s (10.2×)
oneliners shortest-scripts.sh 82 s (1.3×) 110 s 9 s (12.4×) 7 s (16.2×)
oneliners sort-sort.sh 137 s (1.2×) 167 s 31 s (5.4×) 28 s (6.0×)
oneliners sort.sh 273 s (1.4×) 389 s 39 s (10.0×) 38 s (10.3×)
oneliners spell.sh 427 s (1.7×) 736 s 78 s (9.5×) 61 s (12.1×)
oneliners top-n.sh 372 s (1.7×) 622 s 63 s (9.9×) 50 s (12.4×)
oneliners wf.sh 1155 s (1.8×) 2089 s 196 s (10.7×) 145 s (14.4×)
poets 1_1.sh (count_words) 360 s (1.8×) 637 s 84 s (7.6×) 83 s (7.6×)
poets 2_1.sh (merge_upper) 307 s (1.8×) 547 s 79 s (6.9×) 78 s (7.0×)
poets 2_2.sh (count_vowel_seq) 112 s (1.2×) 140 s 27 s (5.2×) 24 s (5.8×)
poets 3_1.sh (sort) 391 s (1.7×) 665 s 89 s (7.4×) 88 s (7.6×)
poets 3_2.sh (sort_words_by_folding) 402 s (1.7×) 681 s 94 s (7.3×) 94 s (7.2×)
poets 3_3.sh (sort_words_by_rhyming) 415 s (1.7×) 699 s 100 s (7.0×) 100 s (7.0×)
poets 4_3.sh (bigrams) 635 s (1.4×) 915 s 173 s (5.3×) 173 s (5.3×)
poets 4_3b.sh (count_trigrams) 862 s (1.2×) 1049 s 275 s (3.8×) 279 s (3.8×)
poets 6_1.sh (trigram_rec) 2 s (1.9×) 5 s 8 s (0.6×) 2 s (2.4×)
poets 6_1_1.sh (uppercase_by_token) 38 s (1.2×) 45 s 14 s (3.3×) 14 s (3.2×)
poets 6_1_2.sh (uppercase_by_type) 330 s (1.9×) 635 s 64 s (10.0×) 24 s (26.9×)
poets 6_2.sh (4letter_words) 327 s (2.0×) 647 s 80 s (8.1×) 34 s (18.8×)
poets 6_3.sh (words_no_vowels) 220 s (1.1×) 235 s 32 s (7.4×) 31 s (7.7×)
poets 6_4.sh (1syllable_words) 433 s (1.3×) 542 s 57 s (9.5×) 31 s (17.4×)
poets 6_5.sh (2syllable_words) 397 s (1.1×) 443 s 48 s (9.2×) 40 s (11.0×)
poets 6_7.sh (verses_2om_3om_2instances) 4 s (2.0×) 7 s 11 s (0.6×) 5 s (1.5×)
poets 7_2.sh (count_consonant_seq) 475 s (1.4×) 678 s 80 s (8.5×) 48 s (14.2×)
poets 8.2_1.sh (vowel_sequencies_gr_1K) 417 s (1.4×) 573 s 73 s (7.9×) 42 s (13.7×)
poets 8.2_2.sh (bigrams_appear_twice) 645 s (1.4×) 921 s 177 s (5.2×) 91 s (10.2×)
poets 8.3_2.sh (find_anagrams) 237 s (3.1×) 724 s 102 s (7.1×) 50 s (14.5×)
poets 8.3_3.sh (compare_exodus_genesis) 334 s (2.0×) 656 s 74 s (8.8×) 34 s (19.3×)
poets 8_1.sh (sort_words_by_n_syllables) 346 s (1.9×) 653 s 69 s (9.5×) 26 s (24.6×)
unix50 1.sh (1.0: extract last name) 12 s (1.0×) 12 s 3 s (3.6×) 3 s (3.5×)
unix50 10.sh (4.4: histogram by piece) 27 s (1.8×) 48 s 13 s (3.7×) 6 s (7.8×)
unix50 11.sh (4.5: histogram by piece and pawn) 25 s (1.7×) 42 s 12 s (3.4×) 6 s (6.8×)
unix50 12.sh (4.6: piece used most) 115 s (1.3×) 149 s 27 s (5.5×) 18 s (8.2×)
unix50 13.sh (5.1: extract hellow world) 4 s (2.7×) 12 s 7 s (1.7×) 2 s (5.1×)
unix50 14.sh (6.1: order bodies) 143 s (1.3×) 185 s 31 s (6.0×) 25 s (7.5×)
unix50 15.sh (7.1: number of versions) 5 s (1.4×) 8 s 6 s (1.4×) 3 s (2.5×)
unix50 16.sh (7.2: most frequent machine) 80 s (1.2×) 93 s 15 s (6.4×) 13 s (7.4×)
unix50 17.sh (7.3: decades unix released) 39 s (1.1×) 43 s 10 s (4.4×) 8 s (5.1×)
unix50 18.sh (8.1: count unix birth-year) 2 s (1.7×) 3 s 6 s (0.5×) 3 s (1.1×)
unix50 19.sh (8.2: location office) 2 s (1.3×) 2 s 2 s (1.0×) 2 s (1.0×)
unix50 2.sh (1.1: extract names and sort) 133 s (1.3×) 171 s 20 s (8.4×) 17 s (9.9×)
unix50 20.sh (8.3: four most involved) 0 s (NaN) 5 s 6 s (0.8×) 3 s (1.7×)
unix50 21.sh (8.4: longest words w/o hyphens) 428 s (1.7×) 733 s 64 s (11.4×) 49 s (14.9×)
unix50 23.sh (9.1: extract word PORT) 111 s (1.8×) 202 s 23 s (8.8×) 10 s (19.8×)
unix50 24.sh (9.2: extract word BELL) 4 s (1.1×) 5 s 2 s (2.1×) 2 s (2.4×)
unix50 25.sh (9.3: animal decorate) 5 s (1.1×) 6 s 3 s (2.1×) 2 s (2.3×)
unix50 26.sh (9.4: four corners) 11 s (2.8×) 32 s 18 s (1.7×) 15 s (2.1×)
unix50 28.sh (9.6: follow directions) 87 s (2.2×) 188 s 54 s (3.5×) 49 s (3.8×)
unix50 29.sh (9.7: four corners) 6 s (3.0×) 19 s 18 s (1.0×) 15 s (1.3×)
unix50 3.sh (1.2: extract names and sort) 0 s (NaN) 0 s 0 s (0.7×) 0 s (0.7×)
unix50 30.sh (9.8: TELE-communications) 100 s (1.6×) 154 s 66 s (2.3×) 62 s (2.5×)
unix50 31.sh (9.9) 88 s (1.7×) 149 s 73 s (2.0×) 68 s (2.2×)
unix50 32.sh (10.1: count recipients) 3 s (1.8×) 6 s 7 s (0.9×) 6 s (0.9×)
unix50 33.sh (10.2: list recipients) 3 s (1.8×) 6 s 6 s (1.0×) 5 s (1.1×)
unix50 34.sh (10.3: extract username) 0 s (NaN) 2 s 3 s (0.7×) 3 s (0.9×)
unix50 35.sh (11.1: year received medal) 1 s (0.9×) 1 s 2 s (0.5×) 2 s (0.6×)
unix50 36.sh (11.2: most repeated first name) 15 s (1.3×) 19 s 7 s (2.8×) 6 s (3.5×)
unix50 4.sh (1.3: sort top first names) 134 s (1.1×) 154 s 21 s (7.4×) 19 s (8.3×)
unix50 5.sh (2.1: all Unix utilities) 7 s (1.1×) 8 s 3 s (2.5×) 2 s (3.1×)
unix50 6.sh (3.1: first letter of last names) 10 s (1.4×) 14 s 5 s (2.7×) 3 s (5.2×)
unix50 7.sh (4.1: number of rounds) 15 s (1.2×) 18 s 9 s (2.0×) 4 s (4.7×)
unix50 8.sh (4.2: pieces captured) 6 s (2.1×) 12 s 8 s (1.6×) 3 s (4.1×)
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unix50 9.sh (4.3: pieces captured with pawn) 14 s (2.0×) 28 s 9 s (2.9×) 4 s (7.3×)

Max 1155 s (3.1×) 2089 s 275 s (14.9×) 279 s (26.9×)
Min 0 s (0.9×) 0 s 0 s (0.5×) 0 s (0.6×)
Mean 217 s (1.6×) 332 s 48 s (5.5×) 37 s (8.0×)
Median 114 s (1.5×) 167 s 28 s (5.3×) 24 s (7.1×)

Table 5. Performance results for all benchmark scripts, where new pipelines are unoptimized

Benchmark Script Name 𝑢1 𝑢2 𝑢4 𝑢8 𝑢16

analytics-mts 1.sh (vehicles per day) 376 s 200 s (1.9×) 107 s (3.5×) 62 s (6.1×) 40 s (9.4×)
analytics-mts 2.sh (vehicle days on road) 379 s 199 s (1.9×) 107 s (3.6×) 62 s (6.1×) 41 s (9.3×)
analytics-mts 3.sh (vehicle hours on road) 427 s 232 s (1.8×) 126 s (3.4×) 74 s (5.8×) 51 s (8.4×)
analytics-mts 4.sh (hours monitored per day) 167 s 94 s (1.8×) 54 s (3.1×) 35 s (4.7×) 28 s (6.0×)
oneliners bi-grams.sh 1007 s 539 s (1.9×) 286 s (3.5×) 166 s (6.1×) 118 s (8.6×)
oneliners diff.sh 478 s 276 s (1.7×) 167 s (2.9×) 120 s (4.0×) 98 s (4.9×)
oneliners nfa-regex.sh 391 s 197 s (2.0×) 99 s (3.9×) 51 s (7.7×) 26 s (14.9×)
oneliners set-diff.sh 1308 s 717 s (1.8×) 376 s (3.5×) 220 s (6.0×) 144 s (9.1×)
oneliners shortest-scripts.sh 110 s 57 s (1.9×) 29 s (3.8×) 16 s (7.0×) 9 s (12.4×)
oneliners sort-sort.sh 167 s 101 s (1.7×) 60 s (2.8×) 40 s (4.2×) 31 s (5.4×)
oneliners sort.sh 389 s 207 s (1.9×) 106 s (3.7×) 59 s (6.6×) 39 s (10.0×)
oneliners spell.sh 736 s 386 s (1.9×) 208 s (3.5×) 115 s (6.4×) 78 s (9.5×)
oneliners top-n.sh 622 s 328 s (1.9×) 169 s (3.7×) 99 s (6.3×) 63 s (9.9×)
oneliners wf.sh 2089 s 1065 s (2.0×) 545 s (3.8×) 298 s (7.0×) 196 s (10.7×)
poets 1_1.sh (count_words) 637 s 443 s (1.4×) 224 s (2.8×) 123 s (5.2×) 84 s (7.6×)
poets 2_1.sh (merge_upper) 547 s 380 s (1.4×) 195 s (2.8×) 114 s (4.8×) 79 s (6.9×)
poets 2_2.sh (count_vowel_seq) 140 s 86 s (1.6×) 52 s (2.7×) 35 s (4.0×) 27 s (5.2×)
poets 3_1.sh (sort) 665 s 455 s (1.5×) 232 s (2.9×) 129 s (5.1×) 89 s (7.4×)
poets 3_2.sh (sort_words_by_folding) 681 s 467 s (1.5×) 240 s (2.8×) 136 s (5.0×) 94 s (7.3×)
poets 3_3.sh (sort_words_by_rhyming) 699 s 478 s (1.5×) 246 s (2.8×) 140 s (5.0×) 100 s (7.0×)
poets 4_3.sh (bigrams) 915 s 635 s (1.4×) 346 s (2.6×) 215 s (4.2×) 173 s (5.3×)
poets 4_3b.sh (count_trigrams) 1049 s 734 s (1.4×) 430 s (2.4×) 311 s (3.4×) 275 s (3.8×)
poets 6_1.sh (trigram_rec) 5 s 7 s (0.6×) 7 s (0.7×) 6 s (0.8×) 8 s (0.6×)
poets 6_1_1.sh (uppercase_by_token) 45 s 33 s (1.3×) 22 s (2.1×) 16 s (2.7×) 14 s (3.3×)
poets 6_1_2.sh (uppercase_by_type) 635 s 387 s (1.6×) 188 s (3.4×) 99 s (6.4×) 64 s (10.0×)
poets 6_2.sh (4letter_words) 647 s 399 s (1.6×) 199 s (3.2×) 108 s (6.0×) 80 s (8.1×)
poets 6_3.sh (words_no_vowels) 235 s 156 s (1.5×) 83 s (2.8×) 48 s (4.9×) 32 s (7.4×)
poets 6_4.sh (1syllable_words) 542 s 318 s (1.7×) 164 s (3.3×) 91 s (6.0×) 57 s (9.5×)
poets 6_5.sh (2syllable_words) 443 s 282 s (1.6×) 143 s (3.1×) 78 s (5.7×) 48 s (9.2×)
poets 6_7.sh (verses_2om_3om_2instances) 7 s 11 s (0.7×) 10 s (0.7×) 10 s (0.7×) 11 s (0.6×)
poets 7_2.sh (count_consonant_seq) 678 s 370 s (1.8×) 198 s (3.4×) 119 s (5.7×) 80 s (8.5×)
poets 8.2_1.sh (vowel_sequencies_gr_1K) 573 s 348 s (1.6×) 186 s (3.1×) 110 s (5.2×) 73 s (7.9×)
poets 8.2_2.sh (bigrams_appear_twice) 921 s 642 s (1.4×) 351 s (2.6×) 222 s (4.2×) 177 s (5.2×)
poets 8.3_2.sh (find_anagrams) 724 s 440 s (1.6×) 227 s (3.2×) 133 s (5.4×) 102 s (7.1×)
poets 8.3_3.sh (compare_exodus_genesis) 656 s 401 s (1.6×) 197 s (3.3×) 108 s (6.1×) 74 s (8.8×)
poets 8_1.sh (sort_words_by_n_syllables) 653 s 403 s (1.6×) 196 s (3.3×) 104 s (6.3×) 69 s (9.5×)
unix50 1.sh (1.0: extract last name) 12 s 8 s (1.5×) 5 s (2.4×) 4 s (3.2×) 3 s (3.6×)
unix50 10.sh (4.4: histogram by piece) 48 s 32 s (1.5×) 19 s (2.5×) 14 s (3.4×) 13 s (3.7×)
unix50 11.sh (4.5: histogram by piece and pawn) 42 s 28 s (1.5×) 18 s (2.4×) 13 s (3.1×) 12 s (3.4×)
unix50 12.sh (4.6: piece used most) 149 s 91 s (1.6×) 53 s (2.8×) 35 s (4.3×) 27 s (5.5×)
unix50 13.sh (5.1: extract hellow world) 12 s 10 s (1.2×) 7 s (1.7×) 6 s (2.0×) 7 s (1.7×)
unix50 14.sh (6.1: order bodies) 185 s 106 s (1.7×) 61 s (3.0×) 40 s (4.6×) 31 s (6.0×)
unix50 15.sh (7.1: number of versions) 8 s 7 s (1.2×) 5 s (1.6×) 5 s (1.6×) 6 s (1.4×)
unix50 16.sh (7.2: most frequent machine) 93 s 53 s (1.7×) 30 s (3.1×) 19 s (4.8×) 15 s (6.4×)
unix50 17.sh (7.3: decades unix released) 43 s 26 s (1.6×) 17 s (2.6×) 12 s (3.7×) 10 s (4.4×)
unix50 18.sh (8.1: count unix birth-year) 3 s 5 s (0.6×) 4 s (0.7×) 5 s (0.6×) 6 s (0.5×)
unix50 19.sh (8.2: location office) 2 s 3 s (0.9×) 2 s (1.0×) 2 s (1.0×) 2 s (1.0×)
unix50 2.sh (1.1: extract names and sort) 171 s 98 s (1.7×) 51 s (3.3×) 31 s (5.6×) 20 s (8.4×)
unix50 20.sh (8.3: four most involved) 5 s 6 s (0.8×) 5 s (1.0×) 5 s (1.0×) 6 s (0.8×)
unix50 21.sh (8.4: longest words w/o hyphens) 733 s 384 s (1.9×) 192 s (3.8×) 104 s (7.0×) 64 s (11.4×)
unix50 23.sh (9.1: extract word PORT) 202 s 109 s (1.9×) 61 s (3.3×) 35 s (5.7×) 23 s (8.8×)
unix50 24.sh (9.2: extract word BELL) 5 s 4 s (1.3×) 3 s (1.8×) 2 s (2.0×) 2 s (2.1×)
unix50 25.sh (9.3: animal decorate) 6 s 4 s (1.3×) 3 s (1.7×) 3 s (2.0×) 3 s (2.1×)
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unix50 26.sh (9.4: four corners) 32 s 26 s (1.2×) 21 s (1.5×) 18 s (1.7×) 18 s (1.7×)
unix50 28.sh (9.6: follow directions) 188 s 119 s (1.6×) 82 s (2.3×) 64 s (2.9×) 54 s (3.5×)
unix50 29.sh (9.7: four corners) 19 s 20 s (0.9×) 18 s (1.1×) 18 s (1.0×) 18 s (1.0×)
unix50 3.sh (1.2: extract names and sort) 0 s 0 s (1.0×) 0 s (0.7×) 0 s (0.7×) 0 s (0.7×)
unix50 30.sh (9.8: TELE-communications) 154 s 119 s (1.3×) 85 s (1.8×) 72 s (2.1×) 66 s (2.3×)
unix50 31.sh (9.9) 149 s 111 s (1.3×) 89 s (1.7×) 78 s (1.9×) 73 s (2.0×)
unix50 32.sh (10.1: count recipients) 6 s 6 s (0.9×) 6 s (1.0×) 6 s (1.0×) 7 s (0.9×)
unix50 33.sh (10.2: list recipients) 6 s 6 s (1.0×) 5 s (1.1×) 6 s (1.1×) 6 s (1.0×)
unix50 34.sh (10.3: extract username) 2 s 3 s (0.9×) 2 s (1.0×) 3 s (0.9×) 3 s (0.7×)
unix50 35.sh (11.1: year received medal) 1 s 2 s (0.5×) 2 s (0.6×) 2 s (0.5×) 2 s (0.5×)
unix50 36.sh (11.2: most repeated first name) 19 s 12 s (1.6×) 8 s (2.4×) 6 s (3.1×) 7 s (2.8×)
unix50 4.sh (1.3: sort top first names) 154 s 89 s (1.7×) 49 s (3.2×) 30 s (5.1×) 21 s (7.4×)
unix50 5.sh (2.1: all Unix utilities) 8 s 5 s (1.4×) 4 s (2.1×) 3 s (2.7×) 3 s (2.5×)
unix50 6.sh (3.1: first letter of last names) 14 s 10 s (1.4×) 7 s (2.1×) 5 s (2.6×) 5 s (2.7×)
unix50 7.sh (4.1: number of rounds) 18 s 14 s (1.3×) 10 s (1.8×) 9 s (2.1×) 9 s (2.0×)
unix50 8.sh (4.2: pieces captured) 12 s 11 s (1.2×) 8 s (1.6×) 7 s (1.7×) 8 s (1.6×)
unix50 9.sh (4.3: pieces captured with pawn) 28 s 19 s (1.5×) 12 s (2.2×) 10 s (2.9×) 9 s (2.9×)

Max 2089 s 1065 s (2.0×) 545 s (3.9×) 311 s (7.7×) 275 s (14.9×)
Min 0 s 0 s (0.5×) 0 s (0.6×) 0 s (0.5×) 0 s (0.5×)
Mean 332 s 200 s (1.5×) 107 s (2.5×) 65 s (4.0×) 48 s (5.5×)
Median 167 s 104 s (1.5×) 60 s (2.8×) 38 s (4.2×) 28 s (5.3×)

Table 6. Performance results for all benchmark scripts, where new pipelines are optimized by eliminating intermediate
combiners

Benchmark Script Name 𝑢1 𝑇1 𝑇2 𝑇4 𝑇8 𝑇16

analytics-mts 1.sh (vehicles per day) 376 s 330 s (1.1×) 170 s (2.2×) 89 s (4.2×) 48 s (7.9×) 29 s (13.1×)
analytics-mts 2.sh (vehicle days on road) 379 s 331 s (1.1×) 169 s (2.2×) 88 s (4.3×) 47 s (8.0×) 28 s (13.5×)
analytics-mts 3.sh (vehicle hours on road) 427 s 411 s (1.0×) 213 s (2.0×) 112 s (3.8×) 61 s (6.9×) 38 s (11.3×)
analytics-mts 4.sh (hours monitored per day) 167 s 97 s (1.7×) 53 s (3.2×) 29 s (5.8×) 18 s (9.4×) 13 s (12.8×)
oneliners bi-grams.sh 1007 s 1015 s (1.0×) 535 s (1.9×) 283 s (3.6×) 168 s (6.0×) 115 s (8.7×)
oneliners diff.sh 478 s 332 s (1.4×) 226 s (2.1×) 137 s (3.5×) 100 s (4.8×) 83 s (5.8×)
oneliners nfa-regex.sh 391 s 388 s (1.0×) 196 s (2.0×) 99 s (3.9×) 51 s (7.7×) 27 s (14.7×)
oneliners set-diff.sh 1308 s 816 s (1.6×) 495 s (2.6×) 279 s (4.7×) 175 s (7.5×) 128 s (10.2×)
oneliners shortest-scripts.sh 110 s 82 s (1.3×) 42 s (2.6×) 22 s (5.0×) 12 s (9.5×) 7 s (16.2×)
oneliners sort-sort.sh 167 s 137 s (1.2×) 85 s (2.0×) 53 s (3.2×) 35 s (4.7×) 28 s (6.0×)
oneliners sort.sh 389 s 391 s (1.0×) 207 s (1.9×) 106 s (3.7×) 59 s (6.6×) 38 s (10.3×)
oneliners spell.sh 736 s 484 s (1.5×) 282 s (2.6×) 154 s (4.8×) 90 s (8.1×) 61 s (12.1×)
oneliners top-n.sh 622 s 388 s (1.6×) 228 s (2.7×) 127 s (4.9×) 75 s (8.3×) 50 s (12.4×)
oneliners wf.sh 2089 s 1196 s (1.7×) 667 s (3.1×) 368 s (5.7×) 223 s (9.4×) 145 s (14.4×)
poets 1_1.sh (count_words) 637 s 637 s (1.0×) 440 s (1.4×) 223 s (2.9×) 123 s (5.2×) 83 s (7.6×)
poets 2_1.sh (merge_upper) 547 s 543 s (1.0×) 376 s (1.5×) 193 s (2.8×) 109 s (5.0×) 78 s (7.0×)
poets 2_2.sh (count_vowel_seq) 140 s 142 s (1.0×) 83 s (1.7×) 50 s (2.8×) 40 s (3.5×) 24 s (5.8×)
poets 3_1.sh (sort) 665 s 670 s (1.0×) 460 s (1.4×) 232 s (2.9×) 132 s (5.0×) 88 s (7.6×)
poets 3_2.sh (sort_words_by_folding) 681 s 685 s (1.0×) 472 s (1.4×) 237 s (2.9×) 134 s (5.1×) 94 s (7.2×)
poets 3_3.sh (sort_words_by_rhyming) 699 s 704 s (1.0×) 478 s (1.5×) 250 s (2.8×) 140 s (5.0×) 100 s (7.0×)
poets 4_3.sh (bigrams) 915 s 909 s (1.0×) 640 s (1.4×) 343 s (2.7×) 216 s (4.2×) 173 s (5.3×)
poets 4_3b.sh (count_trigrams) 1049 s 1056 s (1.0×) 733 s (1.4×) 430 s (2.4×) 311 s (3.4×) 279 s (3.8×)
poets 6_1.sh (trigram_rec) 5 s 2 s (1.9×) 2 s (2.8×) 2 s (2.4×) 1 s (3.6×) 2 s (2.4×)
poets 6_1_1.sh (uppercase_by_token) 45 s 40 s (1.1×) 30 s (1.5×) 21 s (2.1×) 16 s (2.8×) 14 s (3.2×)
poets 6_1_2.sh (uppercase_by_type) 635 s 158 s (4.0×) 101 s (6.3×) 53 s (12.1×) 31 s (20.5×) 24 s (26.9×)
poets 6_2.sh (4letter_words) 647 s 171 s (3.8×) 114 s (5.7×) 63 s (10.2×) 41 s (15.6×) 34 s (18.8×)
poets 6_3.sh (words_no_vowels) 235 s 223 s (1.1×) 148 s (1.6×) 82 s (2.9×) 46 s (5.1×) 31 s (7.7×)
poets 6_4.sh (1syllable_words) 542 s 203 s (2.7×) 139 s (3.9×) 76 s (7.1×) 45 s (11.9×) 31 s (17.4×)
poets 6_5.sh (2syllable_words) 443 s 316 s (1.4×) 205 s (2.2×) 109 s (4.1×) 61 s (7.3×) 40 s (11.0×)
poets 6_7.sh (verses_2om_3om_2instances) 7 s 4 s (1.8×) 3 s (2.8×) 3 s (2.7×) 3 s (2.4×) 5 s (1.5×)
poets 7_2.sh (count_consonant_seq) 678 s 250 s (2.7×) 152 s (4.5×) 88 s (7.7×) 59 s (11.5×) 48 s (14.2×)
poets 8.2_1.sh (vowel_sequencies_gr_1K) 573 s 155 s (3.7×) 101 s (5.7×) 66 s (8.7×) 50 s (11.4×) 42 s (13.7×)
poets 8.2_2.sh (bigrams_appear_twice) 921 s 247 s (3.7×) 182 s (5.0×) 120 s (7.7×) 96 s (9.6×) 91 s (10.2×)
poets 8.3_2.sh (find_anagrams) 724 s 208 s (3.5×) 131 s (5.5×) 76 s (9.5×) 55 s (13.3×) 50 s (14.5×)
poets 8.3_3.sh (compare_exodus_genesis) 656 s 162 s (4.1×) 106 s (6.2×) 59 s (11.1×) 39 s (16.7×) 34 s (19.3×)
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poets 8_1.sh (sort_words_by_n_syllables) 653 s 169 s (3.9×) 108 s (6.0×) 58 s (11.3×) 35 s (18.4×) 26 s (24.6×)
unix50 1.sh (1.0: extract last name) 12 s 12 s (1.0×) 8 s (1.5×) 5 s (2.4×) 4 s (3.2×) 3 s (3.5×)
unix50 10.sh (4.4: histogram by piece) 48 s 27 s (1.7×) 17 s (2.9×) 10 s (4.9×) 7 s (6.7×) 6 s (7.8×)
unix50 11.sh (4.5: histogram by piece and pawn) 42 s 24 s (1.7×) 16 s (2.6×) 10 s (4.3×) 7 s (5.9×) 6 s (6.8×)
unix50 12.sh (4.6: piece used most) 149 s 112 s (1.3×) 69 s (2.2×) 38 s (4.0×) 24 s (6.2×) 18 s (8.2×)
unix50 13.sh (5.1: extract hellow world) 12 s 5 s (2.6×) 4 s (3.1×) 3 s (4.1×) 3 s (4.7×) 2 s (5.1×)
unix50 14.sh (6.1: order bodies) 185 s 154 s (1.2×) 92 s (2.0×) 51 s (3.6×) 33 s (5.6×) 25 s (7.5×)
unix50 15.sh (7.1: number of versions) 8 s 6 s (1.4×) 4 s (2.0×) 3 s (2.9×) 3 s (3.0×) 3 s (2.5×)
unix50 16.sh (7.2: most frequent machine) 93 s 85 s (1.1×) 48 s (2.0×) 27 s (3.4×) 17 s (5.4×) 13 s (7.4×)
unix50 17.sh (7.3: decades unix released) 43 s 41 s (1.1×) 24 s (1.8×) 15 s (3.0×) 10 s (4.2×) 8 s (5.1×)
unix50 18.sh (8.1: count unix birth-year) 3 s 2 s (1.5×) 2 s (1.4×) 2 s (1.6×) 2 s (1.4×) 3 s (1.1×)
unix50 19.sh (8.2: location office) 2 s 2 s (1.1×) 2 s (1.0×) 2 s (1.2×) 2 s (1.4×) 2 s (1.0×)
unix50 2.sh (1.1: extract names and sort) 171 s 131 s (1.3×) 74 s (2.3×) 41 s (4.1×) 25 s (6.8×) 17 s (9.9×)
unix50 20.sh (8.3: four most involved) 5 s 0 s (NaN) 1 s (3.9×) 1 s (3.6×) 2 s (2.5×) 3 s (1.7×)
unix50 21.sh (8.4: longest words w/o hyphens) 733 s 440 s (1.7×) 257 s (2.8×) 141 s (5.2×) 78 s (9.4×) 49 s (14.9×)
unix50 23.sh (9.1: extract word PORT) 202 s 116 s (1.7×) 59 s (3.4×) 31 s (6.5×) 17 s (11.7×) 10 s (19.8×)
unix50 24.sh (9.2: extract word BELL) 5 s 5 s (1.1×) 4 s (1.4×) 2 s (2.1×) 2 s (2.3×) 2 s (2.4×)
unix50 25.sh (9.3: animal decorate) 6 s 5 s (1.1×) 4 s (1.5×) 3 s (2.0×) 2 s (2.6×) 2 s (2.3×)
unix50 26.sh (9.4: four corners) 32 s 28 s (1.1×) 22 s (1.5×) 17 s (1.9×) 16 s (2.0×) 15 s (2.1×)
unix50 28.sh (9.6: follow directions) 188 s 185 s (1.0×) 114 s (1.7×) 78 s (2.4×) 59 s (3.2×) 49 s (3.8×)
unix50 29.sh (9.7: four corners) 19 s 16 s (1.2×) 16 s (1.2×) 15 s (1.2×) 15 s (1.3×) 15 s (1.3×)
unix50 3.sh (1.2: extract names and sort) 0 s 0 s (0.9×) 0 s (1.0×) 0 s (0.7×) 0 s (0.7×) 0 s (0.7×)
unix50 30.sh (9.8: TELE-communications) 154 s 152 s (1.0×) 105 s (1.5×) 80 s (1.9×) 71 s (2.2×) 62 s (2.5×)
unix50 31.sh (9.9) 149 s 145 s (1.0×) 106 s (1.4×) 85 s (1.8×) 74 s (2.0×) 68 s (2.2×)
unix50 32.sh (10.1: count recipients) 6 s 5 s (1.1×) 6 s (1.0×) 5 s (1.1×) 6 s (1.0×) 6 s (0.9×)
unix50 33.sh (10.2: list recipients) 6 s 6 s (1.0×) 6 s (1.0×) 5 s (1.1×) 5 s (1.1×) 5 s (1.1×)
unix50 34.sh (10.3: extract username) 2 s 0 s (19.7×) 1 s (1.9×) 1 s (1.8×) 2 s (1.3×) 3 s (0.9×)
unix50 35.sh (11.1: year received medal) 1 s 1 s (1.1×) 1 s (0.6×) 1 s (0.6×) 2 s (0.6×) 2 s (0.6×)
unix50 36.sh (11.2: most repeated first name) 19 s 15 s (1.3×) 10 s (1.9×) 7 s (2.9×) 5 s (3.6×) 6 s (3.5×)
unix50 4.sh (1.3: sort top first names) 154 s 131 s (1.2×) 79 s (2.0×) 43 s (3.6×) 26 s (5.9×) 19 s (8.3×)
unix50 5.sh (2.1: all Unix utilities) 8 s 7 s (1.1×) 5 s (1.6×) 3 s (2.5×) 2 s (3.2×) 2 s (3.1×)
unix50 6.sh (3.1: first letter of last names) 14 s 10 s (1.4×) 7 s (2.2×) 4 s (3.4×) 3 s (4.1×) 3 s (5.2×)
unix50 7.sh (4.1: number of rounds) 18 s 14 s (1.3×) 9 s (2.0×) 5 s (3.5×) 4 s (4.7×) 4 s (4.7×)
unix50 8.sh (4.2: pieces captured) 12 s 6 s (2.1×) 4 s (3.0×) 3 s (4.2×) 3 s (5.0×) 3 s (4.1×)
unix50 9.sh (4.3: pieces captured with pawn) 28 s 14 s (2.0×) 8 s (3.3×) 5 s (5.6×) 4 s (7.5×) 4 s (7.3×)

Max 2089 s 1196 s (19.7×) 733 s (6.3×) 430 s (12.1×) 311 s (20.5×) 279 s (26.9×)
Min 0 s 0 s (0.9×) 0 s (0.6×) 0 s (0.6×) 0 s (0.6×) 0 s (0.6×)
Mean 332 s 228 s (1.9×) 142 s (2.4×) 79 s (4.0×) 50 s (6.1×) 37 s (8.0×)
Median 167 s 140 s (1.2×) 84 s (2.0×) 50 s (3.5×) 32 s (5.1×) 24 s (7.1×)

D Appendix: Combiner Synthesis Results

Table 8 summarizes all plausible combiners identified by KumQuat during the combiner synthesis for the benchmarks. The
first column presents the number of times the combiner appears as plausible across all benchmark scripts. The second column
presents the combiner in the KumQuat combiner DSL, with variables 𝑎, 𝑏 denoting input arguments and ∗ denoting any
flags. For each command in the benchmarks, the synthesized plausible combiners are all equivalent when operating on the
command’s outputs.

Table 9 presents all of the benchmark commands for which KumQuat did not synthesize a combiner.
Table 10 presents comprehensive synthesis results from our benchmark set of commands. The first column presents the name

of the command 𝑓 . The second presents the command itself. The third presents the size of the candidate combiners with a finite
scope of eight. Inside parentheses is the breakdown of the candidates into the three combiner classes RecOp, StructOp,RunOp𝑓 .
The fourth column presents the wall-clock synthesis time in seconds. The fifth column presents the final set of synthesized
plausible combiners expressed in the combiner DSL, where variables 𝑎, 𝑏 denote the first and the second input streams,
respectively. The last column presents the number of these plausible combiners.

Table 10. Synthesis results for unique command/flag combinations

Bench Script Idx Command Search Space Time Synthesized Plausible #P
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oneliners spell 8

IN=${IN:-../benchmarks/pipelines/one
liners/input/1G.txt}
dict=${dict:-../in/dict.sorted}
LC_COLLATE=C comm -23 - $dict

26404
(= 12440 + 13960 + 4) 331 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

poets vowel_-
sequencies_-
gr_1K

7 awk "\$1 >= 1000"
26404
(= 12440 + 13960 + 4) 176 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

poets find_-
anagrams

8 awk "\$1 >= 2 {print \$2}"
2700
(= 968 + 1728 + 4) 40 s 𝑒1 = (concat 𝑎 𝑏) . 1

unix50 8.4:
longest
words
w/o hy-
phens

3 awk "length >= 16"
26404
(= 12440 + 13960 + 4) 172 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 8.2: lo-
cation
office

4 awk "{\$1=\$1};1"
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 6.1: or-
der bod-
ies

1 awk "{print \$2, \$0}"
110444
(= 59048 + 51392 + 4) 124 s 𝑒1 = (concat 𝑎 𝑏) . 1

unix50 8.2: lo-
cation
office

2 awk ’length <= 45’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

poets sort_-
words_-
by_n_-
syllables

6 awk ’{print NF}’
2700
(= 968 + 1728 + 4) 39 s 𝑒1 = (concat 𝑎 𝑏) . 1

analytics-
mts

vehicles
per day

7 awk -v OFS="\t" "{print \$2,\$1}"
110444
(= 59048 + 51392 + 4) 125 s 𝑒1 = (concat 𝑎 𝑏) . 1

analytics-
mts

vehicles
per day

0 cat
26404
(= 12440 + 13960 + 4) 59 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

oneliners spell 2 col -bx
26404
(= 12440 + 13960 + 4) 59 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 4.4: his-
togram
by
piece

6 cut -c 1-1
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 5.1:
extract
hellow
world

3 cut -c 1-12
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 9.3: ani-
mal dec-
orate

1 cut -c 1-2
26404
(= 12440 + 13960 + 4) 59 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 9.1:
extract
word
PORT

6 cut -c 1-4
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2
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unix50 7.3:
decades
unix re-
leased

3 cut -c 3-3
26404
(= 12440 + 13960 + 4) 59 s 𝑒1 = (concat 𝑎 𝑏) . 1

unix50 5.1:
extract
hellow
world

2 cut -d "\"" -f 2
26404
(= 12440 + 13960 + 4) 104 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

oneliners set-diff 2 cut -d ’ ’ -f 1
2700
(= 968 + 1728 + 4) 71 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 1.0:
extract
last
name

1 cut -d ’ ’ -f 2
2700
(= 968 + 1728 + 4) 72 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 2.1: all
Unix
utilities

1 cut -d ’ ’ -f 4
2700
(= 968 + 1728 + 4) 71 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 8.3: four
most in-
volved

2 cut -d ’(’ -f 2
26404
(= 12440 + 13960 + 4) 102 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 8.3: four
most in-
volved

3 cut -d ’)’ -f 1
26404
(= 12440 + 13960 + 4) 102 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

analytics-
mts

vehicles
per day

4 cut -d ’,’ -f 1
26404
(= 12440 + 13960 + 4) 102 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

analytics-
mts

hours
moni-
tored
per day

2 cut -d ’,’ -f 1,2
110444
(= 59048 + 51392 + 4) 126 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

analytics-
mts

vehicle
hours
on road

2 cut -d ’,’ -f 1,2,4
110444
(= 59048 + 51392 + 4) 126 s 𝑒1 = (concat 𝑎 𝑏) . 1

analytics-
mts

vehicles
per day

2 cut -d ’,’ -f 1,3
110444
(= 59048 + 51392 + 4) 125 s 𝑒1 = (concat 𝑎 𝑏) . 1

analytics-
mts

vehicle
days on
road

4 cut -d ’,’ -f 2
26404
(= 12440 + 13960 + 4) 103 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

analytics-
mts

vehicle
hours
on road

4 cut -d ’,’ -f 3
26404
(= 12440 + 13960 + 4) 101 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

analytics-
mts

vehicle
days on
road

2 cut -d ’,’ -f 3,1
110444
(= 59048 + 51392 + 4) 124 s 𝑒1 = (concat 𝑎 𝑏) . 1

unix50 4.4: his-
togram
by
piece

4 cut -d ’.’ -f 2
26404
(= 12440 + 13960 + 4) 103 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2
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oneliners shortest-
scripts

3 cut -d: -f1
26404
(= 12440 + 13960 + 4) 61 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 7.1:
number
of ver-
sions

1 cut -f 1
26404
(= 12440 + 13960 + 4) 102 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 7.2:
most
fre-
quent
ma-
chine

1 cut -f 2
26404
(= 12440 + 13960 + 4) 103 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 7.3:
decades
unix re-
leased

1 cut -f 4
26404
(= 12440 + 13960 + 4) 102 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 10.3:
extract
user-
name

4 fmt -w1
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 9.4: four
corners

2 grep "\""
26404
(= 12440 + 13960 + 4) 61 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

oneliners shortest-
scripts

2 grep "shell script"
26404
(= 12440 + 13960 + 4) 62 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 8.3: four
most in-
volved

1 grep ’(’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 7.1:
number
of ver-
sions

2 grep ’AT&T’
26404
(= 12440 + 13960 + 4) 61 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

poets trigram_-
rec

10 grep ’And he said’
26404
(= 12440 + 13960 + 4) 61 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 8.2: lo-
cation
office

1 grep ’Bell’
26404
(= 12440 + 13960 + 4) 61 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 11.1:
year re-
ceived
medal

1 grep ’UNIX’
26404
(= 12440 + 13960 + 4) 61 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 9.1:
extract
word
PORT

2 grep ’[A-Z]’
26404
(= 12440 + 13960 + 4) 59 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 4.4: his-
togram
by
piece

5 grep ’[KQRBN]’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2
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oneliners nfa-
regex

2 grep ’\(.\).*\1\(.\).*\2\(.\).*\3\(.
\).*\4’

110444
(= 59048 + 51392 + 4) 129 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 4.4: his-
togram
by
piece

3 grep ’\.’
26404
(= 12440 + 13960 + 4) 165 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

poets verses_-
2om_-
3om_-
2instances

11 grep ’light.\*light’
26404
(= 12440 + 13960 + 4) 172 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 5.1:
extract
hellow
world

1 grep ’print’
26404
(= 12440 + 13960 + 4) 61 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

poets trigram_-
rec

3 grep ’the land of’
26404
(= 12440 + 13960 + 4) 61 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 4.4: his-
togram
by
piece

2 grep ’x’
26404
(= 12440 + 13960 + 4) 179 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

poets 4letter_-
words

10 grep -c ’^....$’
2700
(= 968 + 1728 + 4) 38 s

𝑒1 = ( (back ‘\𝑛‘ add) 𝑎 𝑏),
𝑒2 = ( (back ‘\𝑛‘ add) 𝑏 𝑎) . 2

poets uppercase_-
by_-
token

4 grep -c ’^[A-Z]’
2700
(= 968 + 1728 + 4) 39 s

𝑒1 = ( (back ‘\𝑛‘ add) 𝑎 𝑏),
𝑒2 = ( (back ‘\𝑛‘ add) 𝑏 𝑎) . 2

poets verses_-
2om_-
3om_-
2instances

3 grep -c ’light.\*light’
2700
(= 968 + 1728 + 4) 39 s

𝑒1 = ( (back ‘\𝑛‘ add) 𝑎 𝑏),
𝑒2 = ( (back ‘\𝑛‘ add) 𝑏 𝑎) . 2

poets verses_-
2om_-
3om_-
2instances

7 grep -c ’light.\*light.\*light’
2700
(= 968 + 1728 + 4) 39 s

𝑒1 = ( (back ‘\𝑛‘ add) 𝑎 𝑏),
𝑒2 = ( (back ‘\𝑛‘ add) 𝑏 𝑎) . 2

poets 1syllable_-
words

4 grep -i ’^[^aeiou]*[aeiou][^aeiou]*$
’

110444
(= 59048 + 51392 + 4) 177 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (merge 𝑎 𝑏),
𝑒3 = (merge 𝑏 𝑎),
𝑒4 = (rerun 𝑎 𝑏) .

4

poets 2syllable_-
words

4 grep -i ’^[^aeiou]*[aeiou][^aeiou]*[
aeiou][^aeiou]$’

110444
(= 59048 + 51392 + 4) 315 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 4.3:
pieces
cap-
tured
with
pawn

5 grep -v ’[KQRBN]’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

oneliners shortest-
scripts

5 grep -v ’^0$’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2
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poets verses_-
2om_-
3om_-
2instances

12 grep -vc ’light.\*light.\*light’
2700
(= 968 + 1728 + 4) 39 s

𝑒1 = ( (back ‘\𝑛‘ add) 𝑎 𝑏),
𝑒2 = ( (back ‘\𝑛‘ add) 𝑏 𝑎) . 2

poets words_-
no_-
vowels

4 grep -vi ’[aeiou]’
26404
(= 12440 + 13960 + 4) 59 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 8.1:
count
unix
birth-
year

2 grep 1969
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

poets compare_-
exodus_-
genesis

9 head
26404
(= 12440 + 13960 + 4) 163 s 𝑒1 = (rerun 𝑎 𝑏) . 1

oneliners shortest-
scripts

7 head -15
26404
(= 12440 + 13960 + 4) 185 s 𝑒1 = (rerun 𝑎 𝑏) . 1

unix50 7.2:
most
fre-
quent
ma-
chine

5 head -n 1
26404
(= 12440 + 13960 + 4) 102 s

𝑒1 = (first 𝑎 𝑏),
𝑒2 = (second 𝑏 𝑎),
𝑒3 = ( (back ‘\𝑛‘ first) 𝑎 𝑏),
𝑒4 = ( (fuse ‘\𝑛‘ first) 𝑎 𝑏),
𝑒5 = ( (back ‘\𝑛‘ second) 𝑏 𝑎),
𝑒6 = ( (fuse ‘\𝑛‘ second) 𝑏 𝑎),
𝑒7 = (rerun 𝑎 𝑏) .

7

unix50 1.2:
extract
names
and
sort

1 head -n 2
26404
(= 12440 + 13960 + 4) 101 s 𝑒1 = (rerun 𝑎 𝑏) . 1

unix50 4.6:
piece
used
most

8 head -n 3
26404
(= 12440 + 13960 + 4) 101 s 𝑒1 = (rerun 𝑎 𝑏) . 1

oneliners spell 1 iconv -f utf-8 -t ascii//translit
26404
(= 12440 + 13960 + 4) 59 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

poets sort_-
words_-
by_-
rhyming

6 rev
26404
(= 12440 + 13960 + 4) 59 s 𝑒1 = (concat 𝑎 𝑏) . 1

poets count_-
words

1
IN=${IN:-../benchmarks/pipelines/poe
ts/input/pg/}
sed "s;^;$IN;"

26404
(= 12440 + 13960 + 4) 59 s 𝑒1 = (concat 𝑎 𝑏) . 1

analytics-
mts

vehicles
per day

1 sed ’s/T..:..:..//’
26404
(= 12440 + 13960 + 4) 59 s 𝑒1 = (concat 𝑎 𝑏) . 1

analytics-
mts

vehicle
hours
on road

1 sed ’s/T\(..\):..:../,\1/’
110444
(= 59048 + 51392 + 4) 126 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

oneliners top-n 6 sed 100q
26404
(= 12440 + 13960 + 4) 258 s 𝑒1 = (rerun 𝑎 𝑏) . 1
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poets trigram_-
rec

13 sed 5q
26404
(= 12440 + 13960 + 4) 183 s 𝑒1 = (rerun 𝑎 𝑏) . 1

unix50 7.3:
decades
unix re-
leased

5 sed s/\$/’0s’/
26404
(= 12440 + 13960 + 4) 60 s 𝑒1 = (concat 𝑎 𝑏) . 1

analytics-
mts

vehicles
per day

5 sort
26404
(= 12440 + 13960 + 4) 65 s

𝑒1 = (merge 𝑎 𝑏),
𝑒2 = (merge 𝑏 𝑎),
𝑒3 = (rerun 𝑎 𝑏),
𝑒4 = (rerun 𝑏 𝑎) .

4

poets sort_-
words_-
by_-
folding

6 sort -f
26404
(= 12440 + 13960 + 4) 65 s

𝑒1 = (merge(’-f’) 𝑎 𝑏),
𝑒2 = (merge(’-f’) 𝑏 𝑎),
𝑒3 = (rerun 𝑎 𝑏),
𝑒4 = (rerun 𝑏 𝑎) .

4

analytics-
mts

vehicle
days on
road

7 sort -k1n
26404
(= 12440 + 13960 + 4) 65 s

𝑒1 = (merge(’-k1n’) 𝑎 𝑏),
𝑒2 = (merge(’-k1n’) 𝑏 𝑎),
𝑒3 = (rerun 𝑎 𝑏),
𝑒4 = (rerun 𝑏 𝑎) .

4

oneliners shortest-
scripts

6 sort -n
26404
(= 12440 + 13960 + 4) 64 s

𝑒1 = (merge(’-n’) 𝑎 𝑏),
𝑒2 = (merge(’-n’) 𝑏 𝑎),
𝑒3 = (rerun 𝑎 𝑏),
𝑒4 = (rerun 𝑏 𝑎) .

4

poets sort 6 sort -nr
26404
(= 12440 + 13960 + 4) 65 s

𝑒1 = (merge(’-nr’) 𝑎 𝑏),
𝑒2 = (merge(’-nr’) 𝑏 𝑎),
𝑒3 = (rerun 𝑎 𝑏),
𝑒4 = (rerun 𝑏 𝑎) .

4

oneliners sort-
sort

3 sort -r
26404
(= 12440 + 13960 + 4) 66 s

𝑒1 = (merge(’-r’) 𝑎 𝑏),
𝑒2 = (merge(’-r’) 𝑏 𝑎),
𝑒3 = (rerun 𝑎 𝑏),
𝑒4 = (rerun 𝑏 𝑎) .

4

oneliners top-n 5 sort -rn
26404
(= 12440 + 13960 + 4) 65 s

𝑒1 = (merge(’-rn’) 𝑎 𝑏),
𝑒2 = (merge(’-rn’) 𝑏 𝑎),
𝑒3 = (rerun 𝑎 𝑏),
𝑒4 = (rerun 𝑏 𝑎) .

4

analytics-
mts

vehicles
per day

3 sort -u
26404
(= 12440 + 13960 + 4) 64 s

𝑒1 = (merge(’-u’) 𝑎 𝑏),
𝑒2 = (merge(’-u’) 𝑏 𝑎),
𝑒3 = (rerun 𝑎 𝑏),
𝑒4 = (rerun 𝑏 𝑎) .

4

unix50 4.6:
piece
used
most

9 tail -n 1
26404
(= 12440 + 13960 + 4) 104 s

𝑒1 = (first 𝑏 𝑎),
𝑒2 = (second 𝑎 𝑏),
𝑒3 = ( (back ‘\𝑛‘ first) 𝑏 𝑎),
𝑒4 = ( (fuse ‘\𝑛‘ first) 𝑏 𝑎),
𝑒5 = ( (back ‘\𝑛‘ second) 𝑎 𝑏),
𝑒6 = ( (fuse ‘\𝑛‘ second) 𝑎 𝑏),
𝑒7 = (rerun 𝑎 𝑏) .

7

unix50 4.4: his-
togram
by
piece

1 tr ’ ’ ’\n’
2700
(= 968 + 1728 + 4) 41 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2
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unix50 10.3:
extract
user-
name

7 tr ’[A-Z]’ ’[a-z]’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 4.5: his-
togram
by
piece
and
pawn

6 tr ’[a-z]’ ’P’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

poets merge_-
upper

3 tr ’[a-z]’ ’[A-Z]’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 9.1:
extract
word
PORT

3 tr ’[a-z]’ ’\n’
26404
(= 12440 + 13960 + 4) 59 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

poets count_-
vowel_-
seq

3 tr ’a-z’ ’[A-Z]’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 8.4:
longest
words
w/o hy-
phens

1 tr -c "[a-z][A-Z]" ’\n’
2700
(= 968 + 1728 + 4) 40 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 9.6:
follow
direc-
tions

9 tr -c ’[A-Z]’ ’\n’
2700
(= 968 + 1728 + 4) 40 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 9.8:
TELE-
communications

1 tr -c ’[a-z][A-Z]’ ’\n’
2700
(= 968 + 1728 + 4) 40 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

oneliners bi-
grams

1 tr -cs A-Za-z ’\n’
2700
(= 968 + 1728 + 4) 40 s 𝑒1 = (rerun 𝑎 𝑏) . 1

unix50 2.1: all
Unix
utilities

2 tr -d ’,’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

oneliners spell 5 tr -d ’[:punct:]’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 9.1:
extract
word
PORT

5 tr -d ’\n’
2700
(= 968 + 1728 + 4) 40 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

unix50 7.2:
most
fre-
quent
ma-
chine

6 tr -s ’ ’ ’\n’
2700
(= 968 + 1728 + 4) 41 s 𝑒1 = (rerun 𝑎 𝑏) . 1
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poets count_-
vowel_-
seq

4 tr -sc ’AEIOU’ ’[\012*]’
2700
(= 968 + 1728 + 4) 40 s 𝑒1 = (rerun 𝑎 𝑏) . 1

poets vowel_-
sequencies_-
gr_1K

4 tr -sc ’AEIOUaeiou’ ’[\012*]’
2700
(= 968 + 1728 + 4) 40 s 𝑒1 = (rerun 𝑎 𝑏) . 1

poets count_-
consonant_-
seq

4 tr -sc ’BCDFGHJKLMNPQRSTVWXYZ’ ’[\01
2*]’

2700
(= 968 + 1728 + 4) 41 s 𝑒1 = (rerun 𝑎 𝑏) . 1

poets merge_-
upper

4 tr -sc ’[A-Z]’ ’[\012*]’
2700
(= 968 + 1728 + 4) 40 s 𝑒1 = (rerun 𝑎 𝑏) . 1

poets 2syllable_-
words

3 tr -sc ’[A-Z][a-z]’ ’ [\012*]’
2700
(= 968 + 1728 + 4) 40 s 𝑒1 = (rerun 𝑎 𝑏) . 1

poets count_-
words

3 tr -sc ’[A-Z][a-z]’ ’[\012*]’
2700
(= 968 + 1728 + 4) 40 s 𝑒1 = (rerun 𝑎 𝑏) . 1

poets sort_-
words_-
by_n_-
syllables

5 tr -sc ’[AEIOUaeiou\012]’ ’ ’
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

oneliners bi-
grams

2 tr A-Z a-z
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

oneliners diff 2 tr [:lower:] [:upper:]
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

oneliners diff 5 tr [:upper:] [:lower:]
26404
(= 12440 + 13960 + 4) 59 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = (rerun 𝑎 𝑏) . 2

oneliners bi-
grams

5 uniq
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = ( (stitch first) 𝑎 𝑏),
𝑒2 = ( (stitch second) 𝑎 𝑏),
𝑒3 = (rerun 𝑎 𝑏) .

3

analytics-
mts

vehicles
per day

6 uniq -c
26404
(= 12440 + 13960 + 4) 59 s

𝑒1 = ( (stitch2 ‘ ‘ add first) 𝑎 𝑏),
𝑒2 = ( (stitch2 ‘ ‘ add second) 𝑎 𝑏) . 2

unix50 7.1:
number
of ver-
sions

3 wc -l
2700
(= 968 + 1728 + 4) 39 s

𝑒1 = ( (back ‘\𝑛‘ add) 𝑎 𝑏),
𝑒2 = ( (back ‘\𝑛‘ add) 𝑏 𝑎) . 2

oneliners shortest-
scripts

4 xargs -L 1 wc -l
26404
(= 12440 + 13960 + 4) 103 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = ( (offset ‘ ‘ first) 𝑎 𝑏),
𝑒3 = ( (offset ‘ ‘ second) 𝑎 𝑏) .

3

poets count_-
words

2 xargs cat
26404
(= 12440 + 13960 + 4) 60 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = ( (offset ‘ ‘ first) 𝑎 𝑏),
𝑒3 = ( (offset ‘ ‘ second) 𝑎 𝑏) .

3

oneliners shortest-
scripts

1 xargs file
26404
(= 12440 + 13960 + 4) 61 s

𝑒1 = (concat 𝑎 𝑏),
𝑒2 = ( (offset ‘ ‘ second) 𝑎 𝑏) . 2
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Table 7. Performance results for benchmark scripts (𝑢1 ≥ 3min)

Benchmark Script Name Parallelized Eliminated 𝑇orig 𝑢1 𝑢16 𝑇16

analytics-mts 1.sh (vehicles per day) 7/7 (7/7) 3 (3) 333 s (1.1×) 376 s 40 s (9.4×) 29 s (13.1×)
analytics-mts 2.sh (vehicle days on road) 8/8 (8/8) 3 (3) 335 s (1.1×) 379 s 41 s (9.3×) 28 s (13.5×)
analytics-mts 3.sh (vehicle hours on road) 8/8 (8/8) 3 (3) 408 s (1.0×) 427 s 51 s (8.4×) 38 s (11.3×)
oneliners bi-grams.sh 3/5 (3/5) 0 (0) 668 s (1.5×) 1007 s 118 s (8.6×) 115 s (8.7×)
oneliners diff.sh 4/7

(0/1, 2/2, 2/2, 0/1, 0/1)
2
(0, 1, 1, 0, 0)

325 s (1.5×) 478 s 98 s (4.9×) 83 s (5.8×)

oneliners nfa-regex.sh 2/2 (2/2) 1 (1) 389 s (1.0×) 391 s 26 s (14.9×) 27 s (14.7×)
oneliners set-diff.sh 5/8

(0/1, 3/3, 2/2, 0/1, 0/1)
3
(0, 2, 1, 0, 0)

879 s (1.5×) 1308 s 144 s (9.1×) 128 s (10.2×)

oneliners sort.sh 1/1 (1/1) 0 (0) 273 s (1.4×) 389 s 39 s (10.0×) 38 s (10.3×)
oneliners spell.sh 6/8 (6/8) 3 (3) 427 s (1.7×) 736 s 78 s (9.5×) 61 s (12.1×)
oneliners top-n.sh 4/6 (4/6) 1 (1) 372 s (1.7×) 622 s 63 s (9.9×) 50 s (12.4×)
oneliners wf.sh 4/5 (4/5) 1 (1) 1155 s (1.8×) 2089 s 196 s (10.7×) 145 s (14.4×)
poets 1_1.sh (count_words) 4/6 (4/6) 1 (1) 360 s (1.8×) 637 s 84 s (7.6×) 83 s (7.6×)
poets 2_1.sh (merge_upper) 5/7 (5/7) 2 (2) 307 s (1.8×) 547 s 79 s (6.9×) 78 s (7.0×)
poets 3_1.sh (sort) 5/7 (5/7) 1 (1) 391 s (1.7×) 665 s 89 s (7.4×) 88 s (7.6×)
poets 3_2.sh (sort_words_by_folding) 5/7 (5/7) 1 (1) 402 s (1.7×) 681 s 94 s (7.3×) 94 s (7.2×)
poets 3_3.sh (sort_words_by_rhyming) 7/9 (7/9) 2 (2) 415 s (1.7×) 699 s 100 s (7.0×) 100 s (7.0×)
poets 4_3.sh (bigrams) 4/8 (2/4, 0/1, 2/3) 1 (1, 0, 0) 635 s (1.4×) 915 s 173 s (5.3×) 173 s (5.3×)
poets 4_3b.sh (count_trigrams) 4/9

(2/4, 0/1, 0/1, 2/3)
1 (1, 0, 0, 0) 862 s (1.2×) 1049 s 275 s (3.8×) 279 s (3.8×)

poets 6_1_2.sh (uppercase_by_type) 4/6 (4/6) 1 (1) 330 s (1.9×) 635 s 64 s (10.0×) 24 s (26.9×)
poets 6_2.sh (4letter_words) 7/11 (3/5, 4/6) 2 (1, 1) 327 s (2.0×) 647 s 80 s (8.1×) 34 s (18.8×)
poets 6_3.sh (words_no_vowels) 5/7 (5/7) 2 (2) 220 s (1.1×) 235 s 32 s (7.4×) 31 s (7.7×)
poets 6_4.sh (1syllable_words) 5/8 (5/8) 2 (2) 433 s (1.3×) 542 s 57 s (9.5×) 31 s (17.4×)
poets 6_5.sh (2syllable_words) 5/8 (5/8) 2 (2) 397 s (1.1×) 443 s 48 s (9.2×) 40 s (11.0×)
poets 7_2.sh (count_consonant_seq) 5/7 (5/7) 2 (2) 475 s (1.4×) 678 s 80 s (8.5×) 48 s (14.2×)
poets 8.2_1.sh (vowel_sequencies_gr_1K) 5/8 (5/8) 1 (1) 417 s (1.4×) 573 s 73 s (7.9×) 42 s (13.7×)
poets 8.2_2.sh (bigrams_appear_twice) 4/9

(2/4, 0/1, 2/3, 0/1)
1 (1, 0, 0, 0) 645 s (1.4×) 921 s 177 s (5.2×) 91 s (10.2×)

poets 8.3_2.sh (find_anagrams) 7/9
(2/4, 1/1, 1/1, 3/3)

1 (1, 0, 0, 0) 237 s (3.1×) 724 s 102 s (7.1×) 50 s (14.5×)

poets 8.3_3.sh (compare_exodus_genesis) 6/10 (3/5, 1/2, 2/3) 1 (1, 0, 0) 334 s (2.0×) 656 s 74 s (8.8×) 34 s (19.3×)
poets 8_1.sh (sort_words_by_n_syllables) 6/10 (3/5, 2/2, 1/3) 2 (1, 1, 0) 346 s (1.9×) 653 s 69 s (9.5×) 26 s (24.6×)
unix50 14.sh (6.1: order bodies) 3/3 (3/3) 1 (1) 143 s (1.3×) 185 s 31 s (6.0×) 25 s (7.5×)
unix50 21.sh (8.4: longest words w/o hy-

phens)
3/3 (3/3) 1 (1) 428 s (1.7×) 733 s 64 s (11.4×) 49 s (14.9×)

unix50 23.sh (9.1: extract word PORT) 6/6 (6/6) 4 (4) 111 s (1.8×) 202 s 23 s (8.8×) 10 s (19.8×)
unix50 28.sh (9.6: follow directions) 6/10 (6/10) 3 (3) 87 s (2.2×) 188 s 54 s (3.5×) 49 s (3.8×)

Total 163/233 55
Max 1155 s (3.1×) 2089 s 275 s (14.9×) 279 s (26.9×)
Min 87 s (1.0×) 185 s 23 s (3.5×) 10 s (3.8×)
Mean 420 s (1.6×) 649 s 85 s (8.2×) 67 s (12.0×)
Median 389 s (1.5×) 637 s 74 s (8.5×) 49 s (11.3×)
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Table 8. Combiners synthesized for all benchmark scripts

Count Synthesized Plausible Combiner

81 (concat 𝑎 𝑏)
22 (rerun 𝑎 𝑏)
16 (merge(*) 𝑎 𝑏) or (merge(*) 𝑏 𝑎)
12 ( (back ‘\𝑛‘ add) 𝑎 𝑏) or ( (back ‘\𝑛‘ add) 𝑏 𝑎)
8 (rerun 𝑏 𝑎)
2 ( (back ‘\𝑛‘ first) 𝑎 𝑏) or ( (back ‘\𝑛‘ second) 𝑏 𝑎)
2 (first 𝑎 𝑏) or (second 𝑏 𝑎)
2 ( (fuse ‘\𝑛‘ first) 𝑎 𝑏) or ( (fuse ‘\𝑛‘ second) 𝑏 𝑎)
2 ( (back ‘\𝑛‘ second) 𝑎 𝑏) or ( (back ‘\𝑛‘ first) 𝑏 𝑎)
2 (second 𝑎 𝑏) or (first 𝑏 𝑎)
2 ( (fuse ‘\𝑛‘ second) 𝑎 𝑏) or ( (fuse ‘\𝑛‘ first) 𝑏 𝑎)
2 ( (stitch2 ‘ ‘ add first) 𝑎 𝑏) or ( (stitch2 ‘ ‘ add second) 𝑎 𝑏)
2 ( (stitch first) 𝑎 𝑏) or ( (stitch second) 𝑎 𝑏)

Table 9. Unsupported commands in all benchmark scripts

Command Reason Unsupported Counterexample Input Streams

awk "\$1 == 2 print
\$2, \$3"

KumQuat did not generate inputs for the command to produce nonempty outputs.

sed 1d No combiners 𝑔 exist such that 𝑓 (x1 ++ x2) = 𝑔 (𝑓 (x1), 𝑓 (x2)) for all streams x1, x2. Each of x1, x2 has at least one line.
sed 2d No combiners 𝑔 exist such that 𝑓 (x1 ++ x2) = 𝑔 (𝑓 (x1), 𝑓 (x2)) for all streams x1, x2. Each of x1, x2 has at least two lines.
sed 3d No combiners 𝑔 exist such that 𝑓 (x1 ++ x2) = 𝑔 (𝑓 (x1), 𝑓 (x2)) for all streams x1, x2. Each of x1, x2 has at least three lines.
sed 4d No combiners 𝑔 exist such that 𝑓 (x1 ++ x2) = 𝑔 (𝑓 (x1), 𝑓 (x2)) for all streams x1, x2. Each of x1, x2 has at least four lines.
sed 5d No combiners 𝑔 exist such that 𝑓 (x1 ++ x2) = 𝑔 (𝑓 (x1), 𝑓 (x2)) for all streams x1, x2. Each of x1, x2 has at least five lines.
tail +2 No combiners 𝑔 exist such that 𝑓 (x1 ++ x2) = 𝑔 (𝑓 (x1), 𝑓 (x2)) for all streams x1, x2. Each of x1, x2 has at least one line.
tail +3 No combiners 𝑔 exist such that 𝑓 (x1 ++ x2) = 𝑔 (𝑓 (x1), 𝑓 (x2)) for all streams x1, x2. Each of x1, x2 has at least two lines.
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