
Integrating Model Checking and Theorem
Proving for Relational Reasoning

Konstantine Arkoudas Sarfraz Khurshid Darko Marinov Martin Rinard

MIT Laboratory for Computer Science
200 Technology Square

Cambridge, MA 02139 USA
{arkoudas,khurshid,marinov,rinard}@lcs.mit.edu

Abstract. We present Prioni, a tool that integrates model checking
and theorem proving for relational reasoning. Prioni takes as input for-
mulas written in Alloy, a declarative language based on relations. Prioni
uses the Alloy Analyzer to check the validity of Alloy formulas for a given
scope that bounds the universe of discourse. The Alloy Analyzer can re-
fute a formula if a counterexample exists within the given scope, but
cannot prove that the formula holds for all scopes. For proofs, Prioni
uses Athena, a denotational proof language. Prioni translates Alloy for-
mulas into Athena proof obligations and uses the Athena tool for proof
discovery and checking.

1 Introduction

Prioni is a tool that integrates model checking and theorem proving for re-
lational reasoning. Prioni takes as input formulas written in the Alloy lan-
guage [6]. We chose Alloy because it is an increasingly popular notation for the
calculus of relations. Alloy is a first-order, declarative language. It was initially
developed for expressing and analyzing high-level designs of software systems.
It has been successfully applied to several systems, exposing bugs in Microsoft
COM [8] and a naming architecture for dynamic networks [9]. It has also been
used for software testing [11], as a basis of an annotation language [10], and
for checking code conformance [18]. Alloy is gaining popularity mainly for two
reasons: it is based on relations, which makes it easy to write specifications
about many systems; and properties of Alloy specifications can be automatically
analyzed using the Alloy Analyzer (AA) [7].

Prioni leverages AA to model-check Alloy specifications. AA finds instances
of Alloy specifications, i.e., assignments to relations in a specification that make
the specification true. AA requires users to provide only a scope that bounds
the universe of discourse. AA then automatically translates Alloy specifications
into boolean satisfiability formulas and uses off-the-shelf SAT solvers to find
satisfying assignments to the formulas. A satisfying assignment to a formula that
expresses the negation of a property provides a counterexample that illustrates
a violation of the property. AA is restricted to finite refutation: if AA does
not find a counterexample within some scope, there is no guarantee that no
counterexample exists in a larger scope. Users can increase their confidence by
re-running AA for a larger scope, as long as AA completes its checking in a
reasonable amount of time.

2 Arkoudas, Khurshid, Marinov, and Rinard

It is worth noting that a successful exploration of a finite scope may lead to a
false sense of security. There is anecdotal evidence of experienced AA users who
developed Alloy specifications, checked them for a certain scope, and believed the
specifications to hold when in fact they were false. (In particular, this happened
to the second author in his earlier work [9].) In some cases, the fallacy is revealed
when AA can handle a larger scope, due to advances in hardware, SAT solver
technology, or translation of Alloy specifications. In some cases, the fallacy is
revealed by a failed attempt to carefully argue the correctness of the specification,
even if the goal is not to produce a formal proof of correctness.

Prioni integrates AA with a theorem prover that enables the users to prove
that their Alloy specifications hold for all scopes. Prioni uses Athena for proof
representation, discovery, and checking. Athena is a type-ω denotational proof
language [1] for polymorphic multi-sorted first-order logic. We chose Athena for
several reasons: 1) It uses a natural-deduction style of reasoning that makes it
easier to read and write proofs. 2) It offers a high degree of automation through
the use of methods, which are akin to the tactics and tacticals of HOL [4] and
Isabelle [14]. In addition, Athena uses Otter [19] for proof search. Otter is an
efficient theorem prover for first-order logic, and its use allows one to skip many
tedious steps, focusing instead on the interesting parts of the proof. 3) It offers
a strong soundness guarantee. 4) It has a flexible polymorphic sort system with
built-in support for structural induction.

Prioni provides two key technologies that enable the effective use of Athena
to prove Alloy specifications. First, Prioni provides an axiomatization of the
calculus of relations in Athena and a library of commonly used lemmas for this
calculus. Since this calculus is the foundation of Alloy, the axiomatization and
the lemmas together eliminate much of the formalization burden that normally
confronts users of theorem provers. Second, Prioni provides an automatic trans-
lation from Alloy to the Athena relational calculus. This translation eliminates
the coding effort and transcription errors that complicate the direct manual use
of theorem provers. Finally, we note that since Athena has a formal semantics,
the translation also gives a precise semantics to Alloy.

Prioni supports the following usage scenario. The user starts from an Alloy
specification, model-checks it and potentially changes it until it holds for as big
a scope as AA can handle. After eliminating the most obvious errors in this
manner, the user may proceed to prove the specification. This attempt may
introduce new proof obligations, such as an inductive step. The user can then
again use AA to model-check these new formulas to be proved. This way, model
checking aids proof engineering. But proving can also help model checking. Even
when the user cannot prove that the whole specification is correct, the user may
be able to prove that a part of it is. This can make the specification smaller,
and AA can then check the new specification in a larger scope than the original
specification. Machine-verifiable proofs of key properties greatly increase our
trust in the reliability of the system. An additional benefit of having readable
formal proofs lies in improved documentation: such proofs not only show that
the desired properties hold, but also why they hold.

Integrating Model Checking and Theorem Proving for Relational Reasoning 3

2 Model Checking

We next illustrate the use of our Prioni prototype on a recursive function that
returns the set of all elements in a list. We establish that the result of the function
is the same as a simple relational expression that uses transitive closure. The
following Alloy specification introduces lists and the function of interest:
module List
sig Object {}
sig Node {
next: option Node, // next is a partial function from Node to Node
data: Object } // data is a total function from Node to Object

det fun elms(n: Node): set Object {
if (no n.next) then result = n.data
else result = n.data + elms(n.next) }

assert Equivalence { all n: Node | elms(n) = n.*next.data }
check Equivalence for 5

The declaration module names the specification. The keyword sig introduces a
signature, i.e., a set of indivisible atoms. Each signature can have field declara-
tions that introduce relations. By default, fields are total functions; the modifiers
option and set are used for partial functions and general relations, respectively.

The keyword fun introduces an Alloy “function”, i.e., a parametrized formula
that can be invoked elsewhere in the specification. In general, an Alloy function
denotes a relation between its arguments and the result; the modifier det specifies
an actual function. The function elms has one argument, n. Semantically, all
variables in Alloy are relations (i.e., sets). Thus, n is not a scalar from the set
Node; n is a singleton subset of Node. (A general subset is declared with set.)
In the function body, result refers to the result of the function. The intended
meaning of elms is to return the set of objects in all nodes reachable from n.
The operator ‘.’ represents relational composition; n.next is the set of nodes
that the relation next maps n to. Note that the recursive invocation type-checks
even when this set is empty, because the type of n is essentially a set of Nodes.

The keyword assert introduces an assertion, i.e., a formula to be checked.
The prefix operator ‘*’ denotes reflexive transitive closure. The expression n.*next

denotes the set of all nodes reachable from n, and n.*next.data denotes the set
of objects in these nodes. Equivalence states that the result of elms is exactly
the set of all those objects. The command check instructs AA to check this for
the given scope, in this example for all lists with at most five nodes and five
objects. AA produces a counterexample, where a list has a cycle. Operationally,
elms would not terminate if there is a cycle reachable from its argument. In pro-
gramming language semantics, the least fixed point is taken as the meaning of
a recursive function definition. Since Alloy is a declarative, relational language,
AA instead considers all functions that satisfy the recursive definition of elms.

We can rule out cyclic lists by adding to the above Alloy specification the fol-
lowing: fact AllAcyclic { all n: Node | n !in n.^next }. A fact is a formula
that is assumed to hold, i.e., AA checks if the assertion follows from the con-
junction of all facts in the specification. AllAcyclic states that there is no node
n reachable from itself, i.e., no node n is in the set n.^next; ‘^’ denotes transitive
closure. We again use AA to check Equivalence, and this time AA produces no
counterexample.

4 Arkoudas, Khurshid, Marinov, and Rinard

3 Axiomatization

We next introduce certain key parts of our axiomatization of the calculus of
relations in Athena. (Refer to the Appendix for a brief overview of Athena.) The
axiomatization represents relations as sets of tuples in a typed first-order finite-
set theory. Tuples of binary relations (i.e., ordered pairs) are represented with
the following polymorphic Athena structure: (structure (Pair-Of S T) (pair S

T)). Prioni introduces similar structures for tuples of greater length as needed.
Sets are polymorphic, their sort being given by a domain constructor: (domain

(Set-Of S)), and with the membership relation in typed as follows:
(declare in ((S) -> (S (Set-Of S)) Boolean))

Set equality is captured by an extensionality axiom set-ext, and set operations
are defined as usual. We also introduce a singleton-forming operator:
(declare singleton ((T) -> (T) (Set-Of T)))

(define singleton-def
(forall ?x ?y (iff (in ?x (singleton ?y)) (= ?x ?y))))

Relation operations are defined set-theoretically, e.g.:
(declare transpose ((T) -> ((Set-Of (Pair-Of T T))) (Set-Of (Pair-Of T T))))

(define transpose-def
(forall ?R ?x ?y (iff (in (pair ?x ?y) (transpose ?R))

(in (pair ?y ?x) ?R))))

(define pow-def-1
(forall ?R ?x ?y

(iff (in (tup [?x ?y]) (pow ?R zero))
(= ?x ?y))))

(define pow-def-2
(forall ?R ?k ?x ?y

(iff (in (tup [?x ?y]) (pow ?R (succ ?k)))
(exists ?z

(and (in [?x ?z] ?R)
(in [?z ?y] (pow ?R ?k)))))))

Alloy has one general composition operator ‘.’ that can be applied to two arbi-
trary relations at least one of which has arity greater than one. Such a general
operator could not be typed precisely in a Hindley-Milner-like type system such
as that of Athena, and in any event, the general composition operator has a
fairly involved definition that would unduly complicate theorem proving. So
what our translation does instead is introduce a small number of specialized
composition operators comp-n-m that compose relations of types S1 × · · · × Sn

and T1 × · · · × Tm, with Sn = T1. Such operators are typed precisely and have
straightforward definitions; for instance:
(declare comp-2-2 ((S T U) -> ((Set-Of (Pair-Of S T)) (Set-Of (Pair-Of T U)))

(Set-Of (Pair-Of S U))))
(forall ?R1 ?R2 ?x ?y
(iff (in (pair ?x ?y) (comp-2-2 ?R1 ?R2))

(exists ?z
(and (in (pair ?x ?z) ?R1)

(in (pair ?z ?y) ?R2)))))

Many Alloy specifications use only comp-1-2 and comp-2-2. In the less common
cases, Prioni determines the arities at hand and automatically declares and
axiomatizes the corresponding composition operators.

Integrating Model Checking and Theorem Proving for Relational Reasoning 5

Transitive closure is defined in terms of exponentiation. For the latter, we
need a minimal theory of natural numbers: their definition as an inductive struc-
ture and the primitive recursive definition of addition, in order to be able to prove
statements such as (∀R,n, m)Rn+m = Rn.Rm.

4 Translation

Prioni automatically translates any Alloy specification into a corresponding
Athena theory. A key aspect of this translation is that it preserves the meaning of
the Alloy specification. We next show how Prioni translates our example Alloy
specification into Athena. Each Alloy signature introduces an Athena domain:
(domain Object-Dom)
(domain Node-Dom)

Additionally, each Alloy signature or field introduces a constant set of tuples
whose elements are drawn from appropriate Athena domains:
(declare Object (Set-Of Object-Dom))
(declare Node (Set-Of Node-Dom))
(declare next (Set-Of (Pair-Of Node-Dom Node-Dom)))
(declare data (Set-Of (Pair-Of Node-Dom Object-Dom)))

In our example, Alloy field declarations put additional constraints on the rela-
tions. The translation adds these constraints into the global assumption base
(i.e., a set of propositions that are assumed to hold, as explained in the Ap-
pendix):
(assert (is-fun next))
(assert (is-total-fun Node data))

where is-fun and is-total-fun are defined as expected. Each Alloy “function”
introduces an Athena function symbol (which can be actually a relation symbol,
i.e., a function to the Athena predefined sort Boolean):
(declare elms (-> ((Set-Of Node-Dom)) (Set-Of Object-Dom)))

(define elms-def
(forall ?n ?result

(iff (= (elms ?n) ?result)
(and (and (singleton? ?n) (subset ?n Node))

(and (if (empty? (comp-1-2 ?n next))
(= ?result (comp-1-2 ?n data)))

(if (not (empty? (comp-1-2 ?n next)))
(= ?result (union (comp-1-2 ?n data) (elms (comp-1-2 ?n next))))))))))

(assert elms-def)

where empty-def is as expected. Note that there are essentially two cases in
elms-def: when (comp-1-2 ?n next) is empty, and when it is not. To facilitate
theorem proving, we split elms-def into two parts, elms-def-1 and elms-def-2,
each covering one of these two cases. Both of them are automatically derived
from elms-def.
Alloy facts are simply translated as formulas and added to the assumption base:

(define AllAcyclic
(forall ?n (not (subset (singleton ?n) (comp-1-2 (singleton ?n) (tc next))))))

(assert AllAcyclic)

Finally, the assertion is translated into a proof obligation:

6 Arkoudas, Khurshid, Marinov, and Rinard

(define Equivalence
(forall ?n (= (elms (singleton ?n))

(comp-1-2 (comp-1-2 (singleton ?n) (rtc next)) data)))))

Recall that all values in Alloy are relations. In particular, Alloy blurs the type
distinction between scalars and singletons. In our Athena formalization, however,
this distinction is explicitly present and can be onerous for the Alloy user. To
alleviate this, Prioni allows users to intersperse Athena text with expressions
and formulas written in an infix Alloy-like notation and enclosed within double
quotes. (We will follow that practice in the sequel.) Even though this notation
retains the distinction between scalars and singletons, it is nevertheless in the
spirit of Alloy and should therefore prove more appealing to Alloy users than
Athena’s s-expressions. There are some other minor notational differences, e.g.,
we use ‘*’ as a postfix operator and distinguish between set membership (in)
and containment (subset).

5 Proof

The assertion Equivalence is an equality between sets. To prove this equality, we
show that elms is sound:

ALL n | elms({n}) subset {n}.next*.data (1)

and complete:

ALL n | {n}.next*.data subset elms({n}) (2)

The desired equality will then follow from set extensionality.
The proof uses a few simple lemmas from Prioni’s library of results fre-

quently used in relational reasoning:

(define comp-monotonicity "ALL x y R | y in {x}.R* ==> {y}.R* subset {x}.R*")
(define first-power-lemma "ALL x y R | [x y] in R ==> [x y] in R*")
(define comp-lemma "ALL s1 s2 R | s1 subset s2 ==> s1.R subset s2.R")
(define scalar-lemma "ALL x y R | y in {x}.R <==> [x y] in R")
(define subset-rtc-lemma "ALL n R | {n} subset {n}.R*")
(define fun-lemma "ALL n x R | [n x] in R & is-fun(R) ==> {x} = {n}.R")
(define star-pow-lemma "ALL x n R S | x in ({n}.R*).S ==>

(EXISTS m k | [n m] in R^k & [m x] in S)")

and a couple of trivial set-theory lemmas:

(define subset-trans "ALL s1 s2 s3 | (s1 subset s2) & (s2 subset s3) ==> s1 subset s3")
(define union-lemma "ALL s1 s2 s | (s1 subset s) & (s2 subset s) ==> (s1 union s2) subset s")

We also need the following two lemmas about next and data:

(define elms-lemma-1 "ALL n | {n}.data subset ({n}.next*).data")
(define elms-lemma-2 "ALL n | {n}.data subset elms({n})")

The first follows immediately from comp-lemma and subset-rtc-lemma using the
method prove (explained below); the second also follows automatically from the
definitions of elms, union and subset.

Integrating Model Checking and Theorem Proving for Relational Reasoning 7

5.1 Soundness
The soundness proof needs an induction principle for Alloy lists. Athena supports
inductive reasoning for domains that are generated by a set of free constructors.
But Alloy structures are represented here as constant sets of tuples, so we must
find an alternative way to perform induction on them. In our list example, an
appropriate induction principle is:

(∀n) (¬(∃m) [n, m] ∈ next) ⇒ P (n) (∀n) (∀m) [n, m] ∈ next⇒ P (m) ⇒ P (n)

(∀n) P (n)

provided (∀n) n 6∈ {n}.next+

The rule is best read backward: to prove that a property P holds for every
node n, we must prove: 1) the left premise, which is the base case: if n does not
have a successor, then P must hold for n; and 2) the right premise, which is the
inductive step: P (n) must follow from the assumption P (m) whenever m is a
successor of n. The proviso (∀n)n 6∈ {n}.next+ rules out cycles, which would
render the rule unsound.

Athena makes it possible to introduce arbitrary inference rules via primitive
methods. Unlike regular methods, whose bodies must be deductions, primitive
methods are defined by expressions. (The distinction between expressions and
deductions plays a key role in type-ω DPLs [1].) A primitive method is thus free
to generate any conclusion it wishes by performing an arbitrary computation on
its inputs. Since no guarantees can be made about soundness, primitive methods
are part of one’s trusted base and must be used sparingly.

We have implemented the above induction rule with a primitive method
list-induction parameterized over the goal property P . P is implemented as
an Athena function goal that constructs the desired proposition for a given
argument. In this case, we have:
(define (elms-goal n) "elms({n}) subset {n}.next*.data")

The primitive method list-induction takes a goal as an argument, constructs
the two premises from it, checks that they are in the assumption base along with
the acyclicity constraint, and if successful, outputs (forall ?n (goal ?n)).

The base step is proved automatically:
(define base-step
(!prove "ALL n | ~(EXISTS m | [n m] in next) ==> elms({n}) subset ({n}.next*).data)"

[elms-def empty-def scalar-lemma elms-lemma-1]))

where prove is a binary method.1 (All method calls in Athena are prefixed with
‘!’, which distinguishes them from Athena function calls [1].) A method call
(!prove P [P1 · · ·Pn]) attempts to derive the conclusion P from the premises
P1, . . . , Pn, which must be in the current assumption base. If a proof is found, the
conclusion P is returned. Currently, Otter is used for the proof search. Where
deductive forms such as assume (and others explained in the Appendix) are
used to guide the deduction, prove is used to skip tedious steps. A call (!prove
P [P1 · · ·Pn]) essentially says to Athena: “P follows from P1, . . . , Pn by stan-
dard logical manipulations: universal specializations, modus ponens, etc. There
1 Currently, prove is a primitive method and thus Otter is part of our trusted base.

However, it is not difficult to implement Otter’s inference rules (paramodulation,
etc.) as Athena methods and then use them to define prove as a regular method.

8 Arkoudas, Khurshid, Marinov, and Rinard

is nothing interesting or deep here—you work out the details.” If we are wrong,
either because P does not in fact follow from P1, . . . , Pn or because it is a non-
trivial consequence of them, the method call will fail within a preset maximum
time limit (currently 1 min). Otherwise, a proof will invariably be found almost
instantaneously and P will be successfully returned.
The proof of the inductive step is more interesting:
(pick-any x y

(assume-let ((hyp "[x y] in next")
(ihyp (ind-goal y)))

(dlet ((P1 (!prove "elms({x}) = {x}.data union elms({y})"
[elms-def-2 hyp fun-lemma (is-fun next) scalar-lemma empty-def]))

(P2 (!prove "{y}.next* subset {x}.next*" [hyp comp-monotonicity
scalar-lemma first-power-lemma]))

(P3 (!prove "({y}.next*).data subset ({x}.next*).data" [P2 comp-lemma]))
(P4 (!prove "elms({y}) subset ({x}.next*).data" [P3 ihyp subset-trans])))

(!prove "elms({x}) subset ({x}.next*).data" [P1 elms-lemma-1 P4 union-lemma]))))

The key constructs of the proof (pick-any, assume-let, and dlet) are explained
in the Appendix. At this point, both the base and the inductive step have been
proved and are in the assumption base, so we can now apply list-induction to
obtain the desired conclusion: (!list-induction elms-goal).

5.2 Completeness
Next we present the completeness proof of the statement {n}.next*.data subset

elms({n}), for arbitrary n. Viewing the transitive closure next* as the union of
nextk for all k, we proceed by induction on k. Specifically, we prove the following
by induction on k:

ALL k n m x | [n m] in next^k & [m x] in data ==> x in elms({n}) (3)

As before, we first define a function goal that constructs the inductive goal
for any given k:
(define (goal k) "ALL m n x | [n m] in next^k & [m x] in data ==> x in elms({n})"))

The following is the inductive proof of 3:
(by-induction-on ?k (goal ?k)
(zero (!prove (goal zero) [elms-lemma-2 pow-def-1 scalar-lemma subset-def]))
((succ k) (pick-any m n x

(assume-let ((hyp "[n m] in next^k+1 & [m x] in data"))
(!prove "x in elms({n})" [hyp (goal k) pow-def-2 fun-lemma (is-fun next)

scalar-lemma empty-def elms-def-2 union-def])))))

Finally, the completeness proof follows, where ind-lemma refers to (3).
(pick-any n

(!prove-subsets "({n}.next*).data" "elms({n})"
[elms-def star-pow-lemma scalar-lemma ind-lemma]))

Here prove-subsets is a defined method, which we will now explain. Although
Otter is helpful in skipping tedious steps, its autonomous mode is not power-
ful as a completely automatic theorem prover. More powerful theorem-proving
algorithms that guide the proof search by exploiting heuristics for a particular
problem domain can be encoded in Athena as methods, which are similar to
the tactics and tacticals of HOL-like systems. Athena’s semantics guarantee

Integrating Model Checking and Theorem Proving for Relational Reasoning 9

soundness: the result of any method call is always a logical consequence of the
assumption base in which the call takes place.

A simple example of a method is prove-subsets, which captures the following
“tactic” for arbitrary sets S1 and S2: to prove S1 ⊆ S2 from a set of assumptions
∆, consider an arbitrary x, suppose that x ∈ S1, and then try to prove x ∈ S2

under the assumptions ∆ ∪ {x ∈ S1}. The justification for this tactic (i.e., the
fact from which the desired goal will be derived once the subgoals have been
established) is simply the definition of set containment. Such tactics are readily
expressible as Athena methods2.

Checking both directions (soundness and completeness) of the correctness
proof takes about 1 sec in our current implementation. The whole proof for
this example (including the lemma library and other auxiliary code) is available
online: http://mulsaw.lcs.mit.edu/prioni/relmics03

6 Conclusions

Prioni is a tool that integrates model checking and theorem proving for rela-
tional reasoning. Several other tools combine model checking and theorem prov-
ing but focus on reactive systems and modal logics [16,17] or general first-order
logic [12], whereas Prioni focuses on structural system properties. Recently,
Frias et al. [3] have given an alternative semantics to Alloy in terms of fork al-
gebras [2] and extended it with features from dynamic logic [5]. Further, Lopez
Pombo et al. [15] have used the PVS theorem prover [13] to prove specifications
in the extended Alloy. This approach has been used for proving properties of
execution traces, whereas Prioni has been used for structurally complex data.

A key issue in the usability of a theorem prover tool is the difficulty of
finding proofs. We have addressed this issue by lightening the formalization
burden through our automatic translation and by providing a lemma library that
captures commonly used patterns in relational reasoning. Athena makes it easy
to guide the proof, focusing on its interesting parts, while Otter automatically
fills in the gaps.

References

1. K. Arkoudas. Type-ω DPLs. MIT AI Memo 2001-27, 2001.
2. M. F. Frias. Fork Algebras in Algebra, Logic and Computer Science. World Scien-

tific Publishing Co., 2002.
3. M. F. Frias, C. G. L. Pombo, G. A. Baum, N. M. Aguirre, and T. Maibaum. Taking

alloy to the movies. In Proc. Formal Methods Europe (FME), Sept. 2003.
4. M. J. C. Gordon and T. F. Melham. Introduction to HOL, a theorem proving envi-

ronment for higher-order logic. Cambridge University Press, Cambridge, England,
1993.

5. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, Cambridge,
MA, 2000.

2 Since sets in this problem domain are structured (i.e., elements are usually tuples),
these methods employ some additional heuristics to increase efficiency.

10 Arkoudas, Khurshid, Marinov, and Rinard

6. D. Jackson. Micromodels of software: Modelling and analysis with Alloy, 2001.
http://sdg.lcs.mit.edu/alloy/book.pdf.

7. D. Jackson, I. Schechter, and I. Shlyakhter. ALCOA: The Alloy constraint analyzer.
In Proc. 22nd International Conference on Software Engineering (ICSE), Limerick,
Ireland, June 2000.

8. D. Jackson and K. Sullivan. COM revisited: Tool-assisted modeling of an archi-
tectural framework. In Proc. 8th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), San Diego, CA, 2000.

9. S. Khurshid and D. Jackson. Exploring the design of an intentional naming scheme
with an automatic constraint analyzer. In Proc. 15th IEEE International Confer-
ence on Automated Software Engineering (ASE), Grenoble, France, Sep 2000.

10. S. Khurshid, D. Marinov, and D. Jackson. An analyzable annotation language.
In Proc. ACM SIGPLAN 2002 Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), Seattle, WA, Nov 2002.

11. D. Marinov and S. Khurshid. TestEra: A novel framework for automated testing
of Java programs. In Proc. 16th IEEE International Conference on Automated
Software Engineering (ASE), San Diego, CA, Nov. 2001.

12. W. McCune. Mace: Models and counter-examples. http://www-unix.mcs.anl.

gov/AR/mace/, 2001.
13. S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In

Proc. 11th International Conference on Automated Deduction (CADE), volume
607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, June
1992.

14. L. Paulson. Isabelle, A Generic Theorem Prover. Lecture Notes in Computer
Science. Springer-Verlag, 1994.

15. C. L. Pombo, S. Owre, and N. Shankar. A semantic embedding of the ag dynamic
logic in PVS. Technical Report SRI-CSL-02-04, SRI International, Menlo Park,
CA, May 2003.

16. S. Rajan, N. Shankar, and M. K. Srivas. An integration of model checking with
automated proof checking. In Proceedings of the 7th International Conference On
Computer Aided Verification, volume 939, Liege, Belgium, 1995. Springer Verlag.

17. N. Shankar. Combining theorem proving and model checking through symbolic
analysis. Lecture Notes in Computer Science, 1877, 2000.

18. M. Vaziri and D. Jackson. Checking properties of heap-manipulating procedures
with a constraint solver. In Proc. 9th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS), Warsaw, Poland, Apr.
2003.

19. L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning, Introduction
and Applications. McGraw-Hill, Inc., 1992.

A Brief Athena Overview

Athena is a type-ω denotational proof language [1] for polymorphic multi-sorted
first-order logic. This Appendix presents parts of Athena relevant to under-
standing the example. In Athena, an arbitrary universe of discourse (sort) is
introduced with a domain declaration, for example:
(domain Real)
(domain Person)

Function symbols and constants can then be declared on the given domains, e.g.:

Integrating Model Checking and Theorem Proving for Relational Reasoning 11

(declare + (-> (Real Real) Real))
(declare joe Person)
(declare pi Real)

Relations are functions whose range is the predefined sort Boolean, e.g.,
(declare < (-> (Real Real) Boolean))

Domains can be polymorphic, e.g.,
(domain (Set-Of T))

and then function symbols declared on such domains can also be polymorphic:
(declare insert ((T) -> (T (Set-Of T)) (Set-Of T)))

Note that in the declaration of a polymorphic symbol, the relevant sort pa-
rameters have to be listed within parentheses immediately before the arrow ->.
The equality symbol = is a predefined relation symbol with sort ((T) -> (T T)

Boolean).
Inductively generated domains are introduced as “structures”, e.g.,

(structure Nat
zero
(succ Nat))

Here Nat is freely generated by the constructors zero and succ. This is equivalent
to issuing the declarations (domain Nat), (declare zero Nat), (declare succ (->
(Nat) Nat)), and additionally postulating a number of axioms stating that Nat
is freely generated by zero and succ. Those axioms along with an appropriate
induction principle are automatically generated when the user defines the struc-
ture. In this example, the induction principle will allow for proofs of statements
of the form (∀n : Nat)P (n) by induction on the structure of the number n:
(by-induction-on n P(n)
(zero D1)
((succ k) D2))

where D1 is a proof of P(zero)—the basis step—and D2 is a proof of succ(k) for
some fresh variable k—the inductive step. The inductive step D2 is performed
under the assumption that P(k) holds, which captures the inductive hypothesis.
More precisely, D2 is evaluated in the assumption base β∪{P (k)}, where β is the
assumption base in which the entire inductive proof is being evaluated; more on
assumption bases below.

Structures can also be polymorphic, e.g.,
(structure (List-Of T)
nil
(cons T (List-Of T)))

and correspondingly polymorphic free-generation axioms and inductive princi-
ples are automatically generated.

The fundamental data values in Athena are terms and propositions. Terms
are s-expressions built from declared function symbols such as + and pi, and from
variables, written as ?I for any identifier I. Thus ?x, (+ ?foo pi), (+ (+ ?x ?y)

?z), are all terms. The (most general) sort of a term is inferred automatically;
the user does not have to annotate variables with their sorts. A proposition P
is either a term of sort Boolean (say, (< pi (+ ?x ?y))); or an expression of the
form (not P) or (¯ P1 P2) for ¯ ∈ {and, or, if, iff}; or (Q x1 · · ·xn P) where
Q ∈ {forall, exists} and each xi a variable. Athena also checks the sorts of
propositions automatically using a Hindley-Milner-like type inference algorithm.

12 Arkoudas, Khurshid, Marinov, and Rinard

The user interacts with Athena via a read-eval-print loop. Athena displays
a prompt >, the user enters some input (either a phrase to be evaluated or a
top-level directive such as define, assert, declare, etc.), Athena processes the
user’s input, displays the result, and the loop starts anew. The most fundamental
concept in Athena is the assumption base—a finite set of propositions that are as-
sumed to hold, representing our “axiom set” or “knowledge base”. Athena starts
out with the empty assumption base, which then gets incrementally augmented
with the conclusions of the deductions that the user successfully evaluates at the
top level of the read-eval-print loop. A proposition can also be explicitly added
into the global assumption base with the top-level directive assert. (Note that
in Athena the keyword assert introduces a formula that is supposed to hold,
whereas in Alloy assert introduces a formula that is to be checked.)

Prioni starts by adding relational calculus axioms and already proved lem-
mas to the empty assumption base. It then translates the Alloy specification
and adds to the assumption base all translated constraints and definitions. Only
the translated Alloy assertion is not added to the assumption base; rather, it
constitutes the proof obligation.

An Athena deduction D is always evaluated in a given assumption base β.
Evaluating D in β will either produce a proposition P (the “conclusion” of D in
β), or else it will generate an error or will diverge. If D does produce a conclusion
P , Athena’s semantics guarantee β |= P , i.e., that P is a logical consequence of
β. There are several syntactic forms that can be used for deductions.

The form pick-any introduces universal generalizations: (pick-any I1 · · · In

D) binds the names I1 · · · In to fresh variables v1, . . . , vn and evaluates D. If D
yields a conclusion P , the result returned by the entire pick-any is (∀ v1, . . . , vn)P .

The form assume introduces conditionals: to evaluate (assume P D) in an
assumption base β, we evaluate D in β ∪ {P}. If that produces a conclusion Q,
the conditional P ⇒ Q is returned as the result of the entire assume. The form
(assume-let ((I P)) D) works like assume, but also lexically binds the name I
to the hypothesis P within D.

The form (dlet ((I1 D1) · · · (In Dn)) D) is used for sequencing and nam-
ing deductions. To evaluate such a deduction in β, we first evaluate D1 in β to
obtain a conclusion P1. We then bind I1 to P1, insert P1 into β, and continue
with D2. The conclusions Pi of the various Di are thus incrementally added
to the assumption base, becoming available as lemmas for subsequent use. The
body D is then evaluated in β ∪ {P1, . . . , Pn}, and its conclusion becomes the
conclusion of the entire dlet.

