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Abstract. The process of verifying that a program conforms to its spec-
ification is often hampered by errors in both the program and the spec-
ification. A runtime checker that can evaluate formal specifications can
be useful for quickly identifying such errors. This paper describes our
preliminary experience with incorporating run-time checking into the
Jahob verification system and discusses some lessons we learned in this
process. One of the challenges in building a runtime checker for a pro-
gram verification system is that the language of invariants and assertions
is designed for simplicity of semantics and tractability of proofs, and not
for run-time checking. Some of the more challenging constructs include
existential and universal quantification, set comprehension, specification
variables, and formulas that refer to past program states. In this paper,
we describe how we handle these constructs in our runtime checker, and
describe directions for future work.

1 Introduction

This paper explores the use of a run-time checker in a program verification
system Jahob [29]. Our program verification system can prove that the speci-
fied program properties hold in all program executions. The system attempts
to prove properties using loop invariant inference algorithms [42], decision pro-
cedures [30], and theorem provers [8]. As in many other static analysis sys-
tems [3, 14] this process has the property that if a correctness proof is found,
then the desired property of the program holds in all executions. However, if a
proof is not found, this could be either because the property does not hold (there
is an error in specification or code), or because the example triggered a limita-
tion of the static verification system (for example, imprecision of loop invariant
inference, or limitation of the theorem proving engines). In contrast, run-time
checking [11–13] compiles specifications into executable code and executes the
specifications while the program is running. Although run-time checking alone
cannot guarantee the absence of errors, it can identify concrete executions when
errors do appear. Run-time checking is therefore complementary to static ver-
ification. Run-time checking is especially useful when developing the code and
specifications, when the specifications and code are likely to contain errors due
to developer’s errors in formalizing the desired properties.



Combining static and run-time checking. Given the complementary nature of
these techniques, recent verification systems for expressive properties such as
Spec# [3] and JML tools [14, 33] include both a static verifier and a run-time
checker that can operated on same annotated source code. However, these sys-
tems use different semantics and apply different restrictions on specifications in
these two cases. The reason is that the limitations of these two checking technolo-
gies are different: some specification constructs are easy to execute but difficult
to check statically (e.g., recursive or looping deterministic code or complex arith-
metic computations), whereas others can be checked statically but are difficult
or impossible to execute (e.g., quantification or comprehensions over unbounded
number of objects, specifications that involve mathematical quantities not rep-
resentable at run time). In practice, however, most properties we encountered
are executable if stated in an appropriate way. Note that the same specification
would be written differently depending on whether it is meant to be executed
or verified statically: compare for example 1) specifications of linked structures
in systems such as Jahob [29], which use treeness annotations, mathematical
sets, relations, and transitive closure operators with 2) manually written Java
methods in systems for constraint solving over imperative predicates [9], which
use deterministic worklist algorithms with loops to check the shape of the data
structure.

Executing declarative specifications. The goal to perform both static and run-
time checking can serve as the guidance in designing the specification language.
We believe that specification languages, even if their goal is to be executable,
should remain declarative in the spirit. In this paper we therefore start with
Jahob’s language, which was designed for static analysis in mind, and explore
techniques necessary to verify Jahob’s specifications at run-time. To assess some
of these techniques we built an interpreter that executes both the abstract syntax
trees of the analyzed program and the specifications in program annotations. The
primary use of the run-time checker is debugging specifications and the program.
In addition to verification, this research can also be viewed as contributing to
the long-standing problem of executing expressive declarative languages.

Contributions. This paper outlines the challenges in executing specification lan-
guage designed for static verification, describes the current state of our run-time
checker for Jahob, and presents future directions. Our checker can execute spec-
ifications that involve quantifiers, set comprehensions, transitive closure, integer
and object expressions, sets, and relations. Unlike the run-time checkers that we
know of, it can evaluate certain expressions that denote infinite sets, as well as
formulas that refer to old values of fields of an unbounded number of objects.
Among the main future directions are the development of techniques for com-
pilation, parallelization, and incremental evaluation of run-time checks, and the
use of constraint solvers for modular run-time checking.



1 class Node { public /∗: claimedby DLL ∗/ Node next, prev; }
2 class DLL {
3 private static Node root;
4 /∗: public static specvar content :: ”obj set”;
5 vardefs ”content == {x. (root,x) ∈ {(u,v). next u = v}ˆ∗ ∧ x 6= null}”;
6 invariant backbone: ”tree[next]”;
7 invariant rootFirst: ”root = null ∨ (∀ n. n..next 6= root)”;
8 invariant noNextOutside: ”∀ x y. x 6= null ∧ y 6= null ∧ x..next = y
9 → y : content”;

10 invariant prevDef: ”∀ x y. prev x = y →
11 (x 6= null ∧ (∃ z. next z = x) → next y = x) ∧
12 (((∀ z. next z 6= x) ∨ x = null) → y = null)”;
13 ∗/
14 public static void addLast(Node n)
15 /∗: requires ”n /∈ content ∧ n 6= null”
16 modifies content
17 ensures ”content = old content ∪ {n}” ∗/
18 {
19 if (root == null) {
20 root = n;
21 n.next = null; n.prev = null;
22 return;
23 }
24 Node r = root;
25 while (r.next != null) {
26 r = r.next;
27 }
28 r .next = n;
29 n.prev = r;
30 }
31 public static void testDriver()
32 /∗: requires ”content = {}” ∗/
33 {
34 Node n1 = new Node();
35 addLast(n1);
36 Node n2 = new Node();
37 addLast(n2);
38 }
39 }

Fig. 1. Doubly-linked list with one operation specified in Jahob



2 Jahob Verification System

Jahob [29] is a program verification system for a subset of Java. The initial
focus of Jahob is data structure verification [8, 29–32, 42, 43] for which a simple
memory-safe imperative subset of Java [29, Section 3.1] is sufficient.

Figure 1 shows a fragment of a doubly-linked list implementation in Jahob,
with the addLast operation that inserts a given node at the end of the list. De-
velopers write Jahob specifications in the source code as special comments that
start with the “:” sign. Developers can therefore compile and run programs using
standard Java interpreters and runtimes. Jahob specifications contain formulas
in higher-order logic (HOL), expressed in the syntax of the Isabelle interactive
theorem prover [35]. The specifications represent a class field f as total function
f mapping all objects to values, with the convention that fnull = null and also
fx = null when x.f is not well-typed in Java. Jahob specifications include dec-
larations and definitions of specification variables (such as content in Figure 1),
data structure invariants (such as backbone, rootFirst, noNextOutside, and pre-
vDef ), and procedure contracts consisting of preconditions (“requires” clauses),
postconditions (“ensures” clauses) and frame conditions (“modifies” clauses).
The contract for addLast specifies that the procedure 1) requires its parameter
n to be outside the list content, 2) modifies the list content, and 3) inserts n into
the list (and does not insert or delete any other elements). Specification variables
such as content are abstract fields defined by the programmer for the purpose
of specification and may contain a definition given after the vardefs keyword,
which specifies an abstraction function. The content variable has the type of a
set of object identities and is given by a set comprehension that first constructs
a binary relation between objects and their next successors, then computes its
transitive closure using the higher-order * operator on relations, and finally uses
it to find all elements reachable from root.

Given the class invariants in Figure 1, Jahob invokes its inference engine
Bohne [42, 43], which succeeds in automatically computing a loop invariant,
proving that the postcondition of addLast holds, and proving that there are no
run-time errors during procedure execution. In this case Bohne uses the MONA
decision procedure for monadic second-order logic of trees [27], but in other
cases it uses resolution-based provers [38], satisfiability-modulo theory provers
[4], new decision procedures [30], or combinations of these approaches. In general,
a successful verification means that the desired property holds, but a failed
verification can also occur either due to an error in program or specification or
due to a limitation of Jahob’s static analysis techniques.

3 Debugging Annotated Code using Run-Time Checking

For a successful verification of such detailed properties as in the example in
Figure 1, the developer must come up with appropriate class invariants. A run-
time checker can help in this process. For example, when we were writing this
example, we initially wrote the following prevDef0 version of prevDef invariant:



1 invariant prevDef0: ”∀ x y. prev x = y → (x 6= null → next y = x)”

This formula is reasonably-looking at first sight. Moreover, modular static verifi-
cation quickly succeeds in proving that if addLast satisfies the invariants initially,
it preserves the invariants and establishes the postconditions. Unfortunately, the
prevDef invariant is false whenever there is a non-null object whose prev field
points to null, so, even if true in the very first initial state, it is not preserved
by allocation operations outside the DLL class.

Executing our run-time checker on the testDriver procedure in Figure 1
immediately detects that the prevDef0 invariant is violated when the execu-
tion enters addLast. As another illustration, suppose that we write a correct
invariant prevDef but we omit in Figure 1 line 29 containing the assignment
n.prev=r. Running the run-time checker on the same testDriver procedure
identifies the invariant violation at the exit of addLast procedure. Compared
to constraint solving techniques that could potentially detect such situation the
advantage of run-time checking is that it directly confirms that a specific pro-
gram fragment violates an invariant, it is applicable to constraints for which no
decision procedures exist, and it can handle code execution with any number of
loop iterations.

4 The Scope of Our Run-Time Checker

Our run-time checker verifies that program states occurring in a given execution
satisfy the desired safety properties. These safety properties refer either to a
specific program state (for example, the program point at which the assertion
is written), or to a relationship between the current program state and a past
state identified by a program point (such as program state at a procedure entry).
As a result, if we assumed that each program state itself is finite, such run-time
checking problem would reduce to the problem of evaluating a formula in a given
finite model. This problem has been studied from the viewpoint of finite model
theory [16, 22] where it was related to computational complexity classes, in re-
lational databases [20, 36, 37] where the database takes place of program state,
in model checking [7, 25], with techniques based on BDDs, and in constraint
solving [23, 41]. While these ideas are relevant for our work, there are several
challenges that arise when considering run-time checking based on our specifi-
cation language: quantification over infinite or large domains, representation of
specification variables that denote infinite sets, and computation of values that
relate to previous program states. Although we cannot hope to support all these
constructs in their most general form, we have identified their uses in the exam-
ples we encountered so far and we describe how we support these uses in our
run-time checker.

5 Quantifiers and Set Comprehensions

Quantifiers and set comprehensions are a great source of expressive power for a
specification language. They are essential for stating that a group of objects in



a data structure satisfies the desired properties, for example, being non-null or
initialized. The advantages of using quantifiers as opposed to using imperative
constructs such as loops to express the desired properties is that quantifiers
enjoy a number of well-understood mathematical properties, which makes them
appropriate for manual and automated proofs. On the other hand, quantifiers
are one of the main sources of difficulty in run-time checking.

Restriction to first-order quantifiers. Jahob’s specifications are written in higher-
order logic, which admits quantification over sets of objects. This allows express-
ing properties like minimum spanning tree or graph isomorphism. Most of our
data structure specification examples, however, we do not encounter higher-order
quantification (even though there are 120 classes that contain first-order quan-
tification). One of the reasons is that higher-order quantification is difficult to
reason about statically, so our examples avoid it. Our run-time checker therefore
currently supports only first-order quantifiers. The quantified variables are either
of integer or of object type. We note that the run-time checker does support some
simple uses of higher-order functions, which it eliminates by beta-reduction.

Bounding integer quantifiers. Integers in Jahob denote unbounded mathematical
integers. We encounter quantification over integers, for example, when reasoning
about indices of arrays. Such quantifiers and set comprehensions are usually
bounded, as in the form ∀x.0 ≤ x∧x < n → . . . or {v.∃i. 0 ≤ i∧i < n∧v = a.[i]}.
We support such examples by syntactically identifying within the quantifier body
the expressions that enforce bounds on integers. We use these bounds to reduce
quantifiers to finite iteration over a range of integers.

Bounding object quantifiers. Our interpreter implicitly assumes that object quan-
tifiers range only over allocated objects. While this is a very natural assumption,
note that this in fact departs from the static analysis semantics of quantifiers in
Jahob as well as systems such as ESC/Java [18] and Spec# [3]. The reason is that
object allocation produces fresh objects with respect to all currently allocated
objects, and the set of allocated objects changes with each allocation. A typical
approach to soundly model allocation is to introduce a set of currently allocated
objects, denoted Object.alloc in Jahob, and keep the domain of interpretation
fixed. A statement such as x = new Node() is then represented by

1 assume x /∈ Object.alloc;
2 Object.alloc := Object.alloc ∪ {x};

The change of the set of allocated objects ensures that allocated objects are fresh,
which is a crucial piece of aliasing information necessary to verify code that uses
linked structures. With this technique, it is possible to use standard verification
condition generation techniques to correctly represent state changes. On the
other hand, in this model all objects that will ever be used exist at all program
points, even before they are allocated. To execute an arbitrary quantification of
objects at run-time, it is necessary to combine run-time evaluation of formula
over allocated objects with symbolic techniques that determine the truth value



for all objects that are not allocated. The last step is possible in many cases
because objects that are not allocated are all isomorphic: they have no incoming
and no outgoing fields.

Propagating variable dependencies in multiple quantified statements. Even bounded
domains, however, may be large, and we would like to avoid considering all ob-
jects in the heap if at all possible. Consider the following formula:

∀x.∀y. x ∈ Object.alloc ∧ y ∈ Object.alloc ∧ nextx = y −→ P (x, y)

In a naive implementation, the run-time checker would iterate over the set of all
allocated objects for both of the universal quantifiers, an O(n2) operation. But
in the above formula, the quantified variable y is introduced for the purposes
of naming and can be easily evaluated without enumerating all elements of the
heap. The runtime checker handles these cases by doing a simple syntactic check
in the body of quantified formula to determine if the bound variable is defined by
an equality. If it finds an appropriate definition, the run-time checker evaluates
the body of the formula without having to enumerate a large number of objects.
For example, when computing a set comprehension over all allocated objects, we
could straightforwardly compute the elements of the set by evaluating the body
of the formula for each element in the domain. But since this is very inefficient,
the runtime checker first searches through the body of the formula to determine
if the bound variable is defined by an equality. This is often the case, for example,
when the set comprehension is expressed in terms of the reachable objects from
some root using reflexive transitive closure. In this case, we can compute the
elements of the set without having to enumerate all objects within the domain.

6 Specification Variables

Specification variables are useful for representing the abstract view of the state
of a class. The developers can use specification variables to specify the behavior
of abstract data types without exposing implementation details. Jahob supports
two types of specification variables: derived specification variables and ghost
variables. These are sometimes referred to as model fields and ghost fields, re-
spectively, as in JML [33].

Ghost variables. A ghost variable is updated by the developer by assigning it
values given by HOL formulas using special specification assignment statements
in the code. Our run-time checker treats ghost variables similarly to ordinary
Java variables. The difference is that, in addition to standard program types
such as booleans, integers, and objects, these variables can also have types of
tuples and sets of elements and tuples.

When a ghost variable is updated, the right-hand side of the assignment
statement consists of a formula that the runtime checker evaluates to produce
the new value of the ghost variable. It then stores the resulting value in the same
way as it would for the assignment of a normal program variable. This formula



is a standard Jahob formula and may contain quantifiers, set comprehensions,
set operations, and other constructs not typically available in Java assignment
statements.

The run-time checker supports certain forms of infinite sets. For example,
the checker can evaluation the following code:

1 //: private ghost specvar X :: ”int set”;
2 int y = 0;
3 //: X := {z. z > 0};
4 //: assert y /∈ X;
5 y = y + 1;
6 //: assert y ∈ X;

where the ghost variable X is assigned the value of an unbounded set. The runtime
checker handles such cases by deferring the evaluation of X until it reaches the
assert statements. It then applies formula simplifications that eliminate the set
comprehension. This is a particular case of a more general approach where some
elements of theorem proving could be applied at run-time [2].

Derived variables. A derived specification variable (such as content in Figure 1)
is given by a formula that defines it in terms of the concrete state of the program.
When the runtime checker evaluates a formula that refers to a standard speci-
fication variable, it evaluates the formula that defines the specification variable
in the context of the current program state.

7 The old Construct

In Jahob, an old expression refers to the value of the enclosed expression as
evaluated on entry to the current procedure and is very useful to express state
changes that procedures perform. One simple but inefficient method of providing
the checker access to past program state would be to snapshot the heap before
each procedure invocation. Unfortunately, this approach is unlikely to be prac-
tical because the memory overhead would be a product of the size of the heap
and the depth of the call stack. Instead, our run-time checker obtains access to
the pre-state by means of a recovery cache (also known as a recursive cache) [21]
that keeps track of the original values of modified heap locations. There are sev-
eral features of this solution. First, it takes advantage of the fact that we need
only know the state of the heap on procedure entry, and not the state of any
intermediate heaps between procedure entry and the assertion or invariant to be
evaluated. Also, where the state of a variable is unchanged, the old value resides
in the heap, so that reads do not incur a performance penalty excepting reads
of old values. Finally, one of the ideas underlying this solution is that we expect
the amount of memory required to keep track of the initial writes to be small
relative to the size of the heap. While there is a trade-off between memory and
performance—there is now a performance penalty for each write—the overhead
is greatest for initial writes, and less for subsequent writes to the same location.



8 Further Related Work

Run-time assertion checking has a long history [13]. Among the closest systems
for run-time checking in the context of static verification system are tools based
on the Java Modeling Language (JML) and the Spec# system [3]. The JML
compiler, jmlc [12] compiles JML-annotated Java programs into bytecode that
also includes instructions for checking JML invariants, pre- and post-conditions,
and assertions. Other assertion tools for JML include Jass [5] and jmle [28]. One
of the goals in the design of JML was to produce a specification language that was
Java-like, to make it easier for software engineers to write JML specifications.
It also makes JML specifications easier to execute. Jahob, on the other hand,
was designed as a static verification system and uses an expressive logic as its
specification language. The advantage of this design is that the semantics of the
specifications is clear, and the verification conditions generated by the system
can easily be traced back to the relevant portions of the specification, which is
very helpful in the proof process. One example of this difference in philosophy
appears in the treatment of old expressions. In JML, an old expression may not
contain a variable that is bound by a quantifier outside of that expression. This
restriction ensures that the body of the old expression can be fully evaluated
at the program point to which the old expression refers, but prevents writing
certain natural specifications such as ∀i.0 ≤ i∧ i < a.length→ a[i] = (old a[i]).

We are not aware of any techniques used to execute such specifications as
in Jahob in the context of programming language run-time checking systems.
Techniques for checking constraints on databases [6, 19, 20, 24, 36, 37] contain
relevant techniques, but use simpler specification specification languages and
are optimized for particular classes of checks.

While run-time assertion checking systems concern themselves with checking
properties of the heap, event-based systems [1,34,40] are concerned with checking
properties of the trace. Quantification is implicit over all events that adhere to
the pattern described by the specification. The matching of an event binds the
free variables in the specification to specific objects in the heap. Since explicit
quantifiers are generally not available in the specification language of event-
based systems, the properties encoded can only refer to a statically-determined
number of objects in the heap for each event instance, though the number of
event instances matched is unbounded.

9 Conclusions and Future Work

We have described a simple run-time checker for a subset of an expressive higher-
order logic assertions in the Jahob verification system. Our run-time checker
can execute specifications that involve quantifiers, set comprehensions, transitive
closure, integer and object expressions, sets, and relations. It can evaluate certain
expressions that denote infinite sets, as well as formulas that refer to old values
of fields of an unbounded number of objects. We have found the run-time checker
useful for debugging specifications and code. The run-time checker is currently



built as an interpreter and in our examples it exhibits slowdown of several orders
of magnitude compared to compiled Java code without run-time checks, and is
meant for debugging and analysis purposes as opposed to the instrumentation
of large programs. Among the main directions for future work are compilation
of run-time checks [10, 15] to enable checking of the assertions that were not
proved statically [17], memoization and incremental evaluation of checks [39], and
combination with a constraint solver to enable modular run-time checking [26].
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5. D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass–Java with
assertions. In RV01, volume 55 of ENTCS, pages 103–117, 2001.

6. P. A. Bernstein and B. T. Blaustein. Fast methods for testing quantified
relational calculus assertions. In Proceedings of the 1982 ACM SIGMOD
international conference on Management of data, pages 39–50. ACM Press, 1982.

7. D. Beyer, A. Noack, and C. Lewerentz. Efficient relational calculation for
software analysis. IEEE Trans. Software Eng., 31(2):137–149, 2005.

8. C. Bouillaguet, V. Kuncak, T. Wies, K. Zee, and M. Rinard. Using first-order
theorem provers in a data structure verification system. In VMCAI’07, November
2007.

9. C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on
Java predicates. In Proc. International Symposium on Software Testing and
Analysis, pages 123–133, July 2002.

10. F. Chen, M. d’Amorim, and G. Rosu. Checking and correcting behaviors of java
programs at runtime with java-mop. Electr. Notes Theor. Comput. Sci.,
144(4):3–20, 2006.
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