
�

�

�

�

�

�

�

�

18

MOHAWK: Abstraction-Refinement and Bound-Estimation
for Verifying Access Control Policies

KARTHICK JAYARAMAN, Microsoft
MAHESH TRIPUNITARA, University of Waterloo
VIJAY GANESH and MARTIN RINARD, MIT
STEVE CHAPIN, Syracuse University

Verifying that access-control systems maintain desired security properties is recognized as an important
problem in security. Enterprise access-control systems have grown to protect tens of thousands of re-
sources, and there is a need for verification to scale commensurately. We present techniques for abstraction-
refinement and bound-estimation for bounded model checkers to automatically find errors in Administrative
Role-Based Access Control (ARBAC) security policies. ARBAC is the first and most comprehensive admin-
istrative scheme for Role-Based Access Control (RBAC) systems. In the abstraction-refinement portion of
our approach, we identify and discard roles that are unlikely to be relevant to the verification question (the
abstraction step). We then restore such abstracted roles incrementally (the refinement steps). In the bound-
estimation portion of our approach, we lower the estimate of the diameter of the reachability graph from the
worst-case by recognizing relationships between roles and state-change rules. Our techniques complement
one another, and are used with conventional bounded model checking. Our approach is sound and complete:
an error is found if and only if it exists. We have implemented our technique in an access-control policy anal-
ysis tool called MOHAWK. We show empirically that MOHAWK scales well to realistic policies, and provide a
comparison with prior tools.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; D.4.6
[Operating System]: Security and Protection; K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms: Algorithms, Security, Verification

ACM Reference Format:
Jayaraman, K., Tripunitara, M., Ganesh, V., Rinard, M., and Chapin, S. 2013. MOHAWK: Abstraction-
refinement and bound-estimation for verifying access control policies. ACM Trans. Inf. Syst. Secur. 15, 4,
Article 18 (April 2013), 28 pages.
DOI:http://dx.doi.org/10.1145/2445566.2445570

1. INTRODUCTION

We present a technique and a tool for verifying access-control policies. Specifying and
managing access-control policies is a problem of critical importance in system security.
Researchers have proposed access-control frameworks (e.g., Administrative Role Based
Access Control — ARBAC [Sandhu et al. 1999]) that have considerable expressive

A preliminary version of this article appears in Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS’11) [Jayaraman et al. 2011].
Authors’ addresses: K. Jayaraman, Microsoft, Windows Azure, Microsoft, Redmond, WA; email:
karjay@microsoft.com; M. Tripunitara, University of Waterloo, 200 University Ave., W, Waterloo, ON N2L
3G1, Canada; email: tripunit@uwaterloo.ca; V. Ganesh and M. Rinard, Massachusetts Institute of Tech-
nology, 77 Massachusetts Ave., Cambridge, MA 02139; email: {vagnesh, rinard}@csail.mit.edu; S. Chapin,
Syracuse University, 900 South Crouse Ave., Syracuse, NY 13244; email: chapin@syr.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1094-9224/2013/04-ART18 $15.00
DOI:http://dx.doi.org/10.1145/2445566.2445570

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:2 K. Jayaraman et al.

power, and can be used to specify complex policies. However, we do not have adequate
tools for analyzing such complex policies. Without tools for analyzing these policies,
administrators cannot determine the correctness of policies. As a consequence, several
of these sophisticated frameworks are not deployed in practice.

An access-control policy contains an error if it allows an unauthorized user access
to a resource. This is considered an error because a security property that an enter-
prise wants to (or even is legally required to) maintain, such as separation of privilege
[Saltzer and Schroeder 1975], may be violated by the user’s access to the resource. In
RBAC, for example, if a user is already a member of a sensitive role, we may want
to ensure that there exists no reachable state in which he is authorized to another
sensitive role.

Administrators require efficient tools for identifying such errors in policies prior to
deployment. Access-control policies for large systems feature several sources of com-
plexity that make it difficult to find errors in them. An access-control policy is essen-
tially a state machine that accepts valid requests. Depending on the framework, the
policy may comprise states only or comprise both states and state changes. The nature
of the states and state changes are sources of complexity (We explain the sources of
complexity in Section 4.) We need tools that are effective irrespective of the complexity
of the access-control policies.

Automated analysis and verification of access-control policies is both an area of
active research [Ferrara et al. 2012; Fisler et al. 2005; Gofman et al. 2009; Harrison
et al. 1975; Hu and Ahn 2008; Hu et al. 2008; Hughes and Bultan 2008; Jha et al.
2008; Kolovski et al. 2007; Li and Tripunitara 2006; Li et al. 2005; Sasturkar et al.
2011; Sohr et al. 2008; Stoller et al. 2007; Zhang et al. 2008; Zhao et al. 2005] and
practical interest [Aveksa 2012; SailPoint 2012]. Model checking [Clarke et al. 1999]
has emerged as a promising, automated approach to the verification problem [Gofman
et al. 2009; Jha et al. 2008; Stoller et al. 2007]. In this approach, a model checker
takes as input an access-control policy and a security property, and declares whether
or not the policy adheres to the input security property. The idea is similar to verifying
computer programs; the access-control policy is analogous to a computer program, and
the security property is analogous to a program property. Ideally, the model checker
checks whether the property always holds for all possible authorizations that the
policy allows. However, the model-checking problem for the class of access-control
policies that we consider is intractable in general (PSPACE-complete [Jha et al.
2008; Sasturkar et al. 2011]), and scalability for practical verification tools remains a
significant issue despite considerable progress (see Section 5).

We present a new abstraction refinement [Clarke et al. 2003] approach for analyzing
complex security policies. Abstraction refinement is a paradigm for efficiently verify-
ing a property on a system’s abstraction that is iteratively constructed to contain only
the relevant parts; the techniques vary depending on the specific system and property
[Ball and Rajamani 2002; Clarke et al. 2003; Ganesh and Dill 2007]. The use of a so-
phisticated abstraction-refinement algorithm makes our technique more efficient than
previous approaches for several classes of problem instances. In realistic policies, our
algorithm is often able to abstract most of the access-control policy while preserving
the presence of any errors. This abstraction enables the underlying bounded model
checker to find the error in much less time.

The insight behind the abstraction we use is that the dependency graph of the roles
for many real-world access-control policies often contains many tightly knit sets of
roles that are loosely-connected to other tightly knit sets of roles. This structure re-
flects the organization of large institutions (such as corporations, hospitals, and uni-
versities) as a conglomeration of loosely coupled tightly knit departments or groups.
Abstracting the policy produces a much smaller policy because it eliminates a large

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies 18:3

number of loosely coupled roles that do not directly interact with the target set of
tightly coupled roles. If some of the loosely coupled roles are indirectly involved in the
error, the refinement step will incrementally add them back to the abstraction, en-
abling the analysis to find the error. Our results show that even when these roles are
required to find the error, the analysis can usually find the error after applying a few
refinement steps.

Complementarily, we present a new bound-estimation technique for ARBAC policies.
In this portion of our approach, we begin with an upper-bound for the diameter of the
state-reachability graph within which an error, if it exists, is guaranteed to lie. We
then decrease this upper-bound while ensuring that it remains an upper-bound for
the diameter. In practice, we expect our bound-estimation technique to significantly
decrease the upper-bound, which, in the worst-case can be super-polynomial in the
size of the input (assuming P �= PSPACE).

We have implemented these techniques in the MOHAWK access-control policy anal-
ysis tool [Jayaramam 2012]. MOHAWK accepts as input an access-control policy and a
safety query.1 If MOHAWK finds an error in the input policy, it terminates and produces
as output a sequence of actions that cause the error. We show that MOHAWK scales well
as the complexity of the input policies increases. The MOHAWK tool is available as open
source [Jayaramam 2012].

Contributions

We make the following contributions in this article.

(1) We describe an abstraction-refinement-based approach for verifying access-control
policies (specifically, ARBAC policies). The resulting technique, implemented on
top of a bounded model checker, scales well as the size and complexity of the
input policies increase. Our technique effectively tackles the sources of complexity
(Section 4) in large, complex, real-world policies. Our technique can also be used for
verification in frameworks other than ARBAC as the sources of complexity that we
identify in Section 4 are not unique to ARBAC. They exist in other access-control
schemes as well, such as administrative scope [Crampton and Loizou 2003] and
even the original access matrix scheme due to Harrison et al. [1975].

(2) We describe a method for bound-estimation; computing an approximation of the
diameter for an ARBAC policy within which any error is guaranteed to lie. We pro-
vide this estimate to a bounded model checker. A bounded model checker searches
for counter examples for a property φ with a bounded length k. If k is set to at least
the diameter of the ARBAC policy and the bounded model checker does not find
any counterexamples, then no counterexamples exist for the specified property φ
[Clarke et al. 2005; Kroening 2006]. MOHAWK, when used in the bounded model
checking mode, estimates the diameter and uses that as the bound for k.

(3) An implementation of our technique. MOHAWK accepts as input an access-control
policy and a safety question, and outputs whether or not it found an error. Fol-
lowing similar techniques from software verification, our technique constructs an
approximation (and successive refinements, if necessary) of the input policy, and
checks for errors. It terminates when an error has been found or the underlying
bounded model checker has reached a predetermined bound.

1A safety query is a pair 〈u, r〉 where u is a user and r is a role – see Section 2.2. Our implementation takes
as input a slightly more general query of the form 〈u, s〉, where s is a set of roles. The instance is deemed
to be unsafe if and only if there is a reachable state in which u is a member of all roles in s. We have
adopted the 〈u, s〉 form for queries in our implementation as some prior tools accept such queries. There is a
straightforward linear-time reduction from the problem with a query of the form 〈u, s〉 to the problem with
a query of the form 〈u, r〉. Therefore, in this article, we discuss 〈u, r〉 queries only.

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:4 K. Jayaraman et al.

(4) We provide a detailed experimental comparison of MOHAWK against NuSMV
[NuSMV 2012], a well-known model checking and bounded model checking tool,
and RBAC-PAT [Gofman et al. 2009; Stoller et al. 2007], a tool specifically designed
for analyzing ARBAC policies. In comparison to the existing approaches, MOHAWK
scales well with the size and complexity of several classes of input policies.
Our experimental evaluation uses a benchmark that includes a realistic case study
for banking (Section 5.1). The case study has helped us understand the aspects
of the ARBAC policy language that are likely to be used in creating real-world
policies. In particular, we have discovered that the sources of complexity in ARBAC
policies that we discuss in Section 4 can arise in realistic settings. Our benchmark
is also publicly available along with the tool [Jayaramam 2012].

Organization. The remainder of our article is organized as follows. In Section 2, we
discuss access-control models and schemes. In Section 3, we describe the architecture
of MOHAWK, and how it performs abstraction-refinement and bound-estimation. In
Section 4, we describe the sources of complexity and how MOHAWK deals with them. In
Section 5, we present empirical results that demonstrate the efficacy of our approach.
We discuss related work in Section 6 and conclude with Section 7.

2. PRELIMINARIES

In this section, we provide basic definitions and concepts relating to access-control poli-
cies, in particular the ARBAC framework. We also introduce the verification problem
for access-control systems.

An access-control policy is a state-change system, 〈γ , ψ〉, where γ ∈ � is the start or
current state, and ψ ∈ � is a state-change rule. The pair 〈�, �〉 is an access control
model or framework. The state, γ , specifies the resources to which a principal has
a particular kind of access. For example, γ may specify that the principal Alice is
allowed to read a particular file. Several different specifications have been proposed
for the syntax for a state. Two well-known ones are the access matrix [Graham and
Denning 1972; Harrison et al. 1975] and Role-Based Access Control (RBAC) [Ferraiolo
et al. 2003; Sandhu et al. 1996]. In this article, we focus on the latter to make our
contributions concrete.

In RBAC, users are not assigned permissions directly, but via a role. Users are as-
signed to roles, as are permissions, and a user gains those permissions that are as-
signed to the same roles to which he is assigned. Consequently, given the set U of
users, P of permissions and R of roles, a state γ in RBAC is a pair

〈
UA, PA

〉
where

UA ⊆ U × R is the user-role assignment relation, and PA ⊆ P × R is the permission-
role assignment relation.

RBAC also allows for roles to be related to one another in a partial order called a
role hierarchy. However, as we point out in Section 2.2 under “The role hierarchy,” in
the context of this article, we can reduce the verification problems of interest to us to
those for which the RBAC state has no role hierarchy. Figure 1 contains a example of
an RBAC state for a hypothetical company with 7 roles and 2 users, namely Alice and
Bob. Alice is assigned to the Admin role. Bob is assigned to the Acct and Audit roles.
For the sake of illustration, we have only a limited number of roles in the example. We
explain how to interpret the state-change rules in the next section.

2.1. ARBAC

The need for a state-change rule, ψ , arises from a tension between security and scal-
ability in access control systems. Realistic access control systems may comprise tens
of thousands of users and resources. Allowing only a few trusted administrators to
handle changes to the state (e.g., remove read access from Alice) does not scale. A

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies 18:5

RBAC STATE

Roles {BudgetCommitee, Finance, Acct, Audit,
TechSupport, IT, Admin}

Users {Alice, Bob}
UA {〈Bob, Acct〉, 〈Bob, Audit〉, 〈Alice, Admin〉}

STATE-CHANGE RULES

can assign {〈Admin, Finance, BudgetCommittee〉,
〈Admin, Acct ∧ ¬Audit, Finance〉,
〈Admin, TRUE, Acct〉, 〈Admin, TRUE, Audit〉
〈Admin, TechSupport, IT〉,
〈Admin, TRUE, TechSupport〉}

can revoke {〈Admin, Acct〉, 〈Admin, Audit〉,
〈Admin, TechSupport〉}

Fig. 1. State and state-change rules for an ARBAC policy.

state-change rule allows for the delegation of some state changes to users that may
not be fully trusted.

ARBAC [Sandhu et al. 1999] and administrative scope [Crampton and Loizou 2003]
are examples of such schemes for RBAC. To our knowledge, ARBAC is the first and
most comprehensive state-change scheme to have been proposed for RBAC. This is one
of the reasons that research on policy verification in RBAC [Gofman et al. 2009; Li and
Tripunitara 2006; Stoller et al. 2007], including this article, focuses on ARBAC.

An ARBAC specification comprises three components, URA, PRA, and RRA. URA is
the administrative component for the user-role assignment relation, UA, PRA is the
administrative component for the permission-role assignment relation, PA, and RRA
is the administrative component for the role hierarchy.

Of these, URA is of most practical interest from the standpoint of verification.
The reason is that in practice, user-role relationships are the most volatile [Kern
2002]. Permission-role relationships change less frequently, and role-role relationships
change rarely. Furthermore, as role-role relationships are particularly sensitive to the
security of an organization, we can assume that only trusted administrators are al-
lowed to make such changes.

PRA is syntactically identical to URA except that the rules apply to permissions and
not users. Consequently, all our results in this paper for URA apply to PRA as well. We
do not consider analysis problems that relate to changes in role-role relationships for
the reasons we cited above. In the remainder of this article, when we refer to ARBAC,
we mean the URA component that is used to manage user-role relationships.

URA. A URA specification comprises two relations, can assign and can revoke. The
relation can assign is used to specify under what conditions a user may be assigned to
a role, and can revoke is used to specify the roles from which users’ memberships may
be revoked. We call a member of can assign or can revoke a rule.

A rule in can assign is of the form 〈ra, c, rt〉, where ra is an administrative role, c
is a precondition and rt is the target role. An administrative role is a special kind of
role associated with users that may administer (make changes to) the RBAC policy.
The first component of a can assign rule identifies the particular administrative role
whose users may employ that rule as a state change.

A precondition is a propositional logic formula of roles in which the only operators
are negations and conjunctions. Figure 1 contains the can assign and can revoke rules

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:6 K. Jayaraman et al.

for our example RBAC state. An example of c is Acct ∧¬Audit in the can assign rule
that has Finance as the target role. For an administrator, Alice, to exercise the rule
to assign a user Bob to Finance, Alice must be a member of Admin, Bob must be a
member of Acct and must not be a member of Audit.

A can revoke rule is of the form 〈ra, rt〉. The existence of such a rule indicates that
users may be revoked from the role rt by an administrator that is a member of ra.
For example, roles Acct, Audit, and TechSupport can be revoked from a user by the
administrator Alice.

We point out that so long as ra has at least one user, the rule can potentially fire as
a state change. If ra has no users, we remove the corresponding can assign rule from
the system as it has no effect on verification. One of the consequences of this relates
to what has been called the separate administration restriction. We discuss this in
Section 2.2.

We have omitted some other details that are in the original specification for URA
[Sandhu et al. 1999] because those details are inconsequential to the verification prob-
lem we address in this paper. For example, the original specification allows for the
target role to be specified as a set or range of roles. We assume that it is a single role,
rt. A rule that has a set or range as its component for the target role can be rewritten as
a rule for every role in that set or range. We know that roles in a range do not change,
as we assume that changes to roles may be effected only by trusted administrators.
Policy verification is not used for such changes.

2.2. The Verification Problem

The verification problem in the context of access-control policies arises because state
changes may be effected by users that are not fully trusted, but an organization still
wants to ensure that desirable security properties are met. The reason such problems
can be challenging is that state-change rules are specified procedurally, but security
properties of interest (e.g., Alice should never be able to read a particular file) are
declarative [Jones et al. 1976].

A basic verification problem is safety analysis. In the context of RBAC and ARBAC,
a basic safety question is: can a user u become a member of a role r? We call such a
situation (in which the safety question is true), an error.

There are two reasons that the basic safety question such as the one from above has
received considerable attention in the literature [Jha et al. 2008; Li and Tripunitara
2006; Sasturkar et al. 2011; Stoller et al. 2007]. One is that it is natural in its own
right. The reason for asking such a question is that u should not be authorized to r. If
the analysis reveals that he may be, by some sequence of state changes, then we know
that there is a problem with the security policy. Another reason is that several other
questions of interest, such as those related to separation of privilege, can be reduced
efficiently to the basic safety question. This observation has been made before [Jha
et al. 2008; Stoller et al. 2007]. Consequently, even though MOHAWK’s input interface
supports problem instances that ask whether a user can be a member of a set of roles,
in this article, we assume that an instance pertains to a user u and a role r only.

An instance of a verification problem, in the context of this article, specifies an AR-
BAC access control system, a user, and a role. It is of the form 〈γ , ψ , u, r〉. We ask
whether u may become a member of r given the initial state γ = 〈

U, R, UA
〉
, and state-

change rule ψ = 〈
can assign, can revoke

〉
.

The Separate Administration Restriction. In the context of the verification problem,
the separate administration restriction excludes administrative roles from the veri-
fication problem instance, that is, administrative roles are not administered by the
same rules as “regular” roles. We adopt the separate administration restriction in this

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies 18:7

Fig. 2. MOHAWK architecture.

paper. Some previous work [Stoller et al. 2007] has considered subcases of when this
restriction is lifted. We do not consider those subcases in this article. We adopt the
restriction because the original specification on ARBAC [Sandhu et al. 1999] adopts
this restriction. Moreover, the separate administration restriction does not affect the
complexity of the verification problem [Sasturkar et al. 2011].

The Role Hierarchy. We assume that an RBAC state has no role hierarchy. The rea-
son is that there is a straightforward, efficient reduction that has been presented in
prior work from an verification instance that has a role hierarchy to a verification
instance with no role hierarchy [Sasturkar et al. 2006, 2011].

3. ARCHITECTURE OF MOHAWK

In this section, we describe MOHAWK’s architecture (Sections 3.1–3.2), and illustrate
our approach using an example (Section 3.1.5). Figure 2 illustrates the architecture of
MOHAWK. MOHAWK accepts an ARBAC Policy 〈U, R, UA, can assign, can revoke〉 and
a safety query 〈u, r〉 as input. MOHAWK reports an error if it finds one. Otherwise,
MOHAWK terminates and reports that it could not find any errors. In the following two
sections, we discuss the various components of MOHAWK that are shown in Figure 2.

3.1. Abstraction Refinement in Mohawk

The general idea in an abstraction-refinement [Clarke et al. 2003] technique is to first
abstract (over or under approximate) a system and check if a desired property holds in
the abstraction, and iteratively refine as necessary. If the abstraction is an overapprox-
imation, that is, the abstraction has more behaviors compared to its original, then the
refinements restrict the abstraction’s behavior on each iteration, so that it has fewer
behaviors, until in the limit the abstraction equals the original. If the abstraction is
an under approximation, that is, the abstraction has fewer behaviors compared to its
original, then the refinements relax the abstraction’s behavior on each iteration, so

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:8 K. Jayaraman et al.

that it has more behaviors, until in the limit the abstraction equals the original. Both
techniques keep the errors one sided. In the case of overapproximation, correctness of
the abstraction corresponds with the original. In the case of underapproximation, an
error detected in the abstraction corresponds with the original.

MOHAWK uses an under approximation strategy [Clarke et al. 2003]. Therefore, any
error detected in an abstract policy exists in the original policy. In the following, we
refer to the role in the safety query as the query role. MOHAWK works on the input as
follows.

— Input Transformation (Section 3.1.1). MOHAWK transforms the policy and safety
query into an intermediate representation (IR). The IR maintains a priority queue
of roles based on how they are related to the query role, and uses this stratification
to incrementally add roles, can assign, and can revoke rules in the refinement steps
as necessary.

— Abstraction Step (Section 3.1.2). MOHAWK performs an initial abstraction step to
produce an abstract policy.

— Verification (Section 3.1.3). In this step, MOHAWK invokes the underlying NuSMV
model checker on the finite-state machine representation of the current abstract
policy. MOHAWK can be configured to choose either the symbolic model checker
or the bounded model checker. When used in the bounded model-checking mode,
MOHAWK additionally calculates an overapproximation of diameter of the policy
and uses that as the bound.
If a counter-example is produced by NuSMV, MOHAWK terminates and reports the
error found. For MOHAWK, the counter-example reported corresponds to an error
in the policy and is essentially a sequence of actions that enable the unauthorized
user referred in the safety query to reach the query role.

— Refinement Step (Section 3.1.4). If no counter example is found in the previous
step, MOHAWK refines the abstract policy. If no further refinements are possible,
MOHAWK terminates and reports that it could not find any errors. MOHAWK may
execute the verify-refine loop multiple times, until either MOHAWK identifies an
error or no further refinements are possible.

Configurability of Abstraction-Refinement. MOHAWK’s abstraction-refinement strat-
egy is configurable. In abstraction-refinement techniques, there is an interplay
between three factors, namely aggressiveness of the abstraction step, verification effi-
ciency, and number of refinement steps. Aggressive abstraction-refinement makes the
verification efficient at the cost of increasing the number of refinements. A less ag-
gressive abstraction-refinement may reduce the number of refinements at the cost of
making the verification harder. A key aspect of our approach is that, MOHAWK en-
ables the user to control the aggressiveness of the abstraction and refinement steps. A
configurable parameter a determines the number of queues of roles from the priority
queues that are added to the abstract policy at each refinement step. The default value
for a is one (the most aggressive setting for a).

3.1.1. Input Transformation. Figure 3 illustrates how a policy is specified in MOHAWK’s
input language. The “Roles”, “Users”, “UA”, “CA”, and “CR” keywords identify the lists
of roles, users, user-role assignments, can assign rules, and can revoke rules respec-
tively. The “ADMIN” key word identifies the list of admin users. In the example, Alice
is the admin user and is assigned to Admin, which is the administrative role assumed
in all the can assign and can revoke rules. The SPEC keyword identifies the safety
query. In the example, the safety query is asking whether user Bob can be assigned to
BudgetCommittee. In the intended policy, Bob cannot be assigned to BudgetCommit-
tee. However, he can be assigned to the role in the policy specified in Figure 3 because

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies 18:9

Roles BudgetCommitee Finance Acct Audit
TechSupport IT Admin;

Users Alice Bob;

UA <Alice, Admin> <Bob, Acct> <Bob, Audit>;

CR <Admin, Acct> <Admin, Audit>
<Admin, TechSupport>;

CA <Admin, Finance, BudgetCommittee>
<Admin, Acct&Audit, Finance> <Admin, TRUE, Acct>
<Admin, TRUE, Audit> <Admin, TechSupport, IT>
<Admin, True, TechSupport>;

ADMIN Alice;

SPEC Bob BudgetCommittee;

Fig. 3. An ARBAC policy in the MOHAWK’s input
language.

Fig. 4. Related-by-assignment (RBA) relationship
between roles with respect to BudgetCommittee.

of the error we introduced in the can assign rule. In Section 3.1.5, we show how MO-
HAWK identifies the error.

MOHAWK transforms the policy in the input into an intermediate representation,
which enables efficient querying of the policy to facilitate the abstraction and refine-
ment steps.

Related-by-Assignment. A role r1 is said to be Related-by-Assignment to a role r2,
if r2 = r1 or r2 appears in the precondition of at least one of the can assign rules
that have r1 as their target role. Related-by-Assignment does not distinguish between
positive and negative preconditions. The Related-by-Assignment relationship describes
whether a user’s membership to one role can affect the membership to another role.
The Related-by-Assignment relationship between roles can be represented using a tree
as shown in Figure 4, in which all nodes correspond to roles and a role r2 appears
as a child node of role r1, if and only if r2 �= r1 and r2 is Related-by-Assignment
to r1.

MOHAWK identifies all the roles Related-by-Assignment to the query role by per-
forming a breadth-first search of the associated can assign rules. The algorithm first
assigns the highest priority to the query role and adds it to a work queue. While the
work queue is not empty, the algorithm picks the next role in the work queue, and
considers the can assign rules that have the role being analyzed as their target role.
All the roles in the preconditions in the can assign rules are added to the work queue,
and also added to the priority queue at the next lower priority compared to the role
being analyzed. At the end of the analysis, we have a priority queue, in which all the
roles Related-by-Assignment to the query role are inserted in the queues based on their
priorities. Roles that directly affect the membership to the query role have the highest
priority, while roles affecting the membership to roles that are Related-by-Assignment
to the query role have a lesser priority.

3.1.2. Abstraction Step. In the initial abstraction step, MOHAWK constructs an abstract
policy 〈U′, R′, UA′, can assign′, can revoke′〉, where

— U′ contains the user in the safety query and admin users;
— R′ contains the administrative roles, and roles from the first a queues in the priority

queue;
— UA′ = {(u, r) | (u, r) ∈ UA ∧ u ∈ U′ ∧ r ∈ R′};

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:10 K. Jayaraman et al.

— can assign′ contains only can assign rules in the input policy whose precondition
roles and target roles are members of R′;

— can revoke′ contains only can revoke rules from the input policy whose target roles
are members of R′.

3.1.3. Verification. In each verification step, MOHAWK translates the current abstract
policy to a finite-state-machine specification in the SMV language and the safety query
to a LTL (Linear Temporal Logic) formula. If MOHAWK is used in the bounded model
checking mode, then MOHAWK also calculates an overapproximation of the diameter
for the abstract policy and uses that as the bound. Following that, MOHAWK feeds
these as input to the underlying model checker. If the model checker identifies a state
in which the user is assigned to the role, then it provides a counterexample. The
counterexample corresponds to a sequence of assignment and revocation actions from
initial authorization state that will result in the user being assigned to the role. On
identifying a counterexample, MOHAWK reports the error and terminates. Otherwise,
MOHAWK refines the abstract policy in the refinement step.

Any counterexample that MOHAWK identifies in an abstract policy also exists in the
original policy. Recall that MOHAWK uses an under approximation strategy. Therefore,
each abstract policy permits only a subset of the administrative action sequences
accepted in the full policy; each administrative action in the counterexample corre-
sponds to either a can assign or can revoke rule that exists in both the abstract and
original policies. Therefore, the counterexample is true in the original policy also.

3.1.4. Refinement Step. An abstract policy verified in the previous step is refined as
follows. (We use “←” to represent instantiation.)

— R′ ← R′ ∪ R′′, where R′′ is the set of roles from the next a queues from the priority
queue.

— UA′ ← UA′ ∪ UA′′, where UA′′ is the user’s membership for the roles in R′′, if there
are any.

— can assign′ ← can assign′ ∪ can assign′′, where can assign′′ is the additional set
of can assign rules from the input policy whose preconditions and target roles are
members of the updated R′.

— can revoke′ ← can revoke′ ∪ can revoke′′, where can revoke′′ is the additional set of
can revoke rules from the input policy whose target roles are members of R′′.

If no additional refinements are possible, MOHAWK reports that no error was found.

3.1.5. Example. To illustrate MOHAWK’s operations, we introduce an error in the pol-
icy of our running example in Figure 1. In the can assign rule with target role Finance,
we change c from Acct∧¬Audit to Acct∧Audit. The intent of the original policy is to as-
sign the role Finance only to users who are in the Acct role and not in the Audit role.
The error we introduced in the example by changing the can assign rule will enable
users who are in both Acct and Audit roles to be assigned to Finance. Figure 3 contains
the erroneous policy in MOHAWK’s input language.

Table I contains the abstraction-refinement steps for the example policy in Figure 3.
Figure 4 contains the tree for the roles Related-by-Assignment with respect to the Bud-
getCommittee, which is the query role. In the priority queue, BudgetCommittee has
priority 0, Finance has priority 1, and finally Acct and Audit have priority 2 (lower
numbers indicate better priorities).

In the abstraction step, MOHAWK adds the users Alice and Bob, and roles Budget-
Committee and Admin. Bob is the user in the query, and Alice is the admin user. Bud-
getCommittee is the role from the queue with priority 0 and Admin is the admin role.
The UA membership, (Alice, Admin), is added to the abstract policy. No can assign or

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies18:11

Table I. Illustrating Abstraction-Refinement Steps for the Running Example in Figure 3

Steps Users Roles UA can assign can revoke Bound
Abstraction
step

Alice,
Bob

BudgetCommittee,
Admin

(Alice, Admin) 2

Refinement 1 Alice,
Bob

BudgetCommittee,
Admin, Finance

(Alice, Admin) 〈Admin, Finance,
BudgetCommittee, 〉

3

Refinement 2 Alice,
Bob

BudgetCommittee, (Alice, Admin) 〈Admin, Finance,
BudgetCommittee〉

〈Admin, Acct〉 5

Admin, Finance, (Bob, Acct) 〈Admin, Acct∧Audit,
Finance〉

〈Admin, Audit〉 Error found!

Acct, Audit (Bob, Audit) 〈Admin, TRUE, Acct〉
〈Admin, TRUE, Audit〉

can revoke rules are added because all of them require roles not added to the abstract
policy. NuSMV does not identify a counterexample for the abstract policy. Therefore,
MOHAWK refines the policy.

In the first refinement step, MOHAWK adds Finance from the queue with priority 1.
There are no changes to the users, UA, and can revoke. The can assign rule 〈Admin,
Finance, BudgetCommittee〉 is added to the abstract policy. NuSMV still does not iden-
tify a counterexample. Therefore, MOHAWK further refines the abstract policy.

In the second refinement step, MOHAWK adds roles Audit and Acct, 2 UA member-
ships for Bob, 3 can assign rules, and 2 can revoke rules. Bob’s membership to roles
Acct and Audit are added to the abstract policy. The three additional can assign rules
added are 〈Admin, Acct∧Audit, Finance〉, 〈Admin, TRUE, Audit〉, and 〈Admin, TRUE,
Acct〉. The additional can revoke rules added are 〈Admin, Acct〉 and 〈Admin, Audit〉.
NuSMV identifies a counterexample that has the following sequence of administrative
actions.

(1) Alice Assigns Bob to Finance. This action is allowed because of the can assign rule
〈Admin, Acct∧Audit, Finance〉.

(2) Alice Assigns Bob to BudgetCommittee. This action is allowed because of the
can assign rule 〈Admin, Finance, BudgetCommittee〉.

As a result of seeing this counterexample, the administrator can fix the erroneous
can assign rule to enforce the correct policy.

As we have illustrated in the example, the abstract policy verified in each step is
more constrained compared to the original policy. For example, the initial abstract
policy does not allow any assignment and revocation actions. The subsequent two re-
finement steps add additional roles, can assign, and can revoke rules from the original
policy. In effect, the abstraction step aggressively constrains the policy and the subse-
quent refinement steps relax the constraints to make the policy more precise compared
to the earlier step, illustrating our under-approximation strategy.

3.1.6. Correctness of Abstraction-Refinement. The correctness of our approach to
abstraction-refinement in MOHAWK is based on the following property.

LEMMA 3.1. Let
〈
U, R, UA, can assign, can revoke

〉
be an input instance to MO-

HAWK. The instance is unsafe for a particular 〈u, r〉 if and only if there exist R′ ⊆ R,
UA′ ⊆ UA, can assign′ ⊆ can assign and can revoke′ ⊆ can revoke such that the in-
stance

〈
U, R′, UA′, can assign′, can revoke′〉 is unsafe for 〈u, r〉.

The intuition behind the lemma is that adding roles, user-role assignments,
can assign or can revoke rules can only add paths to the state-change graph; paths
cannot be removed by adding entries to those sets. Consequently, if an intermediate

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:12 K. Jayaraman et al.

instance generated by our abstraction-refinement is unsafe, then so is the input
instance. Similarly, no intermediate instance generated by our abstraction-refinement
is unsafe when the full instance is safe. Therefore, if the underlying model checker
is correct, then so is model checking augmented with our approach to abstraction-
refinement.

3.2. Bound Estimation in Mohawk

The diameter of a state-change system is the longest shortest path between any two
reachable states. Let S be the set of all states and let s0 ∈ S be the start-state. Let δs be
the shortest distance (number of state-changes) from s0 to s ∈ S. If s is not reachable
from s0, then δs = 0. Then,

diameter = max
s∈S

{δs}.

A consequence of estimating the diameter is that we can provide it as input to a model
checker as an upper-bound on the number of state-changes it has to consider. Given a
state-change system M, property φ, and a bound k, a bounded model checker verifies
φ by constructing a Boolean formula that is satisfiable if and only if M contains a
state, in which ¬φ is true, and is reachable within k transitions [Clarke et al. 2001]. A
bounded model checker verifies the satisfiability of this formula by using a SAT solver.

In model-checking parlance, the state in which ¬φ is true is called the error state,
and a sequence of state transitions from the initial state to an error state of the input
finite-state machine is called a counterexample. If no counterexample of length k is
found, then the bounded model checker increases k. The bounded model checker con-
tinues this process until either a counterexample is found, or it exhausts its resources.
If k is set to the diameter of M and no counterexample is found, then it implies that no
such counterexample exists.

THEOREM 3.2. The diameter of an ARBAC safety instance in which the set of roles
is R is ≤ 2|R|−1 + 1.

The intuition behind this theorem is the following. Let R be the set of roles in the in-
stance, and 〈u, r〉 be the safety query. Then, we need at most one state-change that per-
tains to r; one in which we assign u to r. This accounts for the “+1” in the upper-bound
for d in Theorem 3.2. For the remainder of the roles, consider the role assignments of u
as a bit-vector; that is, each component of the vector is a bit that represents whether u
is a member of a particular role. Given any simple path in the state-change graph, each
state corresponds to a different value of this bit-vector. Therefore, the longest possible
simple path has 2|R|−1 state-changes.

Whether the upper-bound in Theorem 3.2 is tight is related to foundational open
questions in computing. The upper-bound accounts for the possibility that PSPACE =
EXPTIME. If PSPACE �= EXPTIME, an open question but widely believed to be true,
then the bound is not tight. We can, however, assert that there is a tight upper-bound
for d that is superpolynomial in the size of the ARBAC instance if P �= PSPACE,
another open question that is widely believed to be true.

In practice, the diameter tends to be much smaller than what is suggested by
Theorem 3.2. This is because, the can assign and can revoke rules in an ARBAC policy
significantly constrain the number of reachable states and the paths between them.
For example, let us consider the ARBAC policy in Figure 1. The policy contains 7 roles,
and so the upper-bound for the diameter from Theorem 3.2 is 65. However, the actual
diameter is 4. In this case, the path between the state wherein a user is assigned to
the role “Audit” and the state wherein a user is assigned to roles “BudgetCommittee”,
“Finance”, and “Acct” is the longest amongst all shortest paths. In this path, the

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies18:13

administrator should first revoke the user from “Audit”, then assign the user to the
roles “Acct”, “Finance”, and “BudgetCommittee” in order.

In the following, we describe several “tightenings” for calculating a tighter upper-
bound for the diameter of the ARBAC policy based on the nature of the can revoke
and can assign rule. Tightening 1 is applied first; then the order of the other tight-
enings does not matter. MOHAWK uses these tightenings for computing the diameter
when used in bounded model-checking mode. Our empirical results (see Section 5)
demonstrate that these are highly effective. Our general strategy is to trade-off ad-
ditive terms for exponential terms in the upper-bound in Theorem 3.2. We maintain
the invariant that the tightened instance is safe if and only if the original instance
is safe. We first discuss static pruning of the ARBAC instance, and then Tightening
1, . . . , 5. For each Tightening, we compute a set of roles. We then assert that the size of
the union of those sets of roles can be removed from the exponent in the upper-bound
in Theorem 3.2. We assert also that every tightening can be carried out efficiently; in
time polynomial in the size of the ARBAC instance.

3.2.1. Static Pruning. Jha et al. [2008] discuss two kinds of techniques for pruning the
size of an ARBAC safety instance. Both sets of techniques can be called static in that
the pruning is done before we input an instance to the model checker. Two kinds of such
static pruning are discussed, forward and backward. In forward pruning, we remove
can assign rules that cannot possibly be executed. In backward pruning, we remove
roles that are irrelevant to deciding the safety query. We remove also can assign and
can revoke rules in which any of those roles appears as the target. We refer the reader
to Jha et al. [2008] for a description of forward and backward pruning. We point out,
however, that while forward and backward pruning are sound, they are not complete.
That is, there exist ARBAC instances for which the two prunings do not necessarily
remove all possible irrelevant rules/roles.

We have adopted and applied both forward and backward pruning to all the policies
we consider. In addition, we adopt and apply the following pruning.

Let the safety query be 〈u, r〉. If r appears as a positive precondition in a
can assign rule, we discard that rule. If r appears as a negative precondi-
tion in a can assign rule, we remove that part (i.e., ¬r) from every such
precondition.

The rationale for this additional pruning is the following. A rule in which r appears
as a positive precondition can fire only if u is already a member of r. If that is the case,
we know that the instance is unsafe and need not explore any more reachable states.
As for a precondition that contains ¬r, consider any simple path in the state-change
graph that either does not contain an unsafe state (in which u is a member of r) or
terminates in an unsafe state. If the path has at least one state-change, then we know
that in all but the final unsafe state, ¬r is true.

The only exception is a path that has no state-changes, that is, the case that u is
a member of r in the start-state. We can easily check for this case and eliminate it
before input to the model checker. A consequence of static pruning is expressed in the
following lemma.

LEMMA 3.3. Let the safety query be 〈u, r〉 and the set of roles in the safety instance
be R. Then every role in R − {r} appears in at least one precondition in can assign.

The intuition behind this lemma is the following. We have three possibilities for
any role r′ ∈ R − {r} for which the assertion is not true. These possibilities are not
mutually exclusive. (a) r′ appears in the RBAC policy, (b) r′ appears as a target role
in a can assign rule, and, (c) r′ appears as a target role in a can revoke rule. In any

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:14 K. Jayaraman et al.

1 A ← {
a ∈ can assign | target-role[a] = r

}
2 foreach a ∈ A do
3 Sa ← smallest set that satisfies Sa = {a} ∪ {a′ ∈ can assign | ∃ a′′ ∈

Sa with target-role[a′] ∈ positive-precond-roles[a′′] }
4 Ra ← ⋃

s∈Sa

(
precond-roles[s] ∪ {

target-role[s]
})

5 m ← maxa∈A |Ra|
6 R1 ← some Ra such that |Ra| = m

Fig. 5. The Algorithm for Tightening 1. We assume that the role in the safery query is r. We use the follow-
ing auxiliary routines for a ∈ can assign. (1) target-role[a] returns the target role of a, (2) precond-roles[a]
returns the set of (positive and negative) precondition roles of a, and, (3) positive-precond-roles[a] returns
the set of positive precondition roles of a.

combination of these cases, r′ and any can assign and can revoke rules with it as target
would be removed by backward pruning [Jha et al. 2008].

3.2.2. Tightening 1. In Tightening 1, we identify a set of roles R1 that is the output of
the algorithm in Figure 5. In the algorithm, in Line 1, we first identify a set A of all
can assign rules that can cause u to be assigned to the role r, where the safety query
is 〈u, r〉. For each such rule a, we identify a set of rules Sa, and a set of roles Ra that
appear in the rules of Sa. The intuition is that at most one amongst the rules of A
needs to fire. For a ∈ A, we can identify the roles that are needed to cause it to fire,
which is what Ra is. We point out that the algorithm runs in time polynomial in the
size of the ARBAC instance.

LEMMA 3.4. The diameter ≤ 2|R1|−1 + 1.

PROOF. For any A that the algorithm of Figure 5 computes in Line 1, at most one
a ∈ A fires in a path to an unsafe state. The only state-changes that matter in enabling
a to fire are those in Ra, and |R1| ≥ |Ra|. The “−1” (in the exponent) and the “+1” terms
appear because r ∈ Ra for every a, and there is at most one state-change that involves
r — the assignment of u to it.

3.2.3. Tightening 2. We identify the set of roles R2 that appear negated only in a pre-
condition of can assign. That is, r ∈ R2 if and only if r appears in at least one precon-
dition in can assign as ¬r, and appears in no precondition as r. We can identify R2 in
time linear in the number of can assign rules, and therefore the ARBAC instance.

LEMMA 3.5. The diameter ≤ 2|R1−R2|−1 + |R2| + 1.

PROOF. r ∈ R2 needs to be revoked at most once in any state-change path that does
not contain an unsafe state or terminates in an unsafe state.

3.2.4. Tightening 3. We identify the set of roles R3 that appear non-negated only in
preconditions of can assign. That is, r ∈ R3 if and only if r appears in at least one
precondition in can assign, and ¬r appears in no precondition. We can identify R3 in
time linear in the number of can assign rules, and therefore the ARBAC instance.

LEMMA 3.6. The diameter ≤ 2|R1−(R2∪R3)|−1 + |R2 ∪ R3| + 1.

PROOF. u needs to be assigned to r ∈ R2 at most once in any state-change path that
does not contain an unsafe state or terminates in an unsafe state.

3.2.5. Tightening 4. We identify the set of roles R4, none of which appears as the target
role in any rule in can revoke. As with R2 and R3 above, at most one state-change

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies18:15

1 Pos ← smallest set that satisfies Pos = {r} ∪ ⋃
r′∈Pos positive-precond-roles[r′]

2 foreach r′ ∈ Pos do
3 Rneg(r′) ← {target-role[a] | a ∈ can assign ∧ r′ ∈ negative-precond-roles[a] }
4 R5 ← Pos − {r′ | Rneg(r′) ∩ Pos �= ∅}

Fig. 6. The Algorithm for Tightening 5. After executing it, Pos contains those roles on which the role in
the safety query, r, depends positively only. We use the following auxiliary routines for a ∈ can assign. (1)
target-role[a] returns the target role of a, (2) negative-precond-roles[a] returns the set of negative precondi-
tion roles of a, and, (3) positive-precond-roles[a] returns the set of positive precondition roles of a.

involving each such role occurs in any simple path to an unsafe state — the assignment
of u to that role.

LEMMA 3.7. The diameter ≤ 2|R1−(R2∪R3∪R4)|−1 + |R2 ∪ R3 ∪ R4| + 1.

3.2.6. Tightening 5. We identify a set of roles R5, which we characterize as the set of
roles on which the role r in the safety query depends positively only. Note that static
pruning [Jha et al. 2008] identifies a set of roles on which r depends positively. Our set
R5 is different; the extra qualifier “only” characterizes the difference. Indeed, R5 is a
subset of the set identified in static pruning.

LEMMA 3.8. The diameter ≤ 2|R1−(R2∪R3∪R4∪R5)|−1 + |R2 ∪ R3 ∪ R4 ∪ R5| + 1.

PROOF. The intuition is that as the role in the safety query r depends positively
only on every r′ ∈ R5, we do not need to revoke u from r′. Therefore, in any simple
state-change path to an unsafe state, we have at most one state-change that involves
r′ — the assignment of u to it.

To show that the algorithm in Figure 6 is sound, we observe the following. In Line
1, we compute as Pos, the set of roles on which r depends positively. That is, we may
have to assign u to r′ ∈ Pos computed in Line 1 so we may ultimately assign him to r.
We may then need to remove some roles from Pos to meet the “only” qualification. For
this, in Lines 2–3, we identify as Rneg(r′), those roles that depend negatively on r′, for
every r′ ∈ Pos. That is, to assign u to any of those roles, we may need to revoke u from
r′. Finally, in Line 4, we remove r′ from Pos if any of the roles we may need to assign
depends negatively on r′ as determined by its membership in Rneg(r′).

Given some r′′ ∈ Rneg(r′), one may wonder why we do not further consider all r′′′ that
depend on r′′ positively. That is, a role r′′′ that needs u to be assigned to r′′ ∈ Rneg(r′) for
u to be assigned to r′′′. The reason is that if r′′′ ∈ Pos computed in Line 1, then r′′ ∈ Pos
computed in Line 1, and r′ will be removed from Pos in Line 4 as desired.

3.3. Correctness of MOHAWK

We now assert the correctness of MOHAWK.

THEOREM 3.9. MOHAWK is sound and complete.

Soundness means that if MOHAWK returns a “safe” or “unsafe” verdict on an input
instance, then it is the correct verdict for that instance. Completeness means that
MOHAWK returns some verdict on every input instance. A premise behind the theorem
is that model checking is correct. The theorem is a direct consequence of Lemmas 3.1
and 3.8. Those two lemmas capture the correctness of the two techniques we employ
in MOHAWK.

It may seem somewhat counterintuitive that MOHAWK achieves soundness, com-
pleteness and efficiency simultaneously. MOHAWK performs well for certain classes of
inputs on which prior approaches do not. However, there are classes of inputs for which
MOHAWK may perform worse. The reason is the overhead that abstraction-refinement

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:16 K. Jayaraman et al.

and bound-estimation add. We refer the reader to the discussions under “Where MO-
HAWK performs better” and “Where other tools may perform better” in Section 5. Our
main observation regarding efficiency is that there exist classes of realistic instances
for which MOHAWK outperforms prior approaches.

3.4. Implementation

We have implemented MOHAWK using Java. In addition to the abstraction-refinement
approach, we have implemented several supporting tools for MOHAWK. We have a tool
for automatically converting a policy in the MOHAWK language to NuSMV specifica-
tion. Also, we have implemented a tool for creating complex ARBAC policies. We have
incorporated prior static pruning techniques [Jha et al. 2008; Stoller et al. 2007], and
our bound estimation techniques.

4. SOURCES OF COMPLEXITY

In this section, we describe the aspects that make verification in the context of ac-
cess control systems a difficult problem. We call these “sources of complexity.” For each
source of complexity, we give some intuition as to why it is a source of complexity.
Previous work [Jha et al. 2008; Sasturkar et al. 2011; Stoller et al. 2007] on the verifi-
cation problem alludes to some of these sources of complexity. Finally, we explain how
MOHAWK’s abstraction refinement and bound estimation strategies deal with these
sources of complexity.

4.1. The Sources

Three aspects of access-control systems can bring complexity to the verification: (1)
the syntax for the state, (2) the state-change rules, and (3) the verification question of
interest. In the context of (1), the size of the state is a source of complexity. In our case,
this size is quantified by the number of roles in the RBAC component of the ARBAC
policy. The rationale is that as the number of roles in the RBAC component increases,
a verifier has to maintain a larger vector of user-role assignments, and also deal with
more possible combinations of such assignments in considering state-changes.

The potential source (3) is not a source of complexity in our context. We study the
basic question of safety. Given a state, checking whether the question is true or false is
equivalent to an access-check. It has been observed in previous work [Jha et al. 2008]
that more complex questions can be reduced to this rather basic notion of safety. Con-
sequently, it appears that even more complex questions will not make the verification
problem any more difficult.

The other sources of complexity are in the state-change rules. The component within
the state-change rules that is relevant is the precondition. The specific aspects of pre-
conditions that are complexity sources are (1) disjunctions — these are introduced by
multiple can assign rules with the same target role, (2) irrevocable roles — these are
roles for which there is no can revoke rule with any such role as the target, (3) mixed
roles — these are roles that appear with and without negation in can assign rules,
and, (4) positive precondition roles — these are roles that appear without negation in
can assign rules.

Disjunctions. Given a safety instance, 〈γ , ψ , u, r〉 (see Section 2.2) that contains dis-
junctions, we observe that determining whether the answer is true or not can be equiv-
alent to determining the satisfiability of a boolean expression in Conjunctive Normal
Form (CNF). This problem is known to be NP-complete.

Consider the following example. We have as target roles in can assign, r1, . . . , rn.
The rule that corresponds to ri in can assign is

〈
ra, ci ∧ ri−1, ri

〉
where ci is a

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies18:17

disjunction of roles or their negations,2 and contains no roles from among r1, . . . , rn.
The only can assign rule with r as the target role is 〈ra, rn, r〉 and u is assigned to r0 in
the start state.

In our example, the verification instance 〈γ , ψ , u, r〉 is true if and only if the Boolean
expression c1 ∧ · · · ∧ cn is satisfiable via the firing of can assign and can revoke rules.
Indeed, this construction that we use as an example is similar to an NP-hardness
reduction in previous work [Jha et al. 2008].

Irrevocable Roles. A role r̂ is irrevocable if it is not the target role in any can revoke
rule. Once u is assigned to r̂, u’s membership in r̂ cannot be revoked. Consider the
case that an irrevocable role r̂ appears as a negated role in some can assign rules. The
challenge for a “forward-search” algorithm that decides the verification question 〈u, r〉
is that it is not obvious when u should be assigned to r̂.

In a path in the state-transition graph, if u is assigned to r̂ quite close to the start
state, then it is possible that that action causes u to never be authorized to r on that
path. Given a set of roles I, all of which appear negated in preconditions of can assign
rules and are irrevocable, such an algorithm must consider paths that correspond to
every subset of I.

Stoller et al. [2007] capture this requirement in what they call Stage 2 (“forward
analysis”) of their backward-search algorithm. The algorithm maintains a subset of
I as an annotation in the state-reachability graph (or “plan,” as they call it). They
observe that their algorithm is doubly exponential in the size of I.

Mixed Roles. A mixed role is one that appears with negation and without in pre-
conditions of can assign rules.3 Stoller et al. [2007] show that the verification problem
is fixed parameter tractable in the number of mixed roles. To see why the number of
mixed roles is a source of complexity, consider the case that no role is mixed.

An algorithm can simply adopt the greedy approach of maximally assigning u to
every role rp that appears without negation, and revoking u from every role rn that
appears negated. Such an approach will not work for a mixed role. Given a mixed role
rm, it is possible that we may need to repeatedly assign u to it, and revoke u from it on
a path to a state in which u is assigned to r.

A search algorithm must decide whether to revoke u from rm in every state in which
he is assigned to rm, and whether to assign u to rm in every state in which he is not
assigned to rm. In the worst case, every such combination must be tried for every mixed
role.

Positive Precondition Roles. A positive precondition role is a role that appears with-
out negation in a precondition. The number of positive precondition roles is a source
of complexity. Sasturkar et al. [2011] and Stoller et al. [2007] observe that if we re-
strict each can assign rule to only one positive precondition role, then the verification
problem becomes fixed parameter tractable in the number of irrevocable roles.

An intuition behind this is that if there is at most one positive precondition role
in every precondition of the can assign rules, then the resultant CNF expression for
which the model checker checks satisfiability comprises only of Horn clauses. We know

2As we discuss in Section 2.1, disjunctions are disallowed in an individual can assign rule. However, multi-
ple rules with the same target role results in a disjunction of the preconditions of those rules. In our example,
if ci = ri,1 ∨ · · · ∨ ri,m, then we assume that we have the following can assign rules with ri as the target role:〈
ra, ri,1 ∧ ri−1, ri

〉
, . . .,

〈
ra, ri,m ∧ ri−1, ri

〉
.

3We point out that a role does not appear with and without negation in the same can assign rule. This is
because conjunction and negation are the only operators in a rule (see Section 2.1), and therefore such a
precondition is always false.

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:18 K. Jayaraman et al.

that Horn Satisfiability is in P. If this restriction is lifted, then the corresponding
satisfiability problem is NP-complete, as we discuss previously under “Disjunctions.”

We point out that these sources of complexity are not unique to ARBAC. The access
matrix scheme due to Harrison et al. [1975], for example, has preconditions in its
state-change rules as well. Similarly, in the context of RBAC, the work of Crampton
and Loizou [2003] on the scoped administration of RBAC, has what they call conditions
on state-changes that are very similar to the preconditions of ARBAC.

4.2. Mohawk and the Sources of Complexity

An aspect from our approach that assuages the complexity is that we are goal-oriented
in our abstraction-refinement algorithm (see Section 3). Recall that we create a priority
queue of roles that are Related-by-Assignment to the query role, which is the role in the
safety instance. This stratification of roles helps us eliminate roles that cannot affect
the membership to the query role. A consequence of this is that a number of paths from
the start-state that do not lead to the error-state are removed.

Another aspect is that we optimistically look for short paths that lead from the start
state to the error state, while not burdening the model checker with a lot of extraneous
input. We first check whether we can reach the error state in zero transitions. In doing
so, we ensure that the model checker is provided no state-change rules. We then check
whether we can reach it in only a few transitions. In doing so, we provide the model
checker with only those state-change rules that may be used for those few transitions.
And so on.

Every source of complexity is associated with an intractable problem. For example,
disjunctions are associated with satisfiability of Boolean expressions in Conjunctive
Normal Form (CNF). For a model-checker to check whether there is an error requires
it to check whether a Boolean expression in CNF that is embedded in the broader
problem instance is satisfiable. The two aspects we discuss previously result in
fewer clauses in the corresponding Boolean expression in the abstract policy and its
refinements.

The numbers of irrevocable, mixed and positive precondition roles are fewer in the
abstract policy and its refinements as well. Also, they pertain to fewer target roles.
Consequently, the corresponding instances of intractable problems are smaller, and
there are fewer possible paths for the model checker to explore than if such roles are
strewn across rules for several target roles.

In Bound Estimation, we look for portions of the input instance that are not asso-
ciated with these sources of complexity, and we tighten our estimate of the diameter
of the state-reachability graph as a consequence. For example, in Tightening 5 in Sec-
tion 3.2, we look for roles in preconditions on which the role in the safety query de-
pends positively only. A consequence of such a property is that that part of the input
instance does not lend to intractability. That is, even though safety analysis in AR-
BAC is intractable in general, if we can identify portions of the input instance that
are not sources of complexity, we can exploit that and provide a corresponding input
(in this case a bound) to the model checker so it can be more efficient. Our empirical
assessment that we discuss in the following section bears out these discussions.

5. RESULTS

Our experimental evaluation compares MOHAWK to current state-of-the-art verifi-
cation tools for ARBAC policies, namely symbolic model checking, bounded model
checking, and RBAC-PAT [Stoller et al. 2007]. We chose NuSMV [NuSMV 2012] as
the reference implementation for both symbolic and bounded model checking. In the
following, we use the terms MC and BMC to refer to NuSMV’s symbolic model checker

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies18:19

and bounded model checker respectively. Our evaluation focused on ascertaining the
efficiency and the scalability of the tools for verification.

We measure the efficiency based on the time taken to find an error. We measure
the scalability with respect to the sources of complexity (Section 4), namely number of
roles, and four aspects of preconditions (number of disjunctions, number of irrevocable
roles, number of mixed roles, and number of positive preconditions) in total in the input
policies. Our case study (see Section 5.1) establishes that such features are required
for creating realistic ARBAC policies. Our results can be summarized as follows.

Where MOHAWK Performs Better. The mindset behind MOHAWK is that policies are
likely to contain errors, and most of these errors can be found in only a few refinements.
In other words, we are optimistic about finding errors. Consequently, we undergo the
additional overhead of abstraction-refinement. For complex policies in which it is likely
that there are several errors at various levels of refinement, it is likely that MOHAWK
will outperform conventional approaches. MOHAWK is also likely to perform better on
policies that contain several sources of complexity (see Section 4).

Where Other Tools May Perform Better. Other tools may perform better than MO-
HAWK in two particular cases in which abstraction-refinement is unnecessary over-
head. One is for the subcases for which the problem is in P. In this case, conven-
tional model checking is likely to perform better than MOHAWK. Another is the case
that there are only a few errors, and these errors require several refinement steps.
It is not necessarily true that MOHAWK will perform worse in this case, as the fact
that we use bounded model checking may in itself mitigate the effects of the overhead
from abstraction-refinement. However, it is possible that in such a case, abstraction-
refinement adds overhead which may cause it to perform worse than other approaches.

In the following sections, we describe our case study, benchmarks, experimental
methodology and provide a summary of results.

5.1. Case Study

We conducted a case study for banking that has been vetted by a major financial in-
stitution [Jayaraman et al. 2012]. Our case-study has a number of similarities to an
earlier case-study [Schaad et al. 2001]. We discussed our case study with the represen-
tatives of a leading bank, who agreed that enforcing separation of privilege is crucial
for their operations and that our example is realistic.4

In our case study, we consider a bank that has several branches. Each branch repli-
cates a role-hierarchy design. The bank has a separation of privilege constraint that
they would like enforced in every branch. Specifically, each branch has four sets of five
non-managerial roles each. The sets correspond to business divisions (e.g., financial
analysis and e-commerce) in a branch. The separation of duty requirement is that an
employee is a member of at most three of those five roles at any given time. This sepa-
ration of duty requirement applies to every branch. We refer the reader to our technical
report [Jayaraman et al. 2012] for a more detailed discussion; here, we assume that
the five roles in a given set are r1, . . . , r5. There is also a role, say r0, of which anyone
that intends to be a member of any of r1, . . . , r5 must be a member.

It is possible to capture this separation of privilege requirement in ARBAC. We as-
sume that in the start (or current) authorization state, the requirement is not violated
in any division of any branch. Then, we can encode the requirement using precondi-
tions to state-changes. For each role ri ∈ {r1, . . . , r5}, we associate six can assign rules

4Personal communication with the security architect of a leading bank.

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:20 K. Jayaraman et al.

with that role as the target. For example, with r1 as the target role, we would have the
following can assign rules (ra is an administrative role):

〈ra, r0 ∧ ¬r2 ∧ ¬r3, r1〉 , 〈ra, r0 ∧ ¬r2 ∧ ¬r4, r1〉 , 〈ra, r0 ∧ ¬r2 ∧ ¬r5, r1〉
〈ra, r0 ∧ ¬r3 ∧ ¬r4, r1〉 , 〈ra, r0 ∧ ¬r3 ∧ ¬r5, r1〉 , 〈ra, r0 ∧ ¬r4 ∧ ¬r5, r1〉 .

We replicate this for each role r1, . . . , r5 as the target role for each business division
in each branch of the bank. We ran our case study for 10, 20, 30, and 40 branches
after introducing an error. An error comprises additional policy elements that cause
the above requirement, that a user is a member of at most three of r1, . . . , r5, to be
violated.

As the error, we introduced can assign rules of the form 〈ra, true, r1〉 , . . . , 〈ra, true, r4〉
for roles r1, . . . , r4 in a particular division of a particular branch. To encode our prop-
erty of interest, we extended the query interface of MOHAWK. With the extension,
MOHAWK accepts queries of the form 〈u, R〉, where R = (

r1,1 ∧ r1,2 ∧ · · · ∧ r1,k1

) ∨(
r2,1 ∧ · · · ∧ r2,k2

) ∨ · · · ∨ (
rm,1 ∧ · · · ∧ rm,km

)
, and each ri,j is a role in the policy. That

is, R is a disjunction of clauses, each of which is a conjunction of roles. There is a
straightforward efficient reduction from the verification problem with such general-
ized queries to the problem that allows queries of the form 〈u, r〉 only, where r is a
single role. Nonetheless, the generalized query interface may be more usable, and al-
lows one to more clearly isolate the property of interest from the policy.

For our case study, a query is a disjunction of five clauses, each of which is the
conjunction of four roles from amongst r1, . . . , r5. This expresses the query we seek to
ask: whether u could become a member of any of the four roles simultaneously.

We ran our case study against all the tools; we present our results in Table II. As
the table indicates, MOHAWK and BMC performed reasonably well. The results clearly
show the power of providing the model checker with a bound. MOHAWK fares worse
than BMC owing to its additional overhead of abstraction-refinement.

Our experience with the case study provides two additional insights about realistic
policies. First, our case study affirms that the sources of complexity that we discuss in
Section 4 occur in realistic policies. Second, realistic ARBAC policies are not amenable
to static pruning techniques such as those proposed in prior work [Jha et al. 2008;
Stoller et al. 2007]. Static pruning techniques are effective in cases where the role in
question is dependent in particular ways only on a small set of roles, irrespective of the
size of the policy (see Section 3.4). Such a dependency does not exist for the encoding of
the separation of privilege property on which Table II is based, and for other properties
we have investigated in our case-study. The following table quantitatively indicates the
effect of static pruning (the ones from [Jha et al. 2008; Stoller et al. 2007] plus the one
we introduce in Section 3.2.1). The “Unpruned” and “Pruned” columns each contains a
3-tuple,

〈
roles, # can assign rules, # can revoke rules

〉
.

Branches Unpruned Pruned
10 〈343, 1904, 321〉 〈252, 1454, 240〉
20 〈683, 3804, 641〉 〈502, 2904, 480〉
30 〈1023, 5704, 961〉 〈752, 4354, 720〉
40 〈1363, 7604, 1281〉 〈1002, 5804, 960〉

5.2. Benchmarks Used

We used two sets of policies in our evaluation. Both are based on prior work [Gofman
et al. 2009; Jha et al. 2008; Schaad et al. 2001; Stoller et al. 2007]. The first set has not
been used previously; we built it based on our case study, and the sources of complexity,
given that they do indeed occur in practice. Our second set of policies has been used in

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies18:21

Table II. Evaluation of Model-Checking, Bounded Model-Checking, RBAC-PAT, and MOHAWK
on Various Benchmarks

Num. of Roles, Rules MC BMC RBAC-PAT MOHAWK MOHAWK

Forward
reachability

Backward
reachability

w/ MC w/ BMC

1. 343, 2226 M/O 19s T/O M/O M/O 48s
Case Study 2. 683, 4446 M/O 41s T/O M/O M/O 4m 26s

3. 1023, 6666 M/O 1m 13s T/O M/O M/O 14m 36s
4. 1363, 8885 M/O M/O T/O M/O M/O M/O
1. 3, 15 0.097s 0.016s 0.625s 0.240s 0.542s 0.456s
2. 5, 25 0.050s 0.025s 0.695s 0.281s 0.554s 0.484s
3. 20, 100 M/O 0.103s 0.806s M/O T/O 1.051s
4. 40, 200 M/O 0.110s 0.780s M/O 0.556s 0.514s

Test suite 1 5. 200, 1000 M/O 0.624s 1.471s M/O 1.012s 0.645s
Poly-time verifiable 6. 500, 2500 M/O 3.2s 2.177s M/O 1.607s 0.768s

7. 4000, 20000 M/O 414s 7.658s M/O 3.185s 1.905s
8. 20000, 80000 M/O M/O 110s M/O 28.992s 22.436s
9. 30000, 120000 M/O M/O 210s M/O 1m 10s 1m 2s

10. 40000, 200000 M/O M/O 6m 16s M/O 4m 28s 2m 35s
1. 3, 15 0.022s 0.021s 0.513s 0.241s 0.429s 0.435s
2. 5, 25 0.064s 0.026s 0.519s 0.252s 0.485s 0.472s
3. 20, 100 M/O 0.048s 0.512s M/O 0.441s 0.437s
4. 40, 200 M/O 0.122s 0.534s M/O T/O 1.118s

Test suite 2 5. 200, 1000 M/O 0.472s 0.699s M/O 0.607s 0.615s
NP-Complete 6. 500, 2500 M/O 1.819s 2.414s M/O 0.705s 0.717s

7. 4000, 20000 M/O 109s 311s M/O 1.722s 1.713s
8. 20000, 80000 M/O M/O T/O M/O 17.7s 17.708s
9. 30000, 130000 M/O M/O T/O M/O 41.334s 40.690s

10. 40000, 200000 M/O M/O T/O M/O 3m 6s 2m 9s
1. 3, 15 0.030s 0.102s 1.452s 0.665s 0.423s 0.432s
2. 5, 25 0.044s 0.033s 1.666s 0.881s 0.497s 0.486s
3. 20, 100 M/O 0.056s 1.364s M/O 0.452 0.448s
4. 40, 200 M/O 0.169s 1.476s M/O T/O 1.161s

Test suite 3 5. 200, 1000 M/O 0.972s 2.258s M/O 0.615s 0.613s
PSPACE-Complete 6. 500, 2500 M/O 2.422s 7.350s M/O 0.716s 0.730s

7. 4000, 20000 M/O 109s 511s M/O 0.722s 1.717s
8. 20000, 80000 M/O M/O T/O M/O 17.666s 18.406s
9. 30000, 130000 M/O M/O T/O M/O 47s 45s

10. 40000, 200000 M/O M/O T/O M/O 2m 16s 2m 45s

Simple Policies
1. 12, 19 0.025s 0.022s 0.531s 0.238s 0.553s 0.429s
2. 20, 266 0.023s 0.026s 0.559s 0.247s 0.426s 0.415s
3. 32, 162 M/O 0.182s 1.556s 0.568s 40s 0.735s

m - minutes MC - NuSMV symbolic model checking MOHAWK
w/ MC

- MOHAWK symbolic model
checking mode

s - seconds BMC - NuSMV bounded model checking MOHAWK
w/ BMC

- MOHAWK bounded model
checking mode

ms - milliseconds RBAC-PAT - Tool from [Gofman et al. 2009;
Stoller et al. 2007]

T/O - Time out after 60 mins

M/O - Memory out

the context of verification of ARBAC policies in prior work [Gofman et al. 2009; Stoller
et al. 2007]. These policies are simpler than the policies in the first set.

Complex Policies (Set 1). We have created a test suite based on the case study, and
the sources of complexity. The number of roles (or size of the policy) and type of state-
change rules are sources of complexity in ARBAC policies. Depending on the type of
state-change rules, the safety analysis problem for ARBAC is PSPACE-Complete, NP-
Complete, or solvable in polynomial time [Jha et al. 2008]. Accordingly, we have cre-
ated three sets of complex test suites with varying gradations of roles.

— Test Suite 1. Policies with positive conjunctive can assign rules and a nonempty set
of can revoke rules. Verification is polynomial-time for these policies.

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:22 K. Jayaraman et al.

1 while |can revoke| < no-of-cr do
2 target-role ← a random role ∈ roles that is �∈ all-target-roles[can revoke]
3 can revoke ← can revoke ∪ {〈adminrole, target-role〉}

Fig. 7. The algorithm for generating can revoke rules. no-of-cr specifies the number of desired can revoke
rules, roles is the set of roles, and adminrole is the administrative role . We use the auxiliary routine
all-target-roles[can revoke] which returns the set of all target roles (so far) in can revoke.

1 foreach role ∈ roles do
2 target-role ← role
3 foreach i = 1 → rules-per-role do
4 preconditions ← ∅
5 foreach j = 1 → no-of-preconditions do
6 precondition-role ← a random role ∈ roles that is �= target-role
7 preconditions ← preconditions ∪ {+precondition-role}
8 can assign ← can assign ∪ {〈adminrole, preconditions, target-role〉}

Fig. 8. The algorithm for generating positive can assign rules. rules-per-role specifies the desired number of
can assign rules per role, no-of-preconditions specifies the desired number of preconditions in a can assign
rule, roles is the set of roles, and adminrole is the administrative role.

— Test Suite 2. Policies with mixed conjunctive can assign rules and no can revoke
rules. Verification is NP-Complete for these policies.

— Test Suite 3. Policies with mixed conjunctive can assign rules and a nonempty set
of can revoke rules. Verification is PSPACE-Complete for these policies.

Each of the complex policies were created as follows. First, we create a policy with
the desired number of roles. Then, we add only two users, namely an admin user and a
normal user who would be used in the safety question. This is because number of users
is not a source of complexity. Following that we generate the desired type of can assign
and can revoke rules based on the test suite.

Figures 7, 9, and 8 describe the algorithms we use for generating can revoke rules,
positive conjunctive can assign rules, and mixed conjunctive can assign rules. For test
suite 1, we used the algorithms described in Figures 7 and 8. For test suite 2, we used
the algorithm described in Figure 9. For test suite 3, we used the algorithms described
in Figures 7 and 9.

For each complex policy, we identified a user-role pair at random such that the role is
reachable by an unauthorized user. Our results are for verifying this question. Recall
that the basic safety question is determining whether a unauthorized user u can reach
a role r. In our complex policies, a majority of the roles in the policy are related to the
target role in the safety query. This is realistic, as it is similar to the policy in our case
study.

Simple Policies (Set 2). This set comprises three ARBAC policies that have been used
in previous work for the evaluation of RBAC-PAT [Gofman et al. 2009; Sasturkar et al.
2011; Stoller et al. 2007]. The first policy is for a hypothetical hospital, and the second
policy is for a hypothetical university. The third policy from Gofman et al. [2009] is
a test case that has mixed preconditions. The first two policies were used in Stoller
et al. [2007] for case studies. The third policy was used in Gofman et al. [2009], and
a complete state-space exploration is reported to have taken 8.6 hours in RBAC-PAT.
An important restriction in these policies is that they have at most one positive pre-
condition per can assign rule. As we explain in Section 5.4.2, answering the safety
question for these policies was fairly easy for all the tools.

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies18:23

1 foreach role ∈ roles do
2 target-role ← role
3 foreach i = 1 → rules-per-role do
4 preconditions ← ∅
5 mixed-role ← a random role ∈ roles that is �= target-role
6 toggle ← true
7 foreach j = 1 → no-of-preconditions do
8 precondition-role ← a random role ∈ roles that is �∈{

target-role, mixed-role
}

9 preconditions ← preconditions ∪ {+precondition-role}
10 if toggle then
11 preconditions ← preconditions ∪ {+mixed-role}
12 else
13 preconditions ← preconditions ∪ {¬mixed-role}
14 toggle ← ¬toggle
15 can assign ← can assign ∪ {〈adminrole, preconditions, target-role〉}

Fig. 9. The algorithm for generating mixed can assign rules. rules-per-role specifies the desired number of
can assign rules per role, no-of-preconditions specifies the desired number of preconditions in a can assign
rule, roles is the set of roles, and adminrole is the administrative role. mixed-role is the role that is picked
as the choice for a mixed role in the current group of can assign rules to be generated. In lines 10-13,
depending on the value of toggle, mixed-role is added as either a positive or negative precondition role. In
line 11, mixed-role is added as a positive precondition role, and in line 13, mixed-role is added as a negative
precondition role.

5.3. Experimental Methodology

All the experiments were conducted on a Macbook Pro laptop with an Intel Core 2 Duo
2.4 GHz processor and 4GB of RAM.

In all the experiments, the input to the verification tools consisted of an ARBAC
policy and a safety question. We applied the static pruning techniques proposed in
prior work [Jha et al. 2008; Stoller et al. 2007] on all the policies prior to the experi-
ments. The policies were encoded using the input language of the respective tools. MC
and BMC use the SMV finite state machine language, while RBAC-PAT and MOHAWK
have their own input language. We implemented a translation tool to convert policies
in MOHAWK’s input language to both SMV and RBAC-PAT input languages. We
expected the tools to conclude that the role is reachable and provide the sequence of
administrative actions that lead to the role assignment. In our evaluation, we had two
users for each policy, namely the user in the safety question and the administrator.
These are the only users required for answering the safety question. Moreover, static
pruning techniques remove all users but the one that is relevant to the safety question.

5.4. Results Explained

We explain the results of our experimental evaluation below. Whenever we refer to
MOHAWK here, we mean MOHAWK configured with aggressive abstraction-refinement,
unless specified otherwise. For the policies in Table II, on average we needed 2 refine-
ments. The worst-case was for the policy from our case study, for which we needed 7
refinements.

5.4.1. Results on Complex Policies. The results of our evaluation on complex policies
(Set 1) are contained in Table II. Our results show that MOHAWK scales better than
all competing tools, irrespective of the complexity of the input policy.

There are two differences between “BMC” and “MOHAWK w/ BMC”. First, “MOHAWK
w/ BMC” uses the abstraction-refinement approach. Second, “BMC” uses 10 as the

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:24 K. Jayaraman et al.

bound, but “MOHAWK w/ BMC” estimates the diameter for the policy in each iteration
and uses that as the bound. Therefore, “MOHAWK w/ BMC” is a verification tool, but
“BMC” is an error-finding tool.

MOHAWK improves the scalability of both BMC and MC. Although BMC scales bet-
ter than MC, both the tools run out of memory for large policies. In contrast, MOHAWK,
when used on top of either MC or BMC, scales better for all the three test suites ir-
respective of their complexity class. This further underlines the effectiveness of the
abstraction-refinement based technique in MOHAWK. Also, having a single technique
that can perform well on large real-world policies that belong to different complexity
classes is also useful from the point of view of maintaining and extending the tool.
Furthermore, since our technique is not tied to specific model-checking algorithms, it
can be used in conjunction with other algorithms such as RBAC-PAT’s forward reach-
ability.

The RBAC-PAT forward reachability algorithm is very effective for test suite 1,
whose policies are verifiable in polynomial time. However, for the other two test suites,
the RBAC-PAT forward reachability is faster compared to MC and slower compared
to both BMC and MOHAWK. RBAC-PAT’s backward reachability algorithm was faster
compared RBAC-PAT’s forward algorithm for a few small policies, but ran out of mem-
ory for majority of the policies in all the test suites.

MOHAWK performs worse compared to BMC for small policies in test suite 2. This is
because these policies are so small that BMC can analyze them easily, but MOHAWK
takes multiple iterations to arrive at the same answer. In other words, the policies are
too simple, and the abstraction-refinement step creates unnecessary overhead.

5.4.2. Results on Simple Policies. The results of our evaluation on simple policies are
summarized in Table II. The first and second policies did not satisfy separate adminis-
tration restriction, so we removed can assign rules that have the administrative roles
as target and used the modified policies in our evaluation.

BMC, RBAC-PAT, and MOHAWK were effective for all the three policies. The dif-
ferences in time taken to verify are not very significant because they are less than a
second.

MOHAWK with aggressive abstraction-refinement is faster compared to RBAC-PAT’s
forward reachability, but slower compared to BMC and RBAC-PAT’s backward reach-
ability for these policies. However, the slow down in each case is less than a second
and is imperceptible to the user. MOHAWK’s slowdown when compared to BMC is
expected because of the small size of the policies. For the third test case, MC timed
out. Both RBAC-PAT and MOHAWK with aggressive abstraction-refinement are slower
compared to BMC, and MOHAWK is faster compared to RBAC-PAT’s forward reacha-
bility algorithm and slightly slower compared to RBAC-PAT’s backward reachability.

6. RELATED WORK

This article is closely related to our earlier work [Jayaraman et al. 2011]. Whereas that
work proposes the use of abstraction-refinement only, in this work, we complement
abstraction-refinement with bound-estimation. The incorporation of bound-estimation
affects the architecture of MOHAWK (Figure 2 and Section 3), how MOHAWK recon-
ciles the sources of complexity (Section 4.2) and our empirical results (Section 5). In
addition, in this work, we clearly articulate the correctness of abstraction-refinement
(Section 3.1.6) and of MOHAWK (Section 3.3).

Counterexample guided abstraction refinement was originally developed in the con-
text of model checking [Clarke et al. 2003]. Since then the basic idea has been adapted
in different ways in the context of bounded model-checking for hardware verification
[Kroening 2006] and program analysis [Ball and Rajamani 2002] to verify computer

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies18:25

programs. The idea of abstraction refinement has also been adapted in the context of
solvers for various theories such as modular and integer linear arithmetic [Ganesh
and Dill 2007]. To the best of our knowledge, MOHAWK is the first tool to adapt the
paradigm of abstraction-refinement for verifying access-control policies.

More recent work [Ferrara et al. 2012] has adopted an abstract-interpretation ap-
proach for the same problem that we address. They apply an abstraction function
to the ARBAC policies that converts them into imperative programs. Then they ap-
ply standard abstract-interpretation program analysis techniques to prove correctness
properties of these policies. It appears that their performance numbers are orders of
magnitude worse than MOHAWK for verification of similar-sized policies; however, it is
possible that the problem instances were not the same.

We can classify verification problems in the context of access control broadly into
two categories: fixed-state, and with state changes.

The work that falls in fixed-state considers only a given state, and verification of
properties within that state. Examples of work that fall in this category include those
of Jha and Reps [2004], Jha et al. [2006], Hughes and Bultan [2008], Hu and Ahn
[2008], Martin and Xie [2007], Rao et al. [2007], Kolovski et al. [2007], Zhao et al.
[2005], and Fisler et al. [2005]. It is conceivable that our approach can be used in
such fixed-state contexts. For example, the work of Martin and Xie [2007] considers
testing of XACML policies for errors by introducing faults in to such policies. They
then determine whether a particular test for errors is effective by checking whether
it finds the fault that is intentionally introduced. We seek to find errors, and to such
an end, we could exploit the modularity that is inherent to XACML policies and use
abstraction-refinement. We could abstract most of a policy away, and then gradually
refine it by adding components back, while testing for errors against access requests
(as proposed by Martin and Xie [2007]) at each step.

Plain model-checking approach has also been proposed for some state-change
schemes [Zhang et al. 2008]. As we have shown in Section 5, plain model checking
does not scale adequately for verifying policies of very large sizes.

Work on safety analysis dates back to the mid-1970’s; the work by Harrison et al.
[1975] is considered foundational work in access control. They were the first to provide
a characterization of safety. They show also, that safety analysis for an access matrix
scheme with state changes specified as commands in a particular syntax is undecid-
able. Since then, there has been considerable interest and work in safety, and more
generally, security analysis in the context of various access control schemes.

Safety analysis in monotonic versions of the HRU scheme has been studied in
Harrison and Ruzzo [1978]. Jones et al. [1976] introduced the Take-Grant scheme, in
which safety is decidable in linear time. Amman and Sandhu consider safety in the
context of the Extended Schematic Protection Model (ESPM) [Ammann and Sandhu
1991] and the Typed Access Matrix model Sandhu [1992], Budd [1983], and Motwani
et al. [2000] studied grammatical protection systems. Soshi [2000] studied safety
analysis in Dynamic-Typed Access Matrix model. These models all have subcases
where safety is decidable. Solworth and Sloan [2004] introduced discretionary access
control model in which safety is decidable. This thread of research has proposed many
new access control schemes, but has had limited impact on access control systems
used in practice. This is potentially because the proposals were either too simplistic
or too arcane to be useful. The focus of this article is ARBAC, which was primarily
proposed to meet the need of expressive access control schemes required for large-scale
real-world deployments.

To our knowledge, Li and Tripunitara [2004] were the first to consider security anal-
ysis in the context of ARBAC. Jha et al. [2008] were the first to consider the use of
model checking to for the verification problem of ARBAC. That work also identifies that

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:26 K. Jayaraman et al.

the verification problem for ARBAC is PSPACE-complete. Subsequently, Stoller et al.
[2007] established that user-role reachability analysis is fixed parameter tractable
with respect to number of mixed roles, irrevocable roles, positive preconditions, and
goal size. Furthermore, they have proposed new model-checking algorithms for simi-
lar verification problems and implemented them in a tool called RBAC-PAT [Gofman
et al. 2009].

RBAC-PAT contains two algorithms for analyzing ARBAC policies, namely forward
reachability and backward reachability. As we have shown in Section 5, forward
reachability algorithm scales better compared to plain model checking, is effective for
polynomial-time-verifiable policies, but does not scale adequately with complexity of
the policies. We could not extensively evaluate the backward reachability algorithm
because the implementation gave a segmentation fault for even moderately sized poli-
cies. In contrast, MOHAWK scales better and is efficient for identifying errors irrespec-
tive of the complexity of the policies. The key reason for MOHAWK’s effectiveness is the
abstraction-refinement approach that is goal oriented and optimally looks short paths
that lead from the start path to the error state (Section 4.2).

Gofman et al. [2010] proposes incremental algorithms for analyzing the impact of
changes to ARBAC policies by taking advantage of previous analysis results. Such
incremental analysis is outside the scope of this article.

7. CONCLUSION

We presented an abstraction-refinement and bound-estimation based technique, and
its implementation, the MOHAWK tool, for verifying ARBAC access-control policies.
MOHAWK accepts an access-control policy and a safety question as input, and outputs
whether or not an error is found. We extensively evaluated MOHAWK and compared
our results to those for current state-of-the-art tools for policy analysis. Our experi-
ments show that MOHAWK scales well with the complexity of realistic policies. Anal-
ysis tools such as MOHAWK enable policy administrators to quickly analyze policies
prior to deployment, thereby increasing the assurance of the system.

ACKNOWLEDGMENTS

We thank Mikhail Gofman, Scott Stoller, C. R. Ramakrishnan, and Ping Yang for providing access to the
RBAC-PAT tool and their experimental data. We thank the anonymous reviewers for their helpful comments
that have greatly improved the article, our MOHAWK tool and our case study.

REFERENCES

Ammann, P. and Sandhu, R. 1991. Safety analysis for the extended schematic protection model. In Proceed-
ings of the IEEE Symposium on Security and Privacy. 87–97.

Aveksa. 2012. What is business-driven identity and access management? http://www.aveksa.com/
what-we-do/What-Is-Business-Driven-Identity-and-Access-Management.cfm.

Ball, T. and Rajamani, S. K. 2002. The SLAM project: Debugging system software via static analysis. In
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’02). ACM, New York, 1–3.

Budd, T. A. 1983. Safety in grammatical protection systems. Int. J. Paral. Prog. 12, 6, 413–431.
Clarke, E., Biere, A., Raimi, R., and Zhu, Y. 2001. Bounded model checking using satisfiability solving. Form.

Methods Syst. Des. 19, 1, 7–34.
Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. 2003. Counterexample-guided abstraction refinement

for symbolic model checking. J. ACM 50, 5, 752–794.
Clarke, E., Kroening, D., Ouaknine, J., and Strichman, O. 2005. Computational challenges in bounded model

checking. Softw. Tools Tech. Trans. 7, 2, 174–183.
Clarke, E. M., Grumberg, O., and Peled, D. A. 1999. Model Checking. The MIT Press.
Crampton, J. and Loizou, G. 2003. Administrative scope: A foundation for role-based administrative models.

ACM Trans. Inf. Syst. Secur. 6, 2, 201–231.

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

MOHAWK: Abstraction-Refinement and Bound-Estimation for Verifying Access Control Policies18:27

Ferraiolo, D. F., Kuhn, D. R., and Chandramouli, R. 2003. Role-Based Access Control. Artech House, Inc.,
Norwood, MA.

Ferrara, A. L., Madhusudan, P., and Parlato, G. 2012. Security analysis of access control through program
verification. In Proceedings of the 25th IEEE Computer Security Foundations Symposium (CSF’12).
IEEE Computer Society, Cambridge, MA.

Fisler, K., Krishnamurthi, S., Meyerovich, L. A., and Tschantz, M. C. 2005. Verification and change-impact
analysis of access-control policies. In Proceedings of the 27th International Conference on Software En-
gineering (ICSE’05). ACM, New York, 196–205.

Ganesh, V. and Dill, D. L. 2007. A decision procedure for bitvectors and arrays. In Proceedins of the 19th
International Conference on Computer-Aided Verification. Lecture Notes in Computer Science, Springer,
Berlin, 519–531.

Gofman, M. I., Luo, R., Solomon, A. C., Zhang, Y., Yang, P., and Stoller, S. D. 2009. Rbac-pat: A policy
analysis tool for role based access control. In Proceedings of the 15th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer
Science, vol. 5505, Springer-Verlag, 46–49.

Gofman, M. I., Luo, R., and Yang, P. 2010. User-role reachability analysis of evolving administrative role
based access control. In Proceedings of the 15th European Conference on Research in Computer Security
(ESORICS’10). Springer-Verlag, Berlin, 455–471.

Graham, G. S. and Denning, P. J. 1972. Protection — Principles and practice. In Proceedings of the AFIPS
Spring Joint Computer Conference. Vol. 40, AFIPS Press, 417–429.

Harrison, M. A. and Ruzzo, W. L. 1978. Monotonic protection systems. In Proceedings of the Conference on
Foundations of Secure Computation. 461–471.

Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. 1975. On protection in operating systems. In Proceedings
of the 5th ACM Symposium on Operating Systems Principles (SOSP’75). ACM, New York, 14–24.

Hu, H. and Ahn, G. 2008. Enabling verification and conformance testing for access control model. In Pro-
ceedings of the 13th ACM Symposium on Access Control Models and Technologies (SAC’08). ACM, New
York, 195–204.

Hu, V. C., Kuhn, D. R., and Xie, T. 2008. Property verification for generic access control models. In Proceed-
ings of the 2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing. IEEE
Computer Society, Los Alamitos, CA, 243–250.

Hughes, G. and Bultan, T. 2008. Automated verification of access control policies using a sat solver. Int. J.
Softw. Tools Technol. Transf. 10, 6, 503–520.

Jayaramam, K. 2012. Mohawk – Automatic Verification of Access-Control Policies.
http://code.google.com/p/mohawk/.

Jayaraman, K., Ganesh, V., Tripunitara, M., Rinard, M., and Chapin, S. 2011. Automatic error finding in
access-control policies. In Proceedings of the 18th ACM Conference on Computer and Communications
Security (CCS’11). ACM, New York, 163–174.

Jayaraman, K., Ganesh, V., Tripunitara, M., Rinard, M. C., and Chapin, S. J. 2012. Real-world case studies
of using ARBAC to enforce separation-of-duty constraints.
http://kjayaram.mysite.syr.edu/mohawk/casestudy.pdf.

Jha, S. and Reps, T. W. 2004. Model Checking SPKI/SDSI. J. Comput. Sec. 12, 3–4, 317–353.
Jha, S., Schwoon, S., Wang, H., and Reps, T. 2006. Weighted Pushdown Systems and Trust-Management

Systems. In Proceedings of TACAS. Springer-Verlag, Berlin.
Jha, S., Li, N., Tripunitara, M., Wang, Q., and Winsborough, W. 2008. Towards formal verification of role-

based access control policies. IEEE Trans. Dependable Secur. Comput. 5, 4, 242–255.
Jones, A. K., Lipton, R. J., and Snyder, L. 1976. A linear time algorithm for deciding security. In Proceedings

of the 17th Annual Symposium on Foundations of Computer Science (SFCS’76). IEEE Computer Society,
Washington, DC, 33–41.

Kern, A. 2002. Advanced features for enterprise-wide role-based access control. In Proceedings of the 18th
Annual Computer Security Applications Conference (ACSAC’02). IEEE Computer Society, Washington,
DC, 333.

Kolovski, V., Hendler, J., and Parsia, B. 2007. Analyzing web access control policies. In Proceedings of the
16th International Conference on World Wide Web (WWW’07). ACM, New York, 677–686.

Kroening, D. 2006. Computing over-approximations with bounded model checking. Electron. Notes Theor.
Comput. Sci. 144, 79–92.

Li, N. and Tripunitara, M. V. 2004. Security analysis in role-based access control. In Proceedings of the
9th ACM Symposium on Access Control Models and Technologies (SACMAT’04). ACM, New York,
126–135.

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

�

�

�

�

�

�

�

�

18:28 K. Jayaraman et al.

Li, N. and Tripunitara, M. V. 2006. Security analysis in role-based access control. ACM Trans. Inf. Syst.
Secur. 9, 4, 391–420.

Li, N., Mitchell, J. C., and Winsborough, W. H. 2005. Beyond proof-of-compliance: Security analysis in trust
management. J. ACM 52, 3, 474–514.

Martin, E. and Xie, T. 2007. A fault model and mutation testing of access control policies. In Proceedings of
the 16th International Conference on World Wide Web (WWW’07). ACM, New York, 667–676.

Motwani, R., Panigrahy, R., Saraswat, V., and Ventkatasubramanian, S. 2000. On the decidability of acces-
sibility problems (extended abstract). In Proceedings of the 32nd Annual ACM Symposium on Theory of
Computing (STOC’09). ACM, New York, 306–315.

NuSMV. 2012. http://nusmv.irst.itc.it/.
Rao, P., Lin, D., and Bertino, E. 2007. XACML function annotations. In Proceedings of the 8th IEEE In-

ternational Workshop on Policies for Distributed Systems and Networks (POLICY’07). IEEE Computer
Society, Washington, DC, 178–182.

SailPoint. 2012. Policy enforcement.
http://www.sailpoint.com/products/identity-iq/compliance-manager/policy-enforcement.php.

Saltzer, J. H. and Schroeder, M. D. 1975. The protection of information in computer systems. Proc. IEEE.
Sandhu, R., Bhamidipati, V., and Munawer, Q. 1999. The ARBAC97 model for role-based administration of

roles. ACM Trans. Inf. Syst. Secur. 2, 1, 105–135.
Sandhu, R. S. 1992. The typed access matrix model. In Proceedings of the IEEE Symposium on Research in

Security and Privacy. 122–136.
Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. 1996. Role-based access control models.

IEEE Computer 29, 2, 38–47.
Sasturkar, A., Yang, P., Stoller, S. D., and Ramakrishnan, C. 2006. Policy analysis for administrative role

based access control. In Proceedings of the 19th Computer Security Foundations Workshop. IEEE Com-
puter Society Press.

Sasturkar, A., Yang, P., Stoller, S. D., and Ramakrishnan, C. 2011. Policy analysis for administrative role-
based access control. Theoret. Comput. Sci. 412, 44, 6208–6234.

Schaad, A., Moffett, J., and Jacob, J. 2001. The role-based access control system of a European bank: A
case study and discussion. In Proceedings of the 6th ACM Symposium on Access Control Models and
Technologies. ACM, New York, 3–9.

Sohr, K., Drouineaud, M., Ahn, G.-J., and Gogolla, M. 2008. Analyzing and managing role-based access
control policies. IEEE Trans. Knowl. Data Eng. 20, 924–939.

Solworth, J. A. and Sloan, R. H. 2004. A layered design of discretionary access controls with decidable safety
properties. In Proceedings of the IEEE Symposium on Security and Privacy, 56.

Soshi, M. 2000. Safety analysis of the dynamic-typed access matrix model. In Proceedings of the Computer
Security (ESORICS 2000). Lecture Notes in Computer Science, Springer, Berlin, 106–121.

Stoller, S. D., Yang, P., Ramakrishnan, C. R., and Gofman, M. I. 2007. Efficient policy analysis for adminis-
trative role based access control. In Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security (CCS’07). ACM, New York, 445–455.

Zhang, N., Ryan, M., and Guelev, D. P. 2008. Synthesising verified access control systems through model
checking. J. Comput. Secur. 16, 1, 1–61.

Zhao, C., Heilili, N., Liu, S., and Lin, Z. 2005. Representation and reasoning on RBAC: A description logic
approach. In Proceedings of the 2nd International Colloquium on Theoretical Aspects of Computing
(ICTAC’05), (Hanoi, Vietnam, October 17–21, 2005). Lecture Notes in Computer Science, Springer,
381–393.

Received April 2012; revised July 2012, September 2012, October 2012; accepted January 2013

ACM Transactions on Information and System Security, Vol. 15, No. 4, Article 18, Publication date: April 2013.

