
Histogram-Based Global Load Balancing
in Structured Peer-to-Peer Systems

Quang Hieu Vu, Member, IEEE, Beng Chin Ooi, Martin Rinard, and Kian-Lee Tan

Abstract—Over the past few years, peer-to-peer (P2P) systems have rapidly grown in popularity and have become a dominant means

for sharing resources. In these systems, load balancing is a key challenge because nodes are often heterogeneous. While several

load-balancing schemes have been proposed in the literature, these solutions are typically ad hoc, heuristic based, and localized. In

this paper, we present a general framework, HiGLOB, for global load balancing in structured P2P systems. Each node in HiGLOB has

two key components: 1) a histogram manager maintains a histogram that reflects a global view of the distribution of the load in the

system, and 2) a load-balancing manager that redistributes the load whenever the node becomes overloaded or underloaded. We

exploit the routing metadata to partition the P2P network into nonoverlapping regions corresponding to the histogram buckets. We

propose mechanisms to keep the cost of constructing and maintaining the histograms low. We further show that our scheme can

control and bound the amount of load imbalance across the system. Finally, we demonstrate the effectiveness of HiGLOB by

instantiating it over three existing structured P2P systems: Skip Graph, BATON, and Chord. Our experimental results indicate that our

approach works well in practice.

Index Terms—Peer-to-peer, framework, load balancing, histogram, DHT, overlay network.

Ç

1 INTRODUCTION

PEER-TO-PEER (P2P) systems have emerged as an appealing
solution for sharing and locating resources over the

Internet. Several P2P systems have been successfully
deployed for a wide range of applications, such as Gnutella
[2], BitTorrent [3], Overnet [4] (file-sharing systems),
SETI@home [5] (computing sharing system), Groove [6]
(collaborative system), and Skype [7] (Internet telephony
system). In fact, a recent study showed that P2P systems
dominate up to 70 percent of Internet traffic [8]. Thus, it is
critical to design a P2P system that is scalable and efficient.

To build an efficient P2P system, researchers have turned
to structured architectures (e.g., Chord [9], CAN [10],
Tapestry [11], Pastry [12], P-Grid [13], PIER [14], and
BATON [15]), which offer a bound on search performance
as well as completeness of answers. However, one key
challenge that has not been adequately addressed in the
literature is that of load balancing. In a large-scale P2P
system, nodes often have different resource capabilities
(storage, CPU, and bandwidth) [16]. Hence, it is desirable
that each node has a load proportional to its resource
capability. Furthermore, even if the system is homogeneous
(where all nodes have the same resource capability), it is
difficult to ensure that the load is uniformly distributed
across the system because of the dynamism in P2P systems.

As a result, it is important to design mechanisms that can
balance the system load.

The basic approach to load balancing is to find a pair of
nodes—one that is heavily loaded and the other lightly
loaded—and redistribute the load across these two nodes.
However, it is far from trivial to (globally) balance the load
in a P2P system. There are two main issues in P2P’s load
balancing: 1) how to determine if a node is overloaded or
underloaded, and 2) if so, how to find a suitable partner
node with which to redistribute the load. A popular
solution [17], [18], [19] is to let each node in the system
query for the load of an arbitrary number of other nodes
periodically. If the number of queried nodes is large
enough, the node can approximate the average load of the
system, and hence, it can determine if it is overloaded or
underloaded. If the node is overloaded (or underloaded), it
redistributes its load with the queried node having the
lightest (or heaviest) load since that node should be a lightly
(or heavily) loaded node. The main problem with this
method is that it can only guarantee the global load balance
of the system with some probability. On the other hand, [20]
suggests a use of a separate DHT such as Skip Graph to
maintain the nodes’ load distribution. Nevertheless, this
solution still has a problem: it incurs a substantial cost for
maintaining complete information about the load at every
node in the system.

In this paper, we propose a new framework, called
Histogram-based Global LOad Balancing (HiGLOB) to
facilitate global load balancing in structured P2P systems.
Each node P in HiGLOB has two key components. The first
component is a histogram manager that maintains a
histogram that reflects a global view of the distribution of
the load in the system. The histogram stores statistical
information that characterizes the average load of non-
overlapping groups of nodes in the P2P network. These
nodes are connected to P through its neighbor nodes. The
histogram information can be used for two purposes. On

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009 595

. Q.H. Vu, B.C. Ooi, and K.-L. Tan are with the School of Computing,
National University of Singapore, Computing 1, Law Link, Singapore
117590. E-mail: hieuvq@nus.edu.sg, {ooibc, tankl}@comp.nus.edu.sg.

. M. Rinard is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Building 32-G744,
32 Vassar Street, Cambridge, MA 02139. E-mail: rinard@lcs.mit.edu.

Manuscript received 25 Jan. 2008; revised 18 Aug. 2008; accepted 22 Aug.
2008; published online 28 Aug. 2008.
Recommended for acceptance by A. Tomasic.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2008-01-0055.
Digital Object Identifier no. 10.1109/TKDE.2008.182.

1041-4347/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

one hand, it is used to determine if a node is normally
loaded, overloaded, or underloaded. On the other hand, it is
used to facilitate the discovery of a lightly loaded node or a
heavily loaded node for the load-balancing process when it
is needed. The second component of the system is a load-
balancing manager that takes actions to redistribute the
load whenever a node becomes overloaded or underloaded.
The load-balancing manager may redistribute the load both
statically when a new node joins the system and dynami-
cally when an existing node in the system becomes
overloaded or underloaded.

We exploit the routing metadata to partition the P2P
network into nonoverlapping regions corresponding to the
histogram buckets. We propose mechanisms to keep the
cost of constructing and maintaining the histograms low.
We further show that our scheme can control and bound the
amount of load imbalance across the system. Finally, we
demonstrate how HiGLOB can balance the load in three
existing structured P2P systems—Skip Graph [21], BATON
[15], and Chord [9]. To summarize, this paper makes the
following contributions:

. It proposes a general framework that uses histo-
grams to maintain a global view of the load
distribution on structured P2P systems. These
histograms enable efficient load-balancing algo-
rithms that can effectively control the amount of
load imbalance across the system to globally balance
the load.

. We suggest two techniques that effectively reduce the
cost of constructing and maintaining the histograms.

. We show how to apply the general framework to
three well-known structured P2P systems: Skip
Graph [21], BATON [15], and Chord [9].

. We present experimental results that characterize
the effectiveness and efficiency of the proposed
techniques.

The rest of the paper is organized as follows: In Section 2,
we review some related work. Section 3 presents the
proposed HiGLOB framework for load balancing in
structured P2P networks. In Section 4, we demonstrate
how to apply HiGLOB to several existing P2P systems.
Finally, we present results from an experimental study in
Section 5 and conclude the paper in Section 6.

2 RELATED WORK

Load balancing across multiple nodes has been widely
studied in the context of distributed systems. Techniques
that are based on static and/or dynamic methods have been
developed [17]. In static methods, load balancing is
triggered when either a new node joins the system or an
existing node leaves the system. When a new node joins the
system, it attempts to find a heavily loaded node and take
over some of the load from that node. On the other hand,
when a node leaves the system, it searches for a lightly
loaded node to pass its current load to that node. In a
different approach, dynamic methods operate when nodes
that have already joined the system become overloaded or
underloaded. The overloaded (underloaded) node looks for
a lightly (heavily) loaded node to balance the load between
them. Most P2P systems apply either one or both of these
methods for load balancing. The systems differ, however, in

how they find lightly or heavily loaded nodes and in how
the load is redistributed.

A general technique to find a lightly (heavily) loaded
node is to randomly contact a number of nodes among
which the node with the heaviest (lightest) load is
considered a heavily (lightly) loaded node [18], [19], [22],
[23], [24], [25], [26], [27]. Since this technique is based on a
randomized approach, it can only provide global load
balancing with some probability. Moreover, its effectiveness
depends on the number of contact nodes—while a small
number of contact nodes may not lead to satisfactory load
balancing, contacting a large number of nodes incurs a high
overhead since it takes OðlogNÞ effort to contact a node. To
keep the overhead low, Adler et al. [28] suggests that only
one node is randomly contacted; other contacting nodes are
just neighbor nodes of the randomly contacted node.
Similarly, in BATON [15], only neighbor nodes in the
routing tables are examined.

On the other hand, in [29], each node in the system
repeatedly checks its neighbor nodes in the maintenance
process to detect load imbalance across the system. Even
though this method is able to achieve load balance of nodes
when the system is in steady state, there is no guarantee of
load balance when the system is in dynamic state. It is
because load balancing is only done locally between
neighbor nodes. In [20], a separate Skip Graph is used to
maintain the distribution of the load across the nodes in the
system. Even though this technique can control the balance
of load among the nodes, it is expensive to maintain the
Skip Graph structure when nodes join or leave, or when
data is inserted or deleted.

A closely related work to our system is that in [30], which
also employs histograms to keep the load distribution of the
system. However, the way the system constructs and
maintains histograms is totally different from our method.
In this method, a node maintains its histogram by
periodically sampling neighbor nodes in its vicinity to get
local load distribution and exchanging this local load
information with randomly selected far-away nodes to
construct histogram. The process of selecting a far-away
node is based on a random walk algorithm in which the
node first sends a request with logN hop Time-To-Live to a
random neighbor node. After that, at each node along the
walking path, a random neighbor node of that node is
selected to forward the request. Finally, the node at the end
of the walking path returns its local load information to the
requester node. However, because of the randomness in
selecting far-away nodes, this method also suffers from the
same problems of methods that employ the randomized
paradigm: it is costly to maintain histograms, and the global
load balance can only be provided with some probability.

To balance the load between a lightly loaded node and
a heavily loaded node [18], [19], [23], [26], [27], [31], use
the concept of virtual nodes. In these systems, each peer
may keep several virtual nodes. As a result, the over-
loaded node simply needs to transfer some of its virtual
nodes to the lightly loaded node to achieve load balancing.
In case the overloaded node cannot find any virtual node
to pass to the lightly loaded node because virtual nodes
are large, the node can split a large virtual node into
smaller ones and pass some of them to the lightly loaded
node. Rao et al. [18] further proposes that the load
balancing process can also operate between a group of

596 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

several heavily loaded nodes and lightly loaded nodes at
the same time. A drawback of this technique is that it
takes more storage to keep additional virtual nodes,
consumes more bandwidth for node maintenance, and
increases query latency due to having more nodes in the
system. To overcome these limitations, instead of using
virtual nodes, the selected lightly loaded node can leave its
current position and rejoin next to the heavily loaded node
to balance the load [15], [20], [32].

Load balancing can also be handled using a preventive
mechanism that avoids load imbalance [9], [33]. In [9], each
peer node keeps exactly the same logN virtual nodes. As a
result, with high probability, the system is load balanced.
However, as discussed before, the cost of keeping addi-
tional virtual nodes at a peer is expensive. On the other
hand, Byers et al. [33] proposes that for each piece of
inserted data, multiple hash functions are used to find
multiple nodes, and the most lightly loaded node is selected
to store the data. When a data item is deleted or searched,
multiple hash functions are also used to find the node
storing the data. Nevertheless, this simple approach is not
efficient since it incurs an expensive cost for data insertion,
data deletion, and data search.

Before leaving this section, we note that there is also a
class of techniques that manage overload, e.g., caching or
replicating popular items/operations across several nodes
[34], [35], [36], [37], [38]. We do not discuss these techniques
since they are orthogonal and complementary to the load-
balancing approaches presented in this paper.

3 THE HIGLOB FRAMEWORK

In this section, we present the HiGLOB framework. We
focus on the histogram and load-balancing managers.

3.1 The Histogram Manager

The objective of the histogram manager is to maintain
statistics about the load distribution across the entire P2P
network. These statistics allow a node to know its own load
status (in comparison with other nodes in the system) and to
identify its counterpart if global load balancing is triggered.

3.1.1 Histogram Structure

In our framework, each peer node P stores an approximate
histogram, keeping the load distribution of the system. The
histogram contains several buckets, each of which keeps
statistical information about the load of a group of nodes
that is connected to P through a neighbor node. The
statistical information includes the current workload of CPU,
storage, and bandwidth of nodes in the group. Addition-
ally, to balance the load of heterogeneous nodes, the
statistical information also contains a summary of the
available resources of the group (also in terms of CPU,
storage, and bandwidth). The load of a node or group is
calculated as the ratio between the current workload and the
capability of the node or group.1 As a result, from the
histogram information, the system can balance the load
of nodes according to any one of a variety of node
capabilities—storage, CPU, or bandwidth. Since histogram
buckets have to be disjoint, different groups belonging to

different buckets have to be nonoverlapping with each
other. We define a histogram as follows:

Definition 1. A histogram of a node is constructed by
partitioning the network into nonoverlapping groups, each
of which is connected to the node by a neighbor node. Each
bucket in the histogram keeps statistical information of a group
of nodes.

Fig. 1 illustrates a histogram structure. In this figure,
node A has six neighbor nodes, and hence, its histogram
contains six buckets corresponding to six nonoverlapping
groups connected by six neighbor nodes.

To build this histogram structure, we need to be able to
partition the P2P network into several disjoint groups.
However, this is difficult since there may be multiple paths
between two nodes. In other words, a node may be
connected to the histogram owner node through different
neighbor nodes, and hence, it can belong to different groups
(violating the nonoverlapping constraint). Our solution is
based on the key observation that the routing/searching
algorithm in structured P2P systems implicitly partitions
the search space (and hence, the network) into nonoverlap-
ping regions. When a node processes a query, it always
forwards the query to the farthest neighbor node in the
routing table that does not overshoot the searched key. In
this way, after each search step, the search region is reduced
to a group of nodes falling between the neighbor node
receiving the query and the next neighbor node following
that node in the routing table. In other words, neighbor
nodes in the routing table virtually separate the whole
network into search regions, and each node in the network
belongs to exactly one of these search regions. As a result,
we propose that nonoverlapping groups are formed in the
same way: for each group of nodes connected by a neighbor
node in the histogram, it contains all nodes in the search
region limited to that neighbor node. We note that how
search regions are formed depends on specific systems. We
will defer this discussion to the next section. With the
histogram structure, we derive an important theorem.

Theorem 1. If the maximum imbalance ratio between the load of
a node and the average load of a group of nodes in its histogram
is k, the maximum load imbalance ratio of the system, which is
the load ratio between the heaviest loaded node and the lightest
loaded node, is k2.

VU ET AL.: HISTOGRAM-BASED GLOBAL LOAD BALANCING IN STRUCTURED PEER-TO-PEER SYSTEMS 597

1. If nodes are homogeneous, the load of a node or group is simply the
current workload of that node or group.

Fig. 1. Histogram structure.

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

Proof. Let N be the number of nodes in the system, x and y
be respectively the heaviest loaded node and the lightest
loaded node of the system, wx and wy be their loads, and
A be the average load of the whole system.

Since there are no groups in the histogram of x, whose
average load is less than wx

k , the total load of the whole
system cannot be less than

ðN � 1Þ � wx
k
þ wx:

In other words

N � A � ðN � 1Þ � wx
k
þ wx) wx �

N �A � k
N � 1þ k : ð1Þ

Similarly, since there are no groups in the histogram
of y, whose average load is greater than wy � k, the total
load of the whole system cannot be greater than

ðN � 1Þ � wy � kþ wy:

In other words

N �A � ðN � 1Þ � wy � kþ wy) wy �
N � A

ðN � 1Þ � kþ 1
: ð2Þ

Combining (1) and (2) yields

) wx
wy
� N �A � k
N � 1þ k �

ðN � 1Þ � kþ 1

N �A

) wx
wy
� k

2 � ðN � 1þ kÞ � ðk3 � kÞ
N � 1þ k < k2; 8k > 1:

tu

3.1.2 Histogram Construction and Maintenance

The load distribution histogram of a node is first con-
structed when the node joins the system. Later, histogram
values can be updated when the load distribution of the
system changes. To construct a histogram, a node needs
information from all neighbor nodes connected to it. To
update a histogram or a bucket value, a node only needs
updated information from the neighbor node connected to
the corresponding group of that bucket. Specifically, when a
new node joins the system, all of its neighbor nodes must
send it their histogram or the part of their histogram that
contains necessary information for constructing a new
histogram to it. For histogram maintenance, when there is
any change in the load of a node, the node informs its
neighbor nodes about the change. When a node receives an
update histogram message from a neighbor node, it updates
the average load of the group of nodes connected by that
neighbor node. After that the node continues to notify other
neighbor nodes but the sender about the change. Details of
how to construct and update histograms depend totally on
specific systems. We shall discuss this in Section 4.

3.1.3 Improvement Techniques

While histograms are useful, the cost of constructing and
maintaining them may be expensive especially in dynamic
systems. As a result, we introduce two techniques that
reduce the maintenance cost.

. Reduce the cost of constructing histogram. Con-
structing a histogram for a new node may be

expensive since it requires histogram information
from all neighbor nodes. Additionally, the histo-
grams of the new node’s neighbors also need to be
updated since adding a new node to a group of
nodes changes the average load of that group.
Constructing and maintaining histograms may
therefore be expensive if nodes join and leave the
system frequently. In light of the fact that every new
node in the P2P system must find and notify its
neighbor nodes about its existence while these
neighbor nodes need to send their information to
the new node to setup connections after that, we
suggest that histogram information can be piggy-
backed with messages used in this process. In this
way, we can avoid sending separate histogram
messages and totally eliminate the effect of node
join on the histogram construction of the new node
and histogram update of its neighbor nodes. The
overhead cost of using histograms is now solely
based on histogram update messages caused by
changing of load at nodes in the system.

. Reduce the cost of maintaining histogram. Main-
taining histograms can be expensive since any load
change at a node causes an update to be propagated to
all other nodes in the system. To avoid this propaga-
tion, we suggest that we do not need to keep exact
histogram values. We only need to keep approximate
values in the histogram. A node only needs to send
load information to other nodes when there is a
significant change in either its load or the average load
of a nonoverlapping group in its histogram.

To manage when a node should calculate and send
updated information to other nodes, we define a configur-
able parameter � ð� > 1) in our framework. A node only
needs to send its updated load to its neighbor nodes if the
ratio between the new load and the previous load, which
was sent before, is greater than �. When a node receives an
update histogram message, it first updates its histogram. If
there is any nonoverlapping group in its histogram, whose
average load changes by a factor of � compared to the
previous average load, which caused update before, the
node continues to update other neighbor nodes except
the sender and other nodes, which may receive updated
information from the sender node about the change. The
effect of updating is now similar to a wave in that it
propagates from the center of the region where a change
happens to neighbor regions. It stops when the change
reduces its effect (usually after only one or a few times of
updating). As a result, only a small part of the system is
updated. An example is shown in Fig. 2 in which a major
change at node A may affect updating histograms at its
neighbor nodes B, C, D, E, F , and G first. After that, the
update process may continue at C1 and C2.

Clearly, if � is set to a low value, it is still costly for updating
histograms as the updating process may be triggered often.
On the other hand, if � is set with a high value, the load
imbalance between nodes may be high because there may be a
big difference between the real load value of a nonoverlap-
ping group and its stored value in the histogram. As a
result, depending on specific applications, an appropriate
value of � should be chosen. Since the ratio between values in
the histogram and the real values can be as much as �, the
actual maximum imbalance ratio between load of a node and

598 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

the average load of a group of nodes in its histogram is k � �.
Following Theorem 1, the maximum load imbalance ratio of
the system is ðk � �Þ2. It means that if we want to guarantee the
maximum load imbalance ratio of the system is always less
than an � value, we can set ðk � �Þ2 < � or � <

ffiffi

�
p

k .
Additionally, to further reduce the cost of updating

histogram, we also use the same technique as in the
previous section: histogram information is piggy-backed
with network messages. As a result, even though loads of
nodes can be changed, update messages happen rarely.

3.2 The Load-Balancing Manager

In our framework, load balancing is done both statically
when a new node joins the system or an existing node
leaves the system and dynamically when an existing node
in the system becomes overloaded or underloaded. In static
load balancing, a new node needs to find a heavily loaded
node to join as an adjacent node while an existing node
wishing to leave the system needs to find a lightly loaded
node to shed its workload. On the other hand, dynamic load
balancing is realized by either local load balancing or
network load balancing. In local load balancing, an over-
loaded or underloaded node performs load balancing with
its adjacent nodes; while in network load balancing, an
overloaded or underloaded node needs to find a lightly or
heavily loaded node to do load balancing. In this case, the
underloaded or lightly loaded node needs to leave its
current position and joins as an adjacent node of the
overloaded or heavily loaded node. In particular, a node
only performs network load balancing if it cannot perform
local load balancing. The rationale for this strategy is to
minimize the overhead of network load balancing. In
general, the load balancing algorithm aims to achieve
global load balancing, which is defined as follows:

Definition 2. The Peer-to-Peer system is globally load balanced if
none of the nodes in the system is overloaded or underloaded.

There are two issues in this algorithm: 1) how a node
knows that it is overloaded or underloaded, and 2) how a
lightly or heavily loaded node can be found in the system.
The rest of this section introduces solutions for these issues
based on histogram information.

Definition 3. A node is overloaded if its load is greater than
twice of the average load of any group in its histogram,
whereas it is underloaded if its load is smaller than half of the
average load of any group in its histogram.

The above definitions imply that if the load of a node is
either greater than two times or less than half of the average
load of any group in its histogram, load balancing can be
triggered to bring a better load balance for nodes ðk ¼ 2Þ. To
understand the rationale for this definition, let us assume
that the load of a node x is wx. We show that we can always
do load balancing to make the system better when there is a
group G in the histogram of x whose average load is either
less than wx

2 (x is an overloaded node) or greater than 2 � wx
(x is an underloaded node). Let us consider three possible
cases of G, where we assume that x is an overloaded node,
and x can always shed its load to another node, i.e., x is not
overloaded by a single large job (if x is an underloaded
node, an opposite process can be executed).

Case 1. Group G contains only one node y. In this case, y
checks the load of its two adjacent nodes. Let t be the
total load of y and its adjacent nodes. If t < 2 � wx, y passes its
load to its adjacent nodes so that each adjacent node has a
load less than wx. After that, y leaves its position and rejoins
as an adjacent node of x. The system is now better balanced.
On the other hand, if t � 2 � wx, y steals some load from its
adjacent nodes so that both the load of y and its adjacent
nodes are greater than wx

2 . As a result, x is not overloaded at
all. Nevertheless, the system is also better balanced.

Case 2. Group G contains an even number of nodes. In
this case, we divide all nodes in the group into pairs of
adjacent nodes. Since the average load of the group is less
than wx

2 , there must be a pair of adjacent nodes, whose total
load is less than wx

2 . A node in this pair can pass its load to
the remaining node, leave its position, and rejoin as an
adjacent node of x to make the system more balanced.

Case 3. Group G contains an odd number of nodes
greater than one. In this case, we divide all nodes in the
group but one single node into pairs of adjacent nodes.
Since the average load of the group is less than wx

2 , there
must be either a pair of adjacent nodes, whose total load is
less than wx

2 , or the load of the single node is less than wx
2 .

The former case performs load balancing as in Case 2, while
the later case performs load balancing as in Case 1. As a
result, the system is better balanced.

Note that 1) in practice, usually if a node is overloaded or
underloaded, it does not trigger load balancing immedi-
ately. Instead, it waits for a predefined period of time to
recheck the condition again. If the node is still overloaded
or underloaded, load balancing is actually triggered. 2) The
reason why we choose k ¼ 2 is because this value leads to
the most efficient way to perform load balancing. If k < 2,
the three above cases cannot be always applied. In this
case, the system may need to perform load balancing by
ripping data through adjacent nodes, which is not efficient.

From the way we construct histograms at nodes, the
algorithm for finding a lightly or heavily loaded node is
designed as follows: The node initializing the search
process selects in its histogram the group of nodes that
has the lightest or heaviest load and sends the search
request to the neighbor node connected to that group. In
addition to the search request, the node also specifies the
limited region, which the receiver node can check for finding
a lightly or heavily loaded node. The limited region is the
search region falling between the receiver node and the
following node in the routing table of the sender node.
When a node x receives a request of finding a lightly or
heavily loaded node, it checks its load and the average

VU ET AL.: HISTOGRAM-BASED GLOBAL LOAD BALANCING IN STRUCTURED PEER-TO-PEER SYSTEMS 599

Fig. 2. Histogram update.

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

loads of the groups of nodes, which fall in the limited region.
If the load of x is the lightest or heaviest, the process stops; x
is a lightly or heavily loaded node. Otherwise, x selects the
lightest or heaviest group among groups in the limited region
and continues to forward the search request to the neighbor
node connected to that group.

Note that there are two reasons why the receiver node
only needs to search a lightly or heavily loaded node in the
limited region. First, it is unnecessary to make a comparison
among all groups of nodes in the histogram since in the
previous step, the sender node has decided that this limited
region has the lightest or heaviest load compared to other
places. Second, if we make a comparison among all groups,
the search request may loop back to the sender node since
histogram values of nodes may be inconsistent due to the
fact that it takes sometime to propagate a change in load of
nodes through the network when it happens.

Theorem 2. The maximum number of steps for finding a lightly
or heavily loaded node is bounded by the maximum number of
steps needed for searching in the system.

Proof. Since we form groups of nodes in the histogram as
the way the search process limits its search regions by
neighbor links, whenever a request of finding a lightly or
heavily loaded node is sent to a neighbor node, it can be
considered as a search request whose destination node is
inside that region. In other words, when a node x wants
to find a lightly or heavily loaded node, which is node y,
the request is processed in a similar way as in the process
of finding a value stored at node y and started at node x.
In consequence, the maximum number of steps for
finding a lightly or heavily loaded node is exactly the
same as the maximum number of steps needed for
processing a query in the system. tu
Since the cost of searching in P2P systems is usually

OðlogNÞ, the expected cost of finding a lightly or heavily
loaded node is also OðlogNÞ. Once the lightly or heavily
loaded node is found, it takes only one step to perform load
balancing (the underloaded or lightly loaded node leaves its
current position and joins as an adjacent node of the
overloaded or heavily loaded node). As a result, the waiting
time for performing load balancing is bounded at OðlogNÞ.

The overall load-balancing algorithm, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2008.182, can
be described as State describes possible states of a node;
Transition describes when a node changes its state;
Procedure describes in detail procedures used in load
balancing process; and Message describes messages a node
may receive and how they are processed. P is the current
processing node. Note that this description does not include
static load balancing, which happens at either the time a
new node joins the system or the time an existing node
leaves the system. For static load balancing, when a new
node joins the system, it uses the procedure FindHeavy-

Node to find a heavily loaded node and joins next to that
node to share a part of that node’s workload. On the other
hand, when an existing node leaves the system, it uses the
procedure FindLightNode to find a lightly loaded node to
shed its workload.

3.3 The General Framework

To summarize, our general framework as described in Fig. 3
comprises three components built on top of the basic
overlay network. The first component contains overridden
methods, which extend the original methods for piggy-
backed histogram information, as discussed in Section 3.1.3.
The other two components are the Histogram Manager,
which is in charge of managing histogram information, and
the Load Balancing Manager, which has a responsibility for
load balancing among nodes in the system. These two
components contain abstract methods to be implemented
depending on specific systems.

4 LOAD-BALANCED P2P SYSTEMS

In this section, we demonstrate how three well-known
structured P2P Systems, which are very different in the
overlay network, can be HiGLOB enabled to support global
load balancing. These systems are Skip Graph [21], which
employs a Skip List structure, BATON [15], which is based
on a tree structure, and Chord [9], which utilizes a ring
structure.

4.1 Skip Graph

Skip Graph [21] is based on the Skip List [39] structure,
which is a multiple-sorted double-linked list. Unlike Skip
List, where there is only one list at each level, a Skip Graph
has many lists at a level. Each node in the system
participates in a list at each level. The list to which a node
belongs is controlled by a randomly assigned membership
vector created when the node joins the system. In this way,
a Skip Graph can be considered as a set of many skip lists,
which share their lower levels. A Skip Graph structure is
illustrated in Fig. 4.

Searching in Skip Graph is based on the same principle
as searching in Skip List except a minor difference. Instead
of sending a search query from a low-level node to a high-
level node, in a Skip Graph, when a node issues a query,
the search process always starts at the highest level of that
node. At each step, if there is a neighbor node at the same
level, which keeps a closer value to the search key, the
node forwards the query to that neighbor node. Other-
wise, the node continues the search process at a lower
level. The destination node containing the result is found
when the search process reaches the bottom level.

600 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Fig. 3. The general framework.

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

4.1.1 Histogram Structure

From the way a query is processed in Skip Graph, if a
node x sends a query to a neighbor node y at level l, the
search region is determined in one of the following ways
depending on the scenarios:

1. In the first scenario, let z be a neighbor node of x at
the nearest level higher than l on the same side (or
direction) of x as y. Then, the search region is given
by all nodes falling between y and z.

2. In the second scenario, node z as described in the
first case does not exist. In this case, the search
region consists of all nodes following y on the same
side of x. As a result, a nonoverlapping group in a
histogram in the Skip Graph can be defined as a
group formed by all nodes falling between two
consecutive neighbor nodes or all nodes following
the farthest neighbor node of a node on the same
side of that node.

As an example, consider Fig. 5. Assume that a query is
sent from node D to node C at level 1, the search region is
limited to all nodes between C and A since A is the next
neighbor node of D at a higher level (which is level 2). As a
result, the nonoverlapping group connected by node C in
the histogram of node D includes two nodes C and B. On
the other hand, if a query is sent from D to E at level 0, the
search region is limited to all nodes following E on the
same side of D since there is no other neighbor nodes of D
at a higher level on the same side with E. Therefore, the
nonoverlapping group connected by node E in the
histogram includes two nodes E and F .

4.1.2 Histogram Construction

Based on the histogram structure described above, we now
design the algorithms for constructing and maintaining
histograms in Skip Graph.

As discussed in Section 3.1.2, a new node needs all of its
neighbor nodes to send the necessary information to it for
constructing the histogram. The question now is what
information neighbor nodes should send to the new node?
It is impossible for a neighbor node to send the load of
every node in the nonoverlapping group connected by it
because there is no way to get such information from a
histogram. The neighbor node cannot send the average load
of the nonoverlapping group either because it does not
know which node is the next neighbor node of the new
node at a higher level. Instead, a neighbor node x needs to
send to the new node the summary of load and capacity of
all nodes following x on the opposite side with the new

node together with the load and capacity of x itself. These
values can be calculated from histogram values of non-
overlapping groups representing these nodes. Note that for
the computation to be done, the histogram value of a
nonoverlapping group must be represented by a pair of the
total load and the total capacity of all nodes in that group.
For example, as in Fig. 5, the stored value of a group of
nodes connected through node C at D should be (11, 20)
instead of the average load result 0.55. From now on, we
always imply the average load as a pair of such information
even though we only show the calculated average loads in
the figures to simplify the presentation.

When a new node receives all the necessary information
from its neighbor nodes, it can construct its histogram. The
average load of a group connected by a node y is calculated
from the received information from y and the next neighbor
node z at the nearest higher level on the same side.

For example, assume that a new node G joins the
network at a position between E and F , and it has a
membership vector with prefix “01,” as in Fig. 6. After
joining, G has four different neighbor nodes: C, D, E, and
F . As described above, C needs to send to G the average
load of all nodes on the opposite side of G, which are A, B,
and C. In other words, C needs to send to G the summary of
load and capacity of A, B, and C, which is (18, 30)—the first
parameter is the total load, while the second parameter is

VU ET AL.: HISTOGRAM-BASED GLOBAL LOAD BALANCING IN STRUCTURED PEER-TO-PEER SYSTEMS 601

Fig. 4. A skip graph with three levels.

Fig. 5. Histogram structure in Skip Graph.

Fig. 6. Histogram construction for a new node in Skip Graph.

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

the total capacity. Similarly, D, E, and F respectively send

to G (24, 42), (30, 54), and (4, 8). Finally, from the received

information, G can calculate the average load of these four

nonoverlapping groups connected by C, D, E, and F to
build its histogram.

4.1.3 Histogram Maintenance

When the load of a node changes by a factor �, the node has to

send updated information to all of its neighbor nodes.
Similar to the information a node has to send to a new node,

the node sends to every neighbor node on its left side the

summary of load and capacity of all nodes on its right side,

including its load and capacity, and vice versa. When a node
receives updated information request from its neighbor x, it

recalculates the histogram value associated with x by

subtracting the received value with the summary value of

all nodes following x on the same side of that node. After
that, if the new average load value of the nonoverlapping

group connected by x changes by a factor � compared to the

previous average load, which triggered histogram update

before, the node continues to send updated information to
every neighbor node in the opposite side, with x satisfying

two conditions: 1) the neighbor node is not connected

directly to x, and 2) the nonoverlapping group connected

by the node at that neighbor node includes node x. These two
conditions can be checked easily at the node.

For example, let us continue the previous example in
Fig. 6 and assume that � is set to 1.5. Now, if the load of E

increases to 9, E has to send an updated information

message to all of its neighbor nodes. In particular, E sends

(33, 54) to G and F , and (15, 24) to D and B. When G, F , and
B receive the updated information message, they recalcu-

late the average load of the region connected by E and the

process stops. However, when node D receives the updated

information message, since C satisfies two conditions
described above while the average load of the nonoverlap-

ping group connected by E at D also changes 1.5 (this

group contains only one node E), D needs to send updated

information to C. As a result, D calculates and sends an
updated information message (21, 36) to C. Finally, C

recalculates the average load of the nonoverlapping region

connected by D and the process stops. Note that in this

example, we can also see the wave effect of the histogram
update process in the system: a change of load at node E is

propagated to G, F , D, and B, then continues to C from D.

4.2 BATON

BAlanced Tree Overlay Network (BATON) [15] is a
structure based on a binary balanced tree in which each
peer in the network maintains a node of the tree. A node has
connections to other nodes by four different kinds of links: a
parent link pointing to the parent node; child links pointing
to child nodes; adjacent links pointing to adjacent nodes,
which maintain adjacent ranges of values; and neighbor
links pointing to selected neighbor nodes, which are nodes
at the same level, having distances equal to a power of two
from the node. In BATON, data stored at nodes is ordered
increasingly from the left to the right of the tree. An
example of BATON is shown in Fig. 7.

In BATON, when a node x processes a query, if the
searched key does not fall into the range of values managed
by x, x forwards the query to the farthest neighbor node in
the routing table, which is nearer to the searched key. If
there is no such neighbor node, x forwards the query to
either a child (if it exists) or an adjacent node of x in the
search direction. In particular, if x is a leaf node without a
full routing table on the search direction, x always forwards
the query to its parent node for processing.

4.2.1 Histogram Structure

A difficulty arises in defining nonoverlapping groups for a
histogram in BATON. The search region, which is bounded
by a query when it is sent from a node to its child, always
includes the adjacent node of that node on the same search
direction (the adjacent node is either a descendant node of
the child node or the child node itself). As a result, there is
no way to define nonoverlapping groups connected by both
child link and adjacent link of a node at the same side.
Furthermore, if a node has full routing tables, its parent link
is never used in query processing, and hence, there should
be no group connected by the parent link. It means that we
cannot strictly follow the rule of the general framework,
which requires every link to be associated with a
nonoverlapping group to form a bucket in the histogram
structure. Instead, we suggest that a node only uses a subset
of links to build its histogram given that the union of all
nonoverlapping groups connected by links in this subset
still covers the whole system. In particular, we only create
nonoverlapping groups connected by child links and
neighbor links, as in Fig. 8, with two exceptions. First, if a
node does not have a child, the nonoverlapping group,

602 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Fig. 7. BATON structure.

Fig. 8. Histogram structure in BATON.

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

which contains nodes falling between the node and the first
neighbor node on the direction of the missing child, is
connected by the adjacent node on that direction.

For example, node J in Fig. 8 has a histogram with
nonoverlapping groups connected by nodes B, E, H, I, K,
L, and N (B and E are adjacent nodes of J). The values are
respectively 0.53, 0.56, 0.75, 0.61, 0.66, 0.61, and 0.65. Second,
if a node does not have full routing table, it always asks its
parent to find a lightly or heavily loaded node as in the
search algorithm, and hence, it does not need to keep exact
histogram values for this node.

4.2.2 Histogram Construction and Maintenance

The way histogram is constructed and maintained in
BATON is similar to that of Skip Graph. When a new node
joins the system, all of its neighbor nodes have to calculate
and send the summary of load and capacity of themselves
and all nodes following their position on the same side of
the new node from their histogram values. However, in
BATON, the histogram values are not recalculated right
away if the new node does not have full routing tables.
These values are kept until the node has full routing tables.
At that time, histogram values are recalculated. The
histogram values of nonoverlapping groups, which contain
nodes falling between the node and the first neighbor node,
are calculated with additional information from histogram
values of the parent node. When the load of a node is
changed, it sends updated information, which is calculated
in the same way as in the process of histogram construction,
to all of its neighbor nodes. The following update propaga-
tion is also similar to that of Skip Graph.

4.3 CHORD

Chord [9] is built on a structure in which nodes are ordered
to form a ring—an identifier circle modulo 2m according to
their identifier. A data item with identifier d is assigned to
the first node x whose identifier is equal to or follows d in
the identifier space (x is called successor of d). For routing
purposes, each node n in the network maintains an m-entry
key routing table called finger table in which the ith entry
contains the identifier of the first node s that succeeds n by
at least 2i�1 on the identifier circle. In other words, s is the
successor of ðnþ 2i�1Þ. Besides the finger table, each node
also maintains a link to its predecessor node, which is the
immediate node before the node in the Chord ring. Fig. 9

shows the structure of an eight-node Chord ring with three
online nodes.

Since a data item in Chord is stored at its successor node,
the target of the search algorithm is to find such a node. As
a result, when a node n issues or receives a query request q,
if n is not the successor node x of the query value v, it has to
send q to x. However, if n does not know x, it has to send q
to the immediate predecessor y of v first since the successor
of the immediate predecessor of v is exactly the successor v,
which is x. After that, y can continue to forward q to x.
Nevertheless, if n does not know y either, it has to look into
its finger table to find a node closest to and before v in the
identifier space and forwards q to that node. By repeating
this process, q is forwarded to y and then to x for
processing.

It is important to note that since the original version of
Chord uses consistent hashing that distributes data
uniformly, it cannot support range queries. To avoid this
problem, many variants of Chord such as [40] have been
proposed. These extended versions support range queries
by using order-preserving hash functions. This way,
however, invalidates some properties of Chord and
cannot guarantee uniform data distribution.

4.3.1 Histogram Structure

In the search algorithm described above, whenever a
node sends a query to a neighbor node in its finger table,
the search region is limited to that node and the
following node of that node in the finger table since that
node is a predecessor of the searched key while the
following node is a successor of the searched key. In case
the node receiving the query is the last node in the finger
table, the search region is limited to that node and the
immediate predecessor of the current node. Therefore,
the non-overlapping groups in a histogram are formed in
the same way and are described in Fig. 10.

4.3.2 Histogram Construction

Among the three systems, Chord is the most difficult
system to construct and maintain a global histogram. Unlike
Skip Graph and Baton where neighbor nodes of a new node
always share the end horizon that is either the minimum or
maximum value, Chord has no end because of the circle
structure. As a result, we cannot construct a histogram for a
new node using the same technique of Skip Graph and
Baton. Alternatively, realizing that in the search algorithm,
at each step, the sender node can calculate the average load
of the region between it and the receiver from its histogram,

VU ET AL.: HISTOGRAM-BASED GLOBAL LOAD BALANCING IN STRUCTURED PEER-TO-PEER SYSTEMS 603

Fig. 9. A Chord ring.

Fig. 10. Histogram structure in Chord.

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

we propose that the average load of a nonoverlapping
group connected by a neighbor of a new node can be
calculated by aggregating the load values during the search
process. In other words, the average load of the nonover-
lapping group connected by the first node in the finger table
is calculated on the way a query is sent from the first node
to the second node. Similarly, the average load of the
second nonoverlapping group is calculated on the way a
query is sent from the second node to the third node and so
on. Finally, the average load of the last nonoverlapping
group is calculated from the load information of the whole
system, which can be calculated from a histogram of any
existing node, and loads of other nonoverlapping groups,
which are calculated before. Note that, in this way, the
algorithm for constructing the finger table of a new node
has to be modified if we do not want to separate the process
of constructing the finger table and the process of
constructing histogram. Basically, a neighbor node at
position iþ 1 in the finger table is always looked up from
a neighbor node at position i instead of from the
predecessor node, as in the original method. Nevertheless,
this modification does not affect the cost of constructing the
finger table.

4.3.3 Histogram Maintenance

Histogram updating in Chord is also different from other

systems. When the load of a node changes by a factor of �,

the node does not send an updated information message to

its neighbor nodes since neighbor nodes are not nodes

having links to it. Instead, the node sends the update

message to logN nodes, which are nodes preceding its

2i positions in the Chord ring (if there is a position without

an available node, the nearest node preceding that position

is sent the message). If a node x receives an update request

targeting at it, x checks its routing table to see if the sender

is in or not. If the sender node is a neighbor of x, x

recalculates its histogram and continues to send an update

message to other nodes if necessary. An issue with this

process is that it is expensive since a node needs

approximately logN messages for every update operation.

To deal with it, we have two solutions. The first solution is

to use a variant of Chord, which supports bidirectional links

such as that in [41], and hence, update messages can be sent

directly to neighbor nodes and are processed as in Skip

Graph and BATON. The second solution is to change the

histogram update process as follows: When the load of a

node changes by a factor of �, the node sends updated

information to only its predecessor node. When a node

receives an update message from its immediate successor

node, it recalculates its histogram and continues to update

its predecessor node if there is any signification change in

nonoverlapping groups. Even though the second solution

cannot tighten the ratio between the real average load of a

group and the stored value in a histogram within � with

high probability, this ratio is still in the range. It is because a

load change of a node x often has a significant impact to

only a few preceding nodes of x. For far away nodes,

nonoverlapping groups containing x usually are big

groups, and hence, a load change of a node does not

always have significant impact. Nevertheless, if many

nodes in the same group change their load, the updating

process should also be propagated long enough for

updating histograms of these far away nodes.

5 EXPERIMENTAL STUDY

To evaluate the performance of our proposal, we built a
simulator for our framework on which we implemented the
three structured P2P systems: Skip Graph [21], BATON [15],
and Chord [9]. For Chord, we implemented the second
solution for histogram update since we want to employ our
system on the original Chord structure. As noted in
Section 4.3, Chord has two main versions, and since the
extended version has been widely used for supporting
range queries, we shall evaluate the performance of such
extension as well. We call the extended version, Chord�, to
distinguish it from Chord.

The simulator is used to test the storage load distribution
on large-scale networks from 1,000 to 10,000 nodes over
PlanetLab [42], a testbed for large-scale distributed systems.
For each network size N , we insert a data set of 100 �N data
items each of which has the same size. In this way, the work
load of a node is simply the number of data item stored at that
node. We tested the system in three different network types:

1. Type-I is a homogeneous system with skewed data
distribution,

2. Type-II is a heterogeneous system with uniform data
distribution, and

3. Type-III is a heterogeneous system with skewed data
distribution.

Note that since the original version of Chord uses
consistent hashing, which distributes data uniformly, this
version can only be used to test with Type-II network.

To generate heterogeneous nodes, we used a real data set
from that in [16], which measures the amount of shared
data at nodes in the Gnutella system (we assume that the
storage capability of nodes is proportional to the amount of
data they share or store in the data set). To generate skewed
data distribution, we used the Zipfian method with
parameter 1.0. The default values of the network size and
� are 10,000 and 2.0.

5.1 Load Balancing

We first study the effect of our load-balancing method on
the three different network types. We use the following
simple load balancing method for comparison: a node
contacts all nodes in its routing table to find a lightly or
heavily loaded node to balance its load. The results of the
load distribution of nodes of both methods are shown in
Figs. 11a, 11b, and 11c. In these figures, the x-axis displays
the percentage of nodes, while the y-axis displays the
percentage of load stored by the corresponding percentage
of nodes. The ideal line represents the capacity distribution
of nodes in the systems. Note that in Fig. 11a, nodes are
ordered decreasingly by their load, while in Figs. 11b and
11c, nodes are ordered decreasingly by their capacity. The
results confirm that in all network types, the HiGLOB-
enabled system outperforms its simple counterpart, i.e., our
methods have a much better load balance than the simple
method. A better result is also reflected in the maximum

604 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

load imbalance ratio of nodes in the systems, as displayed
in Fig. 12a, 12b, and 12c. In the HiGLOB-enabled methods,
this maximum load imbalance ratio value varies from 6 to 8,

while in the simple method, the value varies from 25 to 36.
We further look into the details of the change of this value
along the time line of the experiment of Type-II network in
Fig. 13. The result shows that this maximum load imbalance
ratio value of the simple method increases significantly
along the time line, while this value in our systems only
increases slightly in the first half of the experiment and does
not change much in the second half of the experiment. The

increase of this value along the time line is caused simply by
having more loads in the system (in the experiments data,
items are inserted to the system gradually). However, note
that this value does not increase in our systems after
sometime, while it still increases in the simple method.
Furthermore, as expected, the maximum load imbalance
ratio value of in our systems is always controlled within a
boundary—less than ð2 � �Þ2 ¼ ð2 � 2Þ2 ¼ 16.

5.2 Cost of Load Balancing

We next study the overhead of realizing global load
balance. We compare our HiGLOB-enabled method with
three other methods as follows:

1. In the first method, a node selects a lightly or
heavily loaded node when needed by randomly
asking logN nodes (they are not nodes in the
routing table as in the simple load-balancing
scheme). By randomly picking nodes in the system,
the method improves the chance of finding a
globally underloaded or overloaded node, and
hence, load balancing is better than that of the
simple load balancing scheme. However, the cost is

more expensive since each look-up node requires
logN efforts.

2. In the second method, we use a separate Skip Graph
for keeping load distribution of nodes, as in [20].

3. In the third method, we also use histograms for
keeping load distribution of nodes. However, in this
method, nodes construct and maintain histograms
by sampling neighbor nodes and exchanging these
sample loads results with randomly selected far-
away nodes, as in [30].

We configure parameters so that the expected maximum
load imbalance ratio is approximately equal in all the three
systems, and hence, the load distribution is also approxi-
mately equal with high probability. In particular, the
maximum load imbalance ratio of these three systems in
this experiment is displayed in Fig. 14, while the cost of load
balancing of these three systems (in terms of the average
number of extra messages required at each node in the
whole experiment) is displayed in Fig. 15. The results show
that our HiGLOB enabled systems have a much lower

VU ET AL.: HISTOGRAM-BASED GLOBAL LOAD BALANCING IN STRUCTURED PEER-TO-PEER SYSTEMS 605

Fig. 11. Load distribution of nodes. (a) Type-I network (homogeneous nodes, skewed data distribution). (b) Type-I network (homogeneous nodes,

skewed data distribution). (c) Type-III network (heterogeneous nodes, skewed data distribution).

Fig. 12. Maximum load imbalance ratio of nodes. (a) Type-I network (homogeneous nodes, skewed data distribution). (b) Type-I network
(homogeneous nodes, skewed data distribution). (c) Type-III network (heterogeneous nodes, skewed data distribution).

Fig. 13. The change of the maximum load imbalance ratio value along

the experiment time line in Type-II network (heterogeneous nodes,

uniform data distribution).

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

overhead in comparison to the other two methods:
approximately 30 extra messages at each node. We note
that in the random choices and histogram-variant methods,
there are some points in the experiment timeline when the
maximum load imbalance ratio still goes beyond 20. These
values we put in the graphs are just values measured at the
end of experiments after the system becomes stable.

5.3 Effect of Varying � Value

In this experiment, we investigate the effect of varying
� value on the cost of load balancing as well as the

maximum load imbalance ratio of nodes in the system
while keeping the network size unchanged. Since the effect
is similar in different network types, we only show the
results of Type-II network in Fig. 16. The figure displays the
average number of extra messages required at each node for
load balancing. The result shows that when � is increased,
the load balancing cost is reduced. It is because it takes
longer time for a histogram update request to be triggered.
On the other hand, when � is increased, the difference
between the real load of a region and the load of that region
stored in a histogram is higher. As a result, the maximum
load imbalance ratio of nodes in the system is increased too
(see Fig. 16b).

It is not surprising that Chord and Chord� produce

similar results since their structures are identical. However,

compared to BATON and Skip Graph, the results are

different. This is because these systems have different

histogram structures and different strategies for construct-

ing and maintaining histograms, as presented in previous

sections. In particular, in terms of the load balancing cost,

Chord versions have the lowest cost compared to BATON

and Skip Graph. This is because among three structures,

Chord has the smallest average histogram size due to the

smallest routing table size. The maximum number of

different neighbor nodes in a routing table in Chord is just

logN while that in BATON and Skip Graph can be up to

2 � logN . On the other hand, since the size of histogram in

BATON and Skip Graph are approximately equal, the load

balancing cost of BATON and Skip Graph are indistin-

guishable. In terms of the maximum load imbalance ratio,

the result of Chord versions is the worst, while those of

BATON and Skip Graph are better. However, this result is

not mainly caused by the smaller histogram size in Chord.

Instead, the main reason comes from the delay of the

update strategy in Chord since the histogram update of a

node is only forwarded to the predecessor node step by

606 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Fig. 14. Maximum load imbalance ratio of nodes. (a) Type-I network (homogeneous nodes, skewed data distribution). (b) Type-II network
(heterogeneous nodes, uniform data distribution). (c) Type-III network (heterogeneous nodes, skewed data distribution).

Fig. 15. Cost of load balancing. (a) Type-I network (homogeneous nodes, skewed data distribution). (b) Type-II network (heterogeneous nodes,
uniform data distribution). (c) Type-III network (heterogeneous nodes, skewed data distribution).

Fig. 16. Effect of varying � value in Type-II network (heterogeneous
nodes, uniform data distribution). (a) Cost of load balancing.
(b) Maximum load imbalance ratio.

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

step. Therefore, it takes longer time to update histogram

values of a nonoverlapping group from a far away node.

Nevertheless, the difference is not much. The results of

maximum load imbalance ratio of BATON and Skip Graph

are again indistinguishable since these two systems apply

the similar strategy in constructing and maintaining

histograms.

5.4 Effect of Varying Network Size

Finally, we study the effect of varying network size on the
load-balancing cost while keeping � unchanged. Fig. 17
shows the load balancing cost of Type-II network in terms
of the average number of extra messages required at each
node, as in previous graphs. The result shows that the cost
increases logarithmically with the network size. This
follows from the fact that histogram update requests are
propagated via neighbor nodes, whose total number
depends on the network size ðlogNÞ.

6 CONCLUSION

In this paper, we proposed a framework, HiGLOB, to

enable global load balance for structured P2P systems. Each

node in HiGLOB maintains the load information of nodes in

the systems using histograms. This enables the system to

have a global view of the load distribution and hence

facilitates global load balancing. We partition the system

into nonoverlapping groups of nodes and maintain the

average load of them in the histogram at a node. We also

proposed two techniques to reduce the overhead of

maintaining and constructing histograms. Even though

the proposal is a general framework, it is possible to deploy

different kinds of P2P systems on it. We demonstrated this

by building three well-known structured P2P systems: Skip

Graph, BATON, and Chord on our proposal. Our perfor-

mance evaluation shows that our HiGLOB enabled systems

are superior over other methods.

ACKNOWLEDGMENTS

Dr. Vu and Dr. Tan are supported in part by ASTAR SERC
Grant 072 101 0017 as part of the S3 project [1].

REFERENCES

[1] S3: Scalable, Shareable and Secure P2P Based Data Management
System, http://www.comp.nus.edu.sg/~s3p2p, 2008.

[2] Gnutella, http://www.gnutella.com/, 2008.

[3] BitTorrent, http://www.bittorrent.com/, 2008.
[4] Overnet, http://www.overnet.com, 2008.
[5] SETI@home, http://setiathome.berkeley.edu/, 2008.
[6] Groove, http://www.groove.net, 2008.
[7] Skype, http://www.skype.com/, 2008.
[8] A. Madhukar and C. Williamson, “A Longitudinal Study of P2P

Traffic Classification,” Proc. Int’l Symp. Modeling, Analysis, and
Simulation of Computer and Telecomm. Systems (MASCOTS), 2006.

[9] D. Karger, F. Kaashoek, I. Stoica, R. Morris, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. SIGCOMM ’01, pp. 149-160, 2001.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A Scalable Content Addressable Network,” Proc. SIGCOMM ’01,
pp. 161-172, 2001.

[11] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph, “Tapestry: An
Infrastructure for Fault-Tolerant Wide-Area Location and
Routing,” Technical Report CSD-01-1141, Univ. of California,
Apr. 2001.

[12] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer
Systems,” Proc. 18th IFIP/ACM Int’l Conf. Distributed Systems
Platforms (Middleware ’01), pp. 329-350, 2001.

[13] K. Aberer, “P-Grid: A Self-Organizing Access Structure for P2P
Information Systems,” Proc. Int’l Conf. Cooperative Information
Systems (CoopIS), 2001.

[14] R. Huebsch, B. Chun, J.M. Hellerstein, B.T. Loo, P. Maniatis,
T. Roscoe, S. Shenker, I. Stoica, and A.R. Yumerefendi, “The
Architecture of PIER: An Internet-Scale Query Processor,” Proc.
Conf. Innovative Data Systems Research (CIDR), 2005.

[15] H.V. Jagadish, B.C. Ooi, and Q.H. Vu, “Baton: A Balanced Tree
Structure for Peer-to-Peer Networks,” Proc. Very Large Databases
Conf. (VLDB ’05), pp. 661-672, 2005.

[16] S. Saroiu, P.K. Gummadi, and S.D. Gribble, “A Measurement
Study of Peer-to-Peer File Sharing Systems,” Proc. Multimedia
Computing and Networking Conf. (MMCN), 2002.

[17] M. Mitzenmacher, “The Power of Two Choices in Randomized
Load Balancing,” IEEE Trans. Parallel and Distributed System,
vol. 12, no. 10, pp. 1094-1104, Oct. 2001.

[18] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load Balancing in Structured P2P Systems,” Proc. Int’l Workshop
Peer-to-Peer Systems (IPTPS), 2003.

[19] D. Karger and M. Ruhl, “Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems,” Proc. ACM Symp. Paralle-
lism in Algorithms and Architectures (SPAA), 2004.

[20] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer Sys-
tems,” Proc. Very Large Databases Conf. (VLDB ’04), pp. 444-455,
2004.

[21] J. Aspnes and G. Shah, “Skip Graphs,” Proc. 14th Ann. ACM-SIAM
Symp. Discrete Algorithms (SODA ’03), pp. 384-393, 2003.

[22] D. Karger and M. Ruhl, “Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems,” Proc. Int’l Workshop Peer-
to-Peer Systems (IPTPS), 2004.

[23] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica, “Load Balancing in Dynamic Structured P2P Systems,”
Proc. INFOCOM, 2004.

[24] K. Kenthapadi and G.S. Manku, “Decentralized Algorithms Using
Both Local and Random Probes for P2P Load Balancing,” Proc.
ACM Symp. Parallelism in Algorithms and Architectures (SPAA),
2005.

[25] G. Giakkoupis and V. Hadzilacos, “A Scheme for Load Balancing
in Heterogenous Distributed Hash Tables,” Proc. ACM Symp.
Principles of Distributed Computing Conf. (PODC), 2005.

[26] J. Ledlie and M. Seltzer, “Distributed, Secure Load Balancing with
Skew, Heterogeneity, and Churn,” Proc. INFOCOM, 2005.

[27] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and
I. Stoica, “Load Balancing in Dynamic Structured P2P Systems,”
Performance Evaluation, vol. 63, no. 6, pp. 217-240, 2006.

[28] M. Adler, E. Halperin, R.M. Karp, and V.V. Vazirani, “A
Stochastic Process on the Hypercube with Applications to Peer-
to-Peer Networks,” Proc. 35th ACM Symp. Theory of Computing
(STOC ’03), pp. 575-584, 2003.

[29] K. Aberer, A. Datta, and M. Hauswirth, “Multifaceted Simulta-
neous Load Balancing in DHT-Based P2P Systems: A New Game
with Old Balls and Bins,” Self-* Properties in Complex Information
Systems, 2005.

VU ET AL.: HISTOGRAM-BASED GLOBAL LOAD BALANCING IN STRUCTURED PEER-TO-PEER SYSTEMS 607

Fig. 17. Effect of varying network size in Type-II network (hetero-

geneous nodes, uniform data distribution).

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

[30] A.R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” Proc. ACM SIGCOMM
’04, pp. 353-366, 2004.

[31] P.B. Godfrey and I. Stoica, “Heterogeneity and Load Balance in
Distributed Hash Tables,” Proc. IEEE INFOCOM, 2005.

[32] M. Bienkowski, M. Korzeniowski, and F.M. Heide, “Dynamic
Load Balancing in Distributed Hash Tables,” Proc. Int’l Workshop
Peer-to-Peer Systems (IPTPS), 2005.

[33] J. Byers, J. Considine, and M. Mitzenmacher, “Simple Load
Balancing for Distributed Hash Tables,” Proc. Int’l Workshop Peer-
to-Peer Systems (IPTPS), 2003.

[34] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval
System,” LNCS, vol. 2009, pp. 46-66, July 2001.

[35] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-Area Cooperative Storage with CFS,” Proc. 18th ACM
Symp. Operating Systems Principles (SOSP), 2001.

[36] M. Roussopoulos and M. Baker, “CUP: Controlled Update
Propagation in Peer-to-Peer Networks,” Proc. USENIX Ann.
Technical Conf., 2003.

[37] V. Ramasubramanian and E.G. Sirer, “Beehive: Exploiting Power
Law Query Distributions for O(1) Lookup Performance in Peer to
Peer Overlays,” Proc. First USENIX Symp. Networked Systems
Design and Implementation (NSDI ’04), pp. 331-342, 2004.

[38] L. Yin and G. Cao, “DUP: Dynamic-Tree Based Update Propaga-
tion in Peer-to-Peer Networks,” Proc. 21st Int’l Conf. Data Eng.
(ICDE), 2005.

[39] W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced
Trees,” Comm. ACM, vol. 32, no. 10, pp. 668-676, 1990.

[40] M. Abdallah and H.C. Le, “Scalable Range Query Processing for
Large-Scale Distributed Database Applications,” Proc. Int’l Conf.
Parallel and Distributed Computing Systems (PDCS), 2005.

[41] J.J. Jiang, F.L. Tang, F. Pan, and W.N. Wang, “Using Bidirectional
Links to Improve Peer-to-Peer Lookup Performance,” J. Zhejiang
Univ. SCIENCE A, vol. 7, no. 6, 2006.

[42] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: An Overlay
Testbed for Broad-Coverage Services,” ACM SIGCOMM Computer
Comm. Rev., vol. 33, no. 3, 2003.

Quang Hieu Vu received the BEng degree in
computer science from HCMC University of
Technology, Vietnam, in 2001 and the PhD
degree in computer science from Singapore-MIT
Alliance (SMA) in 2008. He is currently a
research fellow in the School of Computing,
National University of Singapore. He was a
lecturer at the HCMC University of Technology
and a software engineer at TTNK software
company for three years and a half. His research

interest includes query processing in distributed systems especially P2P
systems. He is a member of the ACM and the IEEE.

Beng Chin Ooi received the BSc (First Class
Honors) and PhD degrees from Monash Uni-
versity, Australia, in 1985 and 1989, respec-
tively. He is a professor of computer science at
the School of Computing, National University of
Singapore. His research interests include data-
base performance issues, indexing techniques,
XML, P2P/parallel/distributed computing, em-
bedded system, Internet, and genomic applica-
tions. He has served as a PC member for a

number of international conferences (including SIGMOD, VLDB, ICDE,
WWW, EDBT, DASFAA, GIS, KDD, CIKM, and SSD). He is an editor of
GeoInformatica, the GIS Journal, ACM SIGMOD Disc, and VLDB
Journal and a guest editor for the special issue (section) of IEEE TKDE
on P2P-based data management. He is the recently elected editor-in-
chief of IEEE TKDE. He is a cofounder and director of GeoFoto Pte., a
company providing imaging solutions, and BestPeer (on the way), a
company specializing in P2P computing technology.

Martin Rinard received the BSc degree (magna
cum laude and with honors) in computer science
from Brown University in 1984 and the PhD
degree in computer science from Stanford
University in 1994. He was with two start-up
companies, Ikan Systems and Polygen Corp. He
was with the Computer Science Department,
University of California, Santa Barbara, in 1994,
as an assistant professor. He is currently with
the Massachusetts Institute of Technology, as

an assistant professor in 1997 and then promoted to associate professor
and full professor in 2000 and 2006, respectively.

Kian-Lee Tan received the BSc (Hons.) and
PhD degrees in computer science from the
National University of Singapore in 1989 and
1994, respectively. He is currently a professor
in the Department of Computer Science,
National University of Singapore. His major
research interests include query processing
and optimization, database security, and data-
base performance. He has published more
than 200 conference/journal papers in interna-

tional conference proceedings and journals. He is also the coauthor
of three books. He is a member of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

608 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 4, APRIL 2009

Authorized licensed use limited to: National University of Singapore. Downloaded on September 8, 2009 at 03:24 from IEEE Xplore. Restrictions apply.

