Chapter 1

A SYNTHESIS ALGORITHM FOR MODULAR
DESIGN OF PIPELINED CIRCUITS

Maria-Cristina Marinescu

and Martin Rinard

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

cristina@lcs.mit.edu,rinard@lcs.mit.edu

Abstract: This paper presents a synthesis algorithm for pipelined
circuits. The circuit is specified as a collection of independent, loosely-
coupled modules connected by queues. The synthesis algorithm trans-
forms this asynchronous, modular specification into a synchronous, tightly-
coupled, and fully pipelined circuit in which queues are implemented as
finite buffers. Data is read from the buffers at the begining of each clock
cycle, new values are computed, then the new results are written back
into the buffers at the end of each clock cycle.

We have implemented a prototype synthesizer that is capable of au-
tomatically generating synchronous, fully pipelined implementations of
modular specifications. This paper presents experimental results from
this synthesizer.

1. INTRODUCTION

One successful way to manage the complexity of building very large-
scale systems is to specify them as a collection of independent, loosely-
coupled modules connected by streams, queues or pipes. Our present
work describes a synthesis algorithm for arbitrarily complex and general
pipelined circuits, starting from a modular, compact high-level specifi-
cation.

The designer specifies the circuit as a set of modules connected by
queues. The behavior of each module is specified using a set of rewrite

2

rules. Each rule reads data from one or more input queues, uses the
data to compute new values, then writes the new values out to the
output queues. Conceptually, each module executes independently and
asynchronously with respect to the other modules. Because the queues
insulate the modules from each other, the designer can use a modular
design approach. He or she can first focus on developing each module
in isolation, then use queues to connect the modules into a complete
specification.

A primary advantage of this approach is that it enables the designer
to reason about the behavior and correctness of each module in isolation
without worrying about the concurrent behavior of the entire system.
This reduces human effort and makes specifications simple, compact,
clear, less prone to mistakes, and more easily verified. It also promotes
the reuse of existing modules in new specifications. Finally, modular
specifications are more suitable for automatic synthesis and simulation
than non-modular ones and have good scalability characteristics. This
model has proved to be useful in the Unix operating system and in
various parallel programming models [Arvind and Nikhil, 1990; Gregory,
1987; Newton and Browne, 1992]. More recently it has been used to
successfully model complicated hardware designs, where it has shown
great promise in enabling very concise, clear specifications [Arvind and
Shen, 1999; Poyneer et al., 1998].

A straightforward synthesis algorithm would implement this model
directly in hardware. The problem with this approach is the queue
management overhead. If the queues are implemented as asynchronous
connections between independently operating modules, the system as
a whole suffers from synchronization overhead as modules dynamically
handshake to transfer data.

This paper presents an alternative approach: a synthesis algorithm
that produces a tightly coupled, fully synchronous implementation of a
set of modules connected with queues. The basic idea behind the syn-
thesis algorithm is to automatically compose the module definitions to
derive, at the granularity of individual clock cycles, a global schedule for
the operations of the entire system, including the removal and insertion
of queue elements. The resulting implementation executes in a com-
pletely synchronous, pipelined manner. At the beginning of each clock
cycle, the modules read their inputs from the input queues and compute
the next result. At the end of the clock cycle, the results are written
to the output queues, overwriting the inputs from the beginning of the
clock cycle. This synthesis algorithm delivers the best of both worlds: it
allows the designer to use a modular, high-level specification and obtain
an efficient, fully synchronous circuit.

3

The remainder of the paper is organized as follows. Section 2 presents
an example illustrating our synthesis approach. Section 3 presents the
synthesis algorithm and Section 4 presents the experimental results. Sec-
tion 5 discusses related work; we conclude in Section 6.

2. EXAMPLE

We next present an example that shows how to use our approach
to synthesize a simple pipelined processor. We use a processor as our
example because we expect it will be familiar to a wide audience. Our
approach and synthesis algorithms are, of course, generally applicable
to wide range of circuits, not just processors.

Our example processor has an instruction memory, a program counter
and a register file. Figure 1.1 presents the simplified pipeline that we
use to implement the processor. The instruction fetch stage fetches
instructions from the instruction memory into the instruction buffer;
the register fetch stage moves the instruction from the instruction buffer
to the register buffer, replacing the register names in the instruction with
the contents of the corresponding registers. The compute and writeback
phase computes the results and writes them back into the register file.

Compute and

Instruction Register Writeback

Fetch Fetch

D— rf
o HH = HI
pc

Figure 1.1 Simple Pipeline for Example

2.1 PROCESSOR STATE

Figure 1.2 presents the declaration of the processor state, which con-
sists of the program counter pc, the instruction memory im, the register
file rf, and two queues, iq and rq. Lines 4 and 5 declare the state as
a set of state variables; lines 1 through 3 contain the type declarations
for these variables. The type declarations include a 3 bit register name
type reg, an 8 bit integer type val, an 8 bit integer type loc which
represents the locations of instructions in the instruction memory, an
instruction type ins, and a type irf for instructions whose register
operands have been fetched from the register file. The instruction type
is a tagged union type, similar to those found in ML [Milner et al., 1990]

4

and Haskell [Hudak et al., 1992]. Each instruction can be either an INC
instruction, which increments the value in its single register argument,
or a JRZ instruction, which tests the value in its register argument and,
if the value is zero, jumps to the location in its location argument.

1 type reg = int(3), val = int(8), loc = int(8);
type ins = <INC reg> | <JRZ reg loc>;
3 type irf <INC reg val> | <JRZ val loc>;

N

4 var pc : loc, im : ins[N], rf : val[8];
5 var iq = queue(ins), rq = queue(irf);

Figure 1.2 State Variables and Type Declarations for Example

2.2 QUEUES

Queues provide buffered, first-in, first-out connections between mod-
ules. There are several operations that modules can perform on a queue

q:
m head(q): Retrieves the first element in the queue.

s tail(q): The rest of the queue q after the first element. Usually
used to specify the new value of the queue after removing the first
element.

m insert(q,e): The queue q after inserting the element e at the
tail of the queue q. Usually used to specify the new value of the
queue after inserting a new element.

m notin(q,e): Tests if the element e is not in the queue q.

Our specification models the pipeline buffers iq and rq in our example
as queues.

2.3 UPDATE RULES

Figure 1.3 presents the code that implements the modules in our ex-
ample. There are three modules, one for each pipeline stage. Each mod-
ule is implemented by a set of update rules. Each rule has an enabling
condition and a set of updates to the state. When the enabling condition
evaluates to true, the rule is enabled and can execute, in which case its
updates are atomically applied to the state. Conceptually, the execu-
tion of the system repeatedly chooses an enabled rule and executes it.

5

This is a standard model of asynchronous execution found, for example,
in systems such as Unity [Chandy and Misra, 1988] and term rewriting
systems [Baader and Nipkow, 1998].

// Instruction Fetch Stage
1: if true then iq = imsert(iq,im[pcl); pc = pc+1;

// Register Operand Fetch Stage

2: if <INC r> = head(iq) and notin(rq, <INC r _>) then
iq = tail(iq); rq = imsert(rq, <INC r rfl[r]>);

3: if <JRZ r 1> = head(iq) and notin(rqg, <INC r _>) then
iq = tail(iq); rq = imsert(rq, <INC rf[r] 1>);

// Compute and Writeback Stage

4: if <INC r v> = head(rq) then
rf = rf[r->v+1]; rq = tail(rq);

5: if <JRZ v 1> = head(rq) and v = O then
pc = 1; iq = nil; rq = nil;

6: if <JRZ v 1> = head(rq) and !'(v
rq = tail(xq);

0) then

Figure 1.3 Update Rules for Example

We illustrate the execution of the system by going through the set
of rules. The condition for the instruction fetch rule, rule 1, is true,
which means that it is always enabled. When it executes, it fetches an
instruction from the instruction memory and inserts it into the instruc-
tion queue iq. It also increments the program counter pc to set up the
next fetch.

The two rules in the operand fetch stage, rules 2 and 3, remove instruc-
tions from the instruction queue, fetch the register operands, and insert
them into the rq. Rule 2 processes INC instructions, and rule 3 processes
JRZ instructions. Both rules use a form of pattern matching similar to
that found in ML and Haskell. Consider rule 2. The enabling condition
is <INC r> = head(iq) and notin(rq, <INC r _>). The first clause
of this condition, <INC r> = head(iq), is true if an INC instruction is
the first instruction in the instruction queue iq. Furthermore, if there is
such an instruction, the clause matches and binds the variable r to the
register name argument of the INC instruction. The variable r can then
be used later in the rule to refer to this operand.

The second clause, notin(rq, <INC r _>) uses the binding to check
for a read before write hazard. If there is a pending instruction waiting
to execute that will write the register r, the machine must delay the
operand fetch so that it fetches the value after the write. If there is a
pending instruction that will write the register r, the instruction is in
the rq queue. The clause notin(rq, <INC r _>) checks to make sure
that there is no such instruction in rq, and the rule as a whole is enabled
and can execute only if there is no hazard.

If the rule is enabled, it fetches the register operand and inserts the
instruction, along with this operand, into the next queue in the pipeline,
the rq queue. It also removes the instruction from the instruction
queue. The other rules perform similar activities, removing elements
from queues, processing the data in the elements to generate results,
then inserting the results into the next queue or writing the result back
into the register file. In particular, the update rf = rf[r->v+1] from
the first rule in the compute and writeback stage, rule 4, sets element r
of the register file rf to be v+1.

24 SYNTHESIS

In the abstract model of computation described above, the modules
execute in a completely decoupled way. The rules execute whenever they
are enabled, with the queues carrying results between modules. In effect,
the queues decouple the modules, enabling the designer to focus on each
module in turn. This design methodology scales to very large systems,
including systems with hierarchically defined modules. The only prob-
lem is that an efficient hardware implementation must be tightly coupled
and synchronous. Ideally, the stages of the processor would execute in
a strict pipeline, with the queues implemented as hardware buffers and
each stage reading the value from the previous stage in the same clock
cycle as the new value is written into the register. The next section
presents a synthesis algorithm that accomplishes this goal.

3. ALGORITHM

Given a system specification, the synthesis algorithm combines the op-
erations in the rules first into a global schedule, then into a synchronous
circuit that implements the specification. The basic approach is, at each
clock cycle, to give each rule an opportunity to execute. If a rule is
enabled at that cycle, it will execute. The challenge with this approach
is to ensure that the final result at the end of the cycle correctly reflects
the atomic execution of all of the rules that executed in that cycle. We
meet this challenge by symbolically executing the rules in sequence, with

7

each rule operating on the output of the previous rule. The final result
is an expression for each state variable. This expression is the new value
of the state variable in the next clock cycle, and reflects the combined
updates of all the rules that executed in the previous clock cycle.

To avoid the problem of an excessively long clock cycle, the algorithm,
when possible, relaxes the enabling condition at each rule so that it is
evaluated in the initial state, at the beginning of the clock cycle, rather
than in the state produced by the previously executed rule. In particular,
this technique ensures that data from state variables moves through at
most one module in each clock cycle, which in turn ensures that the
critical path of the circuit does not cross module boundaries. The clock
cycle time of the system is therefore determined by the modules, not how
they are connected together. The algorithm consists of the following
phases:

m Rule Numbering: The algorithm numbers rules for symbolic ex-
ecution, determining the intermediate state in which each rule will
be evaluated. Figure 1.4 illustrates the numbering of all different
versions of the state variables for all the rules in our previous ex-
ample. As this example shows, the numbering is set up so that
each rule reads the version of the state variables produced by the
previous rule.

s Relaxation: When possible, the algorithm relaxes the calculation
of the enabling condition for each rule so that it is evaluated in
the initial state, not the intermediate state from the previous rule.
This transformation has the effect of limiting the critical path that
determines the length of the clock cycle.

® Queue Finitization: In the initial specification, the queues have
unbounded length. Based on input from the designer, the algo-
rithm chooses a finite length for each queue. It then modifies the
rules to ensure that no queue ever exceeds its finite length. The
key issue is to ensure that no rule ever executes if there will be
no room for its result in the output queues. This is more difficult
than it may sound, because each rule must take into account the
number of items in the queue at the beginning of the clock cycle,
the number of elements inserted and removed by rules before it in
the evaluation order, and the number removed by rules after it in
the evaluation order.

s Symbolic Execution: The algorithm symbolically executes the
rules in sequence to obtain an expression for each state variable.

The expression is the value of the variable in the next clock cy-
cle. Because rules may not be enabled in a given state and may
therefore not execute, the expressions contain conditionals.

Optimizations: The algorithm optimizes the representation by
performing common sub-expression elimination to eliminate any
duplication, and mutual exclusion testing to eliminate executions
that can never actually occur (i.e. false paths in the circuit).

Verilog Generation: The algorithm generates one or more hard-
ware registers for each state variable, depending on its type. For
each state variable, the value in the next clock cycle is determined
by the combinational logic implementing the corresponding deter-
mined expression.

We next discuss the more complicated phases of the synthesis algo-
rithm.

if
if

if

if

if

if

3.1

true then iq;= insert(iqg,imlpcyl); pc;= pcy+i;
<INC r> = head(iq;) and notin(rq;, <INC r _>) then
igy= tail(iq;); rgy=imnsert(rq;, <INC r rf;[r]>);
<JRZ r 1> = head(ig,) and notin(rq,, <INC r _>) then
igs= tail(iqy); rqs = insert(rq,, <INC rfy[r] 1>);
<INC r v> = head(rgs) then

rf = rfz[r->v+1]; rq,= tail(rqy);

<JRZ v 1> = head(rq,) and v = O then

pcs= 1; igs= nil; rqy; = nil;

<JRZ v 1> = head(rgs) and !(v = 0) then

rqg= tail(rqg);

Figure 1.4 Numbered Rules for Example

RELAXATION

The rule numbering in Figure 1.4 suffers from an excessively long clock
cycle. Consider, for example, the system starting out with nothing in
any of the queues. The last version of the state variables reflects the
entire fetch and execution of the next instruction. Obviously, we would
like the fetch and execution to be pipelined over multiple clock cycles.
We achieve this goal by relaxing the versions tested in the enabling
conditions of each rule — we replace each version of each state variable
with the earliest safe version. An earlier version of vj, name vy, is safe
if the following property holds:

If the rule’s enabling condition, C' is true with v; replaced by vy,
then it is also true with v;, i.e. C[vg/v;] implies C.

This transformation is valid for two reasons:

m Safety: After the transformation, each rule is enabled in a subset
of the states in which it was enabled before the transformation,
and, if enabled, produces the same result as before the transfor-
mation. So each execution of the transformed system is also an
execution of the original system.

s Liveness: The transformation never completely disables a rule
— the transformed enabling condition tests the original state, and
the rule executes if it is enabled in this state.

Figure 1.5 presents the transformed system in our example. A key
property that enables this transformation is that if a rule that tests the
element at the head of a queue is enabled, it remains enabled if additional
elements are inserted at the tail of the queue. This property makes it
possible to relax the rules in the example so that they test the initial
version of each queue instead of the version produced by earlier rules.

In many cases, the algorithm can order the rules to perform queue
operations in the following order: first checks of the form notin(q,e)
that test that an element is not in a queue, then insertions into the
tail of the queue, then tests that the head of the queue satisfies a given
property, then removals from the head of the queue. Being able to put
the rules in this order is sufficient (but not necessary) to ensure that the
algorithm will be able to relax the enabling conditions so that they all
test the initial version of each queue.

if true then iq;= insert(iqg,im[pcyl); pc;= pcyt+i;
if <INC r> = head(iq,) and notin(rqg,, <INC r _>) then
igy= tail(iq;); rqgy=imnsert(rq;, <INC r rf;[r]>);
if <JRZ r 1> = head(iq,) and notin(rqg,, <INC r _>) then
igs= tail(iqy); rqs = insert(rq,, <INC rf,[r] 1>);
if <INC r v> = head(rq,) then
rfy= rfz[r->v+1]; rq,= tail(rqy);
if <JRZ v 1> = head(rq,;) and v = O then
pcs= 1; igs= nil; rqy = nil;
if <JRZ v 1> = head(rqy) and !'(v = 0) then
rqg= tail(rqg);

Figure 1.5 Relaxed Rules for Example

The relaxation algorithm proceeds as follows. It processes the rules
of the system in the order in which they are numbered. At each rule,

10

it repeatedly attempts to replace the current version of the state vari-
ables in the enabling condition with the previous version. This attempt
succeeds if the enabling condition with the previous version of the state
variables implies the enabling condition with the current version or if
the enabling conditions are mutually exclusive. The implication test
and mutual exclusion tests are performed using a combination of reso-
lution [Ballantyne, 1982] and a set of simplification and reduction rules,
and operate on the enabling conditions once they have been transformed
into conjunctive normal form.

3.2 QUEUE FINITIZATION

When the queues are implemented in hardware, there is a specific
number of entries allocated for the queue, and the synthesis algorithm
must generate a circuit that does not exceed that length. The algo-
rithm therefore analyzes the rules to determine the circumstances under
which a queue may grow beyond its hardware limit. It then modifies the
enabling conditions to ensure that the queues never exceed the limit.

Conceptually, the generated circuit maintains several counters for each
queue: a counter L, that contains the number of elements in ¢ at the
beginning of the clock cycle, a counter I, that maintains, for each rule,
the net number of elements that preceding rules insert into ¢ (this num-
ber is the number of elements inserted minus the number removed), and
a counter R, that maintains, for each rule, the number of elements that
succeeding rules remove from ¢q. Both of these counters are dynamically
generated using combinational logic, and count only insertions and re-
movals from rules that are enabled in the current clock cycle. There is
also the hardware limit N, of the maximum number of queue entries.

The basic idea is to augment the enabling condition for each rule that
inserts an element into ¢ so that it does not execute unless a subsequent
rule clears the queue or L, + I; — R, < N4. Because the values of the
counts depend directly on the enabling conditions, it may be more ef-
ficient to simply test combinations of enabling conditions rather than
computing the counts explicitly. Figure 1.6 presents our example af-
ter the application of the queue finitization algorithm. In this figure,
length(q) = Ly + 1.

Note that because the values of I, and R, affect the enabling con-
ditions, it is possible for there to be a cycle of dependences between
the different values of these counters. This occurs, for example, when
there is a cycle of rules waiting for each other to remove elements from
queues. In the worst case, there may simply be no way to avoid dead-
lock without changing the hardware to add more space in the queues.

11

if length(iqy) < Njq or
(<INC r> = head(iqy) and notin(rq,, <INC r _>)) or
(<JRZ r 1> = head(iqy) and notin(rq,, <INC r _>)) or
(<JRZ v 1> = head(rqy) and v = 0) and
length(rqy) < Nyq or length(iqy) < Niq or
<INC s > = head(rq,) or
(<JRZ v 1> = head(rqy) and v = 0) or
(<JRZ v 1> = head(rq,) and !(v = 0) then
iq; = imsert(iqy,imlpcyl); pc; = pcy+l;
if <INC r> = head(iq,) and
notin(rq,, <INC r >) and
length(rqy) < Nyq or
<INC s > = head(rq,) or
(<JRZ v 1> = head(rq,) and v = 0) or
(<JRZ v 1> = head(rq,) and !(v = 0) then
ig, = tail(iq;); rgy,=insert(rq;, <INC r rf;[r]>);
if <JRZ r 1> = head(iq,) and
notin(rq,, <INC r >) and
length(rqy) < Nyq or
<INC s > = head(rq,) or
(<JRZ v 1> = head(rqy) and v = 0) or
(<JRZ v 1> = head(rqy) and !'(v = 0) then
igy = tail(iqy); rgs = insert(rqy, <INC rfslr] 1>);
if <INC r v> = head(rq,) then
rfy = rfz[r->v+1]; rq, = tail(rqy);
if <JRZ v 1> = head(rqy) and v = O then
pcs; = 1; igs = nil; rqy = nil;
if <JRZ v 1> = head(rqy;) and !(v = 0) then
rqg = tail(rqg);

Figure 1.6 Rules in Example After Queue Finitization

12

But even if there are cycles of rules waiting for each other to remove
elements, it may still be possible for the synthesis algorithm to generate
a deadlock-free circuit without increasing the queue length.

The key insight in this case is that finitization will not introduce
deadlock if there is a way for existing elements to be removed from all of
the queues so that there is room for new elements. Assume the sequence
of rules R;Rjy1...Rj4m with enabling conditions C;Cj41...Cjqy, creates
a cycle for the current rule R; with queue ¢, where length(q) = N, + R,.
If C; implies VO < [< m, Cj4y, then all of the rules in the cycle can
execute. Otherwise, none of them can.

3.3 SYMBOLIC EXECUTION

Symbolic execution determines a new value for each state variable at
the end of the clock cycle in terms of the values at the start of the clock
cycle. It does this by substituting out the intermediate versions of each
state variable. The result is an expression, in the original versions of the
state variables, for each use of each state variable in the system. The
versions at the last rule are latched back into the state variables at the
end of the clock cycle, and provide the initial values for the start of the
next clock cycle.

3.4 OPTIMIZATIONS

To improve the quality of the synthesized circuit, the compiler op-
timizes the expressions, using common sub-expression elimination and
mutual exclusion testing. If an expression contains a value that will
never actually occur in practice because the conditions required to ob-
tain the value are mutually exclusive, the computation of that value is
eliminated from the expression. A typical example is a value obtained
if both a JRZ and an INC instruction is at the head of the instruction
queue. Obviously, the instruction must be either a JRZ instruction or an
INC instruction, but not both. So such a value will never be computed
in the actual circuit. The mutual exclusion testing is implemented using
resolution, simplification, and reduction.

We illustrate the symbolic execution and optimizations principle by
presenting the final value of the instruction queue iq. If there is a taken
branch, the instruction queue is cleared. If there is already an instruction
at the head of the instruction queue that can go through the register fetch
stage, the final result is obtained by inserting the new instruction into
the tail of the queue and removing the instruction from the head of the
queue. Otherwise, the circuit checks to see if there is an empty entry

13

in the instruction queue. If so, it fetches another instruction; if not, the
instruction queue does not change.

Figure 1.7 presents the result of the expression evaluation; note the in-
troduction of the temporary variables t1, t2, t3, and t4. These variables
will turn directly into combinational logic in the final implementation of
the circuit.

let
tl = <INC r> = head(iqy) and notin(rq,, <INC r _>)
t2 = <JRZ r 1> = head(iqy) and notin(rq,, <INC r _>)
t3 = insert(iq,, im[pcyl)
t4 = tail(t3)

igs =

if <JRZ v 1> = head(rq,) and v = 0 then nil
else if t1 then t4

else if t2 then t4

else if length(iq,) < Niq) then t3

else iqg

Figure 1.7 Result of Symbolic Execution for iq

3.5 VERILOG GENERATION

The final step is to generate synthesizable Verilog for the circuit. The
basic approach is that each state variable is implemented as one or more
hardware registers, with the expressions generated during the symbolic
execution providing the new values for the state variables at the end of
each clock cycle.

The Verilog generation is straightforward. The algorithm generates
combinational logic that computes the value of each expression, then
connects the computed values to the inputs of the hardware registers
that implement the corresponding state variables. In the future we may
explore implementations that use more complicated synthesis algorithms
for operations that are expensive to implement in combinational logic.

The compiler currently uses Verilog arrays to implement memories
such as the instruction memory in our example. Current memory im-
plementations are single ported, but we are exploring ways to obtain
multi-ported memories, either under the control of the designer or au-
tomatically as part of the synthesis algorithm. We are also exploring
the use of SRAM or DRAM to implement larger memories. Queues are
implemented as registers.

14

Benchmark | Cycle Time | Area (NAND2 gates) | Map Effort | Constraints
Bubblesort 9.59ns ~ 5121 medium Clk = 10
Butterfly 9.61ns =~ 5170 medium Clk = 10
Processor 10.48ns =~ 4830 low none
Table 1.1 Benchmark Characteristics
4. EXPERIMENTAL RESULTS

We have implemented a prototype synthesis system based on the algo-
rithm presented in this paper. We have used this algorithm to generate
synthesizable Verilog implementations for the benchmarks described be-
low. These Verilog implementations were tested using the NCVerilog by
Cadence, then synthesized using the Synopsys Design Compiler to an
industry standard .25 micron standard cell process.

The first benchmark implements Bubblesort for eight 8-bit numbers.
The second benchmark implements a butterfly network similar to the
ones used in bitonic sorting networks and in FFTs. The last bench-
mark is an 8-bit pipelined processor specification. The synthesized, gate
level model of the processor was then regression tested using the ASIC
vendor’s simulation libraries in order to confirm correct synthesized func-
tionality. Table 1.1 presents several benchmark characteristics.

5. RELATED WORK

The synthesis of hardware from various description languages has been
and continues to be an active area of research [Micheli, 1994]. In this
section we discuss systems for specifying custom microprocessors, syn-
chronous dataflow languages, and recent work using term rewriting sys-
tems.

There is a large market for embedded processors customized for a
specific application. Researchers have proposed to support the develop-
ment of such systems by providing languages that allow the designer to
quickly describe a customized architecture [Pyo et al., 1992; Park and
Walker, 1988]. The research presented in our paper, on the other hand,
is designed to support the development of arbitrary circuits, not just
microprocessors.

Other researchers have proposed a design methodology based on syn-
chronous dataflow [Ho et al., 1998]. While the resulting specifications
contain modules, the connections between modules are synchronous,
which forces the designer to understand the global timing of the cir-
cuit when designing each module. The research presented in our paper
uses asynchronous queues to connect modules. The synthesis algorithm

15

automatically derives the global schedule of operations in the circuit,
freeing the designer from the need to understand the global timing.

The research most closely related to ours is the work of James Hoe
and Arvind on the synthesis of circuits specified as term rewriting sys-
tems [Hoe and Arvind, 1999; Hoe et al., 1997]. The basic goal is the
same: to synthesize synchronous implementations of modular, queue-
based specifications. There are differences, however, in the synthesis
algorithms. In particular, their approach executes multiple rewrite rules
in the same cycle only if they are completely independent. In our ap-
proach, multiple dependent rules may execute in the same clock cycle,
with the final result reflecting the combined effect.

6. CONCLUSION

Understanding how to manage the complexity of building large-scale
systems is a difficult, challenging, and important problem. This paper
presents an approach based on specifying the system as a set of indepen-
dent, parallel modules connected by queues. This approach enables the
designer to control the complexity of the design process by first develop-
ing each module in isolation, then using queues to combine the modules
and specify the complete system.

The successful use of this design methodology for circuits requires a
synthesis algorithm that can translate the asynchronous, loosely-coupled
specification into a synchronous, fully pipelined circuit. This paper
presents such an algorithm. Our initial experimental results from an
implementation of this algorithm provide encouraging evidence that it
can be used to deliver efficient pipelined implementations of modular
specifications that use queues.

References

Arvind and Nikhil, R. (1990). Executing a program on the MIT tagged-
token dataflow architecture. IEEE Transactions on Computers, 39(3).

Arvind and Shen, X. (1999). Design and verification of processors using
term rewriting systems. Technical Report CSG Memo 419, Labora-
tory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA.

Baader, F. and Nipkow, T. (1998). Term Rewriting and All That. Cam-
bridge University Press.

Ballantyne, M. (1982). Automatic deduction. Technical Report STAN-
(CS-82-937, Dept. of Computer Science, Stanford Univ., Stanford, Calif.

Chandy, K. M. and Misra, J. (1988). Parallel Program Design: A Foun-
dation. Addison-Wesley, Reading, Mass.

16

Gregory, S. (1987). Parallel Logic Programming in PARLOG: The Lan-
guage and Its Implementation. Addison-Wesley, Reading, Mass.

Ho, W., Lee, E., and Messerschmitt, D. (1998). High level data flow
programming for digital signal processing. VLSI Signal Processing,
11T, pages 385—395.

Hoe, J. and Arvind (1999). Hardware synthesis from term rewriting
systems. Technical report, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology.

Hoe, J., Rinard, M., and Arvind (1997). An exercise in high-level archi-
tectural descriptions using a synthesizable subset of term rewriting
systems. Technical Report CSG Memo 403, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA.

Hudak, P., Peyton-Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel,
J., Guzman, M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz,
D., Nikhil, R., Partain, W., and Peterson, J. (1992). Report on the
programming language Haskell: a non-strict, purely functional lan-
guage (version 1.2). SIGPLAN Notices, 27(5).

Micheli, G. D. (1994). Synthesis and Optimization of Digital Circuits.
McGraw-Hill.

Milner, R., Tofte, M., and Harper, R. (1990). The Definition of Standard
ML. The MIT Press, Cambridge, Mass., Cambridge, MA.

Newton, P. and Browne, J. C. (1992). The CODE 2.0 graphical parallel
programming language. In Proceedings of the 1992 ACM International
Conference on Supercomputing, Washington, DC.

Park, N. and Walker, A. (1988). Sehwa: A software package for synthe-
sis of pipelines from behavioral specifications. IEFE Transactions on
Computer-Aided Design, 7(3).

Poyneer, L., Hoe, J., and Arvind (1998). A TRS model for a modern pro-
cessor. Technical Report 408, Computation Structures Group, MIT
Laboratory for Computer Science.

Pyo, 1., Su, C., Huang, 1., Pan, K., Koh, Y., Tsui, C., Chen, H., Cheng,
G., Liu, S., Wu, S., and Despain, A. M. (1992). Application-driven
design automation for microprocessor design. In Proceedings of 29th
Design Automation Conference.

