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Abstract

Advances in microprocessor design have resulted in both improvements in speed as well as

new architecture features. These features add complexity to the processor design, along

with complexity to the compiler tool chain.

We examined the effects of a modern microprocessor on the compiler tool chain. By

implementing a backend for a processor that has a modern central processing unit and

multimedia unit, we analyze some specific processor features that effect the tool chain.

To achieve this goal we implemented a compiler backend for the G4 PowerPC and

AltiVec architecture. The PowerPC instruction set architecture has modern features, and

the AltiVec implementation

Some of the modern microprocessor features impacts, which are explored in this

thesis, are: modified conditional branch instructions resulted in inefficient code generation;

limitations on immediate values introduced several complexities to generate correct code;

the limited memory access functions of the multimedia unit required significant overhead

in the backend. These examples of modern architecture features and their effects on our

compiler backend show how modern architectures affect the compiler tool chain.

With our backend implementation, we show that though architecture complexities

may increase the complexity of a backend, it is still possible to take advantage of these

features with a compiler backend. This is achieved through additional compiler analysis

and transformations.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor
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Chapter 1

Introduction

Advances in modern computer architecture have introduced numerous features that make

modern processors quite complex. Thus, generating code for these new processors is

becoming more difficult as well. Compilers can take advantage of these advanced features

to improve performance of the programs they compile. In this thesis we analyze the

impact of modern computer architectures on the compiler tool chain.

1.1 Modern Architectures

The computational power of a microprocessor has been doubling every 18 months since its

conception. Many factors contribute to the increases in speed. Faster electronics, smaller

transistors, increased die size, and improved designs. With new architecture designs come

more advanced, complex features. These features include dedicated functional units,

advanced instruction sets, specialized hardware for conditional branches, and dedicated

scheduling hardware.

The new features, while providing increased performance, require changes to the

compiler tool chain. These features are sometimes presented as modifications to the

instruction set architecture (ISA) directly exposed to the compiler, or as hardware

changes which do not effect the ISA. In either case, the compile tool chain is affected.

When a new hardware feature is not exposed to the compiler through the ISA, it is
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still advantageous to take it into account when generating code. Taking the feature into

account can improve performance on certain hardware. Generating better code with this

consideration in mind is a violation of the abstraction provided by the ISA. The new code,

however, may run faster on the desired platform, which is the goal of any good compiler.

A typical example of a modern architectural feature hidden by the ISA is found in

super-scalar processors. Super-scalar processors execute multiple instructions

simultaneously on separate functional units [1]. The processor reschedules the instructions

as they are fetched making faster execution possible. Though this feature is hidden by the

ISA, it is still important for compilers to exploit it.

When an ISA exposes new features of the processor to the compiler, it allows the

compiler more options for optimization. New features may make code generation more

difficult, but allow more efficient code.

A good example of exposing a feature through the ISA is the use of single instruction

multiple data (SIMD) instructions. SIMD processors apply a single operation to multiple

pieces of data in parallel. This operation is prevalent in multimedia calculations. SIMD

processors are usually programmed with instructions tailored specificly to the processor.

These SIMD instructions are usually the basis of the instruction set of multimedia

processors.

Another example is the MIT RAW processor [2, 3] which exposes significantly more of

its feature set through the ISA than is typical. The resulting complexity from this

increased exposure makes creating an effective compiler for the RAW chip challenging.

However, by exposing more of the features to the compiler, the compiler has more control

over the execution and can improve program performance.

Conditional branches provide an example of new hardware features which are exposed

to varying degrees by the ISA. This is because of the work in reducing the cost of

conditional branches [4]. Branch prediction and instruction predication are the features

which reduce this cost. In branch prediction, the compiler predicts the direction of the

branch through some static analysis. Some processors revise this prediction based on

information collected during execution. This prediction is used to speculatively execute
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the branch. Predication allows for conditional execution without a branch. If a branch

skips only a small number of instructions it may be better to not use a branch instruction.

Instead, the instructions are read, and committed only if the predicate is satisfied. Unlike

branch prediction, predicated instructions are generated by a compiler and not modified

by the processor.

1.2 Multimedia Processors

Popularity of multimedia applications has driven the development of special architectures

designed to perform multimedia calculations more efficiently. Multimedia calculations

typically involve performing the same operation to several different values simultaneously.

The processor that performs these calculations is called a super word unit or multimedia

processor, and is separate from the floating point unit (FPU) or central processing unit

(CPU).

To achieve modularity, the communication between the CPU and the multimedia unit

is limited. Typically, these units must communicate through memory. This limitation

reduces the effectiveness of the multimedia unit to directly aid in computations performed

on the CPU. However, a technique which some researchers call superword level parallelism

(SLP) has been shown to successfully achieve this [5, 6].

Multimedia processors use a SIMD ISA. This presents the new functionality directly

to the compiler.

1.3 Compiler Backends

A compiler can often be divided into two parts: a front end, which takes a program in a

particular language and produces a system-independent representation of the program; a

backend, which takes the system-independent representation of the program translates it

into a system-dependent representation, and generates assembly code for the processor.

Converting the system-independent representation into a system-dependent one involves

realizing many features which are intended to be hidden from the end user. Issues such as
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memory layout, calling convention, register allocation, instruction selection, and

scheduling must be resolved.

Compiler backends have been part of the compiler tool chain since the first compilers.

There are countless backends and abstract representations which are used for machine

code generation. Many of these are publicly available with support for development of

new targets. Some compiler infrastructures which are available include the GNU C

compiler [7], the University of Illinois IMPACT project [8, 9], and MachSUIF [10].

Currently no general compiler targets multimedia processors. Instead, the

programmer must decide which data should be processed in the multimedia processor, and

exactly which operations should be used [11]. This is achieved by either a specialized

compiler which uses augmented syntax [12], or by calls to a library which has been

implemented partially in the native assembly language [13]. In addition, this must be done

for each architecture of multimedia processor the application is intended for. This is

similar to writing assembly code for each target machine.

Our backend uses an interprocedural analysis to automaticly generate code for a

multimedia backend. It is not necessary for the programmer to decide which calculations

should be performed on the multimedia processor and which should be performed on the

scalar functional units.

1.4 Thesis Contribution

This thesis looks at generating code for a modern microprocessor. The features of modern

architectures directly effect the code generation of the compiler. All new features of the

processor need to be accounted for in a successful compiler.

We have built a backend to help us understand the many issues presented by a

modern architecture. By isolating the complexities introduced in the architecture, we were

able to gain a better understanding of their impact on the compiler tool chain. In our

development of this backend we arrived upon novel solutions to the problems created by

these complexities.

We chose to target the PowerPC with AltiVec processor of the Macintosh G4. The
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PowerPC is a reduced instruction set computer (RISC) with some modern complexities.

The AltiVec is a multimedia processor extension with a SIMD instruction set. This

provides several features which are reflected in a range of ways in the combined

instruction set architecture (ISA).

Developing this backend gave us a stronger understanding of the requirements which

a modern architecture places on the compiler backend.
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Chapter 2

Supporting Infrastructure

Our backend implementation builds on work done by several sources. The compiler

infrastructure is based on SUIF2 [14] created by the Stanford SUIF group. The backend

infrastructure is based on MachSUIF2 [10, 15, 16] from the Harvard MachSUIF group.

Analysis for generating AltiVec instruction sequences is superword level parallelism

(SLP) [6] done at MIT.

2.1 SUIF

SUIF, Stanford University intermediate form, is the compiler infrastructure we used in

this project. SUIF2 is a later version of SUIF. They provide similar functionality, but use

different intermediate forms. We use SUIF2 in our backend implementation.

SUIF was designed to be a very functional infrastructure for developing compilers and

compiler algorithms. It provides significant support for program analysis, but is lacks

flexibility in program representation. SUIF2 was designed to provide additional flexibility

to the infrastructure. The intermediate form can be augmented relatively easily.

SUIF2 provides all the necessary infrastructure of a compiler front end. SUIF2 is used

by many universities for development of compiler algorithms. This is focuses on front end

compiler development and program analysis. For example, extensions to support C++

and Java are in progress.
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SUIF2 provides a large set of libraries [17, 18] to operate on its intermediate form.

This includes iterators which apply operations to specific kinds of elements. It also

provides a driver engine to run and load compiled passes.

2.2 MachSUIF2

Significant variation between platforms, limits how much a backend infrastructure can

provide. MachSUIF2 is designed to make it easy to implement a backend for a RISC

architecture. Figure 2.1 shows the intended compile chain to convert a program in SUIF2

form into target specific assembler.

lower s2m gen
Lowered SUIF2 SUIF VM Target Code

raga fin m2a
Target Code Target Code Target Assembly

Figure 2.1: Ideal MachSUIF2 compile chain
This is the ideal MachSUIF2 compile chain. This is the minimum set of
passes necessary to translate SUIF2 into target specific assembly.

The lower pass flattens the intermediate form into structures which are very close to

those found in assembly language. The m2a pass translates this lowered form into

SUIFVM instructions. This is a virtual machine instruction set which is RISC like. These

instructions are then translated by a target specific gen pass into opcodes appropriate for

the desired target. The raga pass is a generic register allocator which works for practically

any architecture. The fin pass is a target specific pass which finishes up necessary calling

convention requirements. Finally, the m2a pass is a target specific pass which prints the

instructions to assembly code.

A large part of the work of a backend is done in the m2a and raga passes which do

the lowering and register allocating. These are both generic passes, which are provided as

part of the MachSUIF2 infrastructure.

The largest two of the remaining three passes is gen, which is mostly a simple
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translations for RISC architectures, and fin which mostly involves creating header and

footer code for functions.

2.3 SLPCC

SLPCC utilizes the SUIF infrastructure and performs SLP analysis. SLPCC adds its

vector information to the program using SUIF annotations. These are a generic way of

augmenting the intermediate form. When converting from SUIF to SUIF2, it was

necessary to augment the conversion utility provided with SUIF2 to support the new

annotations.

The SLP analysis performs loop unrolling and reorders instructions to enhance

vectorization. It assumes that all arrays are aligned on boundaries equal to the vector size

of the target platform. With this assumption it finds vectorization which does not require

accessing unaligned memory addresses. However, if this restriction were relaxed, and

unaligned memory accesses were allowed, more vectorization could be found.
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Chapter 3

Scalar Code Generation

This chapter introduces the PowerPC instruction set, and details some of the modern

architecture issues which are encountered in implementing a backend for this architecture.

The compile chain used in our implementation is presented with our solutions to the

problems encountered.

3.1 Compile chain

sf2c cpp snoot
Fortran Source C Source Preprocessed C SUIF

slpcc convertsuif1to2 ppc
vectorized SUIF SUIF2 PPC Assembler

Figure 3.1: Compile Chain Overview
This is an overview of the compiler compile chain used in this project. Each
box shows a form of the program. Arrow are labeled with the name of the
pass which transforms the program from one form to another.

In our implementation both C and Fortran sources can be compiled into PowerPC

assembly code. Figure 3.1 illustrates the compile chain used in this project. When

compiling C source code, the Fortran form and f2c transformation are skipped.
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The sf2c pass is part of the SUIF distribution. It translates Fortran source into C

code. The sf2c pass creates C code which uses some shared libraries for certain Fortran

functions. The API to these libraries is shared by all supported platforms. This makes it

possible to generate the C code independent from the target platform.

To precompile the C code, cpp from the GNU C distribution1 is used. The cpp pass

merges the C code with header files and other include files. It is critical that cpp use the

include files from the target platform because these include files have platform specific

data structures which will be used in the final result. This makes it necessary to

precompile on the target platform instead of our main SUIF development platform.

Another SUIF pass, snoot, is used to convert the preprocessed C code into SUIF.

This is the form which the vectorization analysis works on.

The slpcc pass is used to analyze the program for vectorization. This pass may also

perform loop unrolling and other transformations to improve the program’s vectorization.

This pass is skipped when generating PowerPC code without AltiVec optimizations. This

pass was developed on an x86 Linux platform, so the analysis is run there. Because SUIF

is a platform independent representation, this causes no platform related problems.

MachSUIF2 and our PowerPC code generation pass, ppc, is used to generate the

PowerPC assembly code. The ppc pass is broken down in more detail in Figure 3.2. The

rational behind each of these stages is described in later sections. Compare this

illustration to the ideal MachSUIF2 compile chain in Figure 2.1.

3.2 PowerPC Instruction Set Architecture

The PowerPC ISA is generally RISC like. As with most RISC architectures, arithmetic

operations operate on values in the register file, and not on values in memory. Explicit

store and load instructions are used to write and read values to and from memory.

Unlike more simple architectures, the PowerPC has a special set of condition registers

which it uses to decide the direction of a conditional branch. This leads to complications

1Version 2.95.2
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lower s2m gen
Lowered SUIF2 SUIF VM PowerPC

raga GlobalSpiller raga
PowerPC PowerPC PowerPC

fin GenerateDisplacement
PowerPC PowerPC

LargeDispFixer LongJump m2a
PowerPC PowerPC

Figure 3.2: PowerPC compile chain detail
This is an overview of the PowerPC code backend compile chain used in this
project. Each box shows a form of the program. Arrow are labeled with the
name of the pass which transforms the program from one form to another.
This takes the place of the ppc arrow in Figure 3.1.

in code generation for some simple conditional statements.

Table 3.1 is a list of common PowerPC instructions and their semantics. The

assembly instructions used in this document do not use the same syntax as those which

are parsed by most assemblers. Instead, the instructions have been simplified for ease of

reading. This includes a shorthand notation in the conditional branch (bc) instructions,

and use of symbols in leu of registers.

For conditional branches, the value of BO may be either T indicating the branch is

taken if the corresponding bit is set, or F indicating the branch is taken if the

corresponding bit it not set. The offset o added to a condition register to select a

condition bit may have the values LT, GT, EQ, or NE indicating greater than, less than,

equal to, and not equal to respectively.

Most instructions operate on registers, and not variable symbols. Variable symbols

used in these assembly instructions indicate a register which has been allocated for that

variable. It is assumed that it is possible to allocate such a register.
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Table 3.1: Common PowerPC instructions
Mnemonic Simplified Semantics

btarget PC ← PC+target

bc BO, crn+ o, target PC ← PC+target if (CR[4n + o]=BO)

mr dst, src R[dst] ← R[src]

op dst, src1, src2 R[dst] ← R[src1] op R[src2]

cmp crn, src1, src2 CR[4n::4n+ 3] ← CMP(R[src1], R[src2]

cmpi crn, src, m CR[4n::4n+ 3] ← CMP(R[src], m]

li dst, n R[dst] ← n

lis dst, n R[dst] ← n× 232

ltype dst, offset(base) R[dst] ← MEM[offset+R[base]]

ltypex dst, base, offset R[dst] ← MEM[R[offset]+R[base]]

sttype src, offset(base) MEM[offset+R[base]] ← R[dst]

sttypex dst, base, offset MEM[R[offset]+R[base]] ← R[dst]

sttypeu src, offset(base) R[base] ← offset+R[base] ; MEM[R[base]] ← R[dst]

sttypeux dst, base, offset R[base] ← R[offset] + R[base] ; MEM[R[base]] ← R[src]

These are common PowerPC instructions. Some simplifications have been
made to the actual semantics of these instructions.

3.2.1 Condition Registers

The PowerPC has an additional bank of registers which are used as the condition for

conditional branches. There are 8 of these 4 bit condition registers. This bank of registers

is denoted as the bit vector CR in Table 3.1.

In the code produced in this project, it is not necessary to use more than one of these

condition registers at a time. Because of this, the condition registers are allocated staticly

by the code generator, and not left for raga to allocate.

Condition register 6 has a special purpose. It is set to true when making a call to a

variable argument function which takes floating point parameters. It is set to false when

calling a variable argument function which does not use floating point arguments.

Unlike many RISC architectures, the PowerPC ISA stores four bits of information

about a compare. When a compare is performed a bit is set for each of: less than, greater

than, equal to, and not equal to. One of these bits is examined by the bc instruction to

decide if the branch is to be taken or not.
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if (x > 0) &&
(x < 10)

sgt c1, x, #0
slt c2, x, #10
and c3, c1, c2
bne c3, fi

cmpi cr0, x, 0
bc F, cr0+GT, fi
cmpi cr0, x, 10
bc F, cr0+LT fi

sgt c1, x, #0
bne c1, fi
slt c1, x, #10
bne c1, fi

(a) (b) (c)

C code RISC assembly PowerPC assembly RISC assembly

Figure 3.3: Encoding a Simple If Statement
The C code is translated into RISC and PowerPC assembly sequences. RISC
instruction sequences (a) and (c) are written using the DLX instruction
set[4]. The label fi immediately follows the body of the if.

This small difference results in significantly different optimal code generation because

the type of condition is decided at the branch and not at the compare. Figure 3.3 shows

how a if clause in C might be translated into RISC and PowerPC assembler. Assembly

sequence (a) is not general solution. The && operator in C is a short circuiting operator.

That is, if the left hand side evaluates to false, the right hand side is not evaluated.

Sequence (a) does not short circuit, while sequences (b) and (c) do. In this case, since

there are no side effects to the comparison, all three translations are semantically

equivalent and correct.

Because branches are typically relatively expensive instructions, sequence (a) may be

more efficient than the PowerPC instruction sequence (b). It is difficult to construct a

PowerPC instruction sequence which performs the same conditional branch with a single

branch. However, because the logical operators in C do short circuit, it is often not

desired to limit the number of branches. At this level, the distinction between the two

instruction sets is mostly superficial.

Another point to consider is the intermediate representation of conditional

statements. Typically, in languages like C, conditional expressions are exactly the same as

other boolean expressions. Furthermore, bitwise boolean logic is often interchangeable

with conditional boolean logic. Because most intermediate representations make the

assumption that boolean logic operating on conditions and other expressions are similar,
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the distinction between the two often becomes unclear. To generate good code for the

PowerPC, it is necessary to make such a distinction.

Furthermore, MachSUIF2 generates RISC style conditional branches in its s2m pass.

The PowerPC gen pass then translates these instructions one by one. Because there is no

direct equivalence of a sge or bne instruction, these are each translated into several

instructions, each including a conditional branch. This comes at a significant performance

cost.

In order to perform this translation more efficiently, there are three alternatives. A

pass could be run before gen to mark all pairs of condition sets and conditional branches,

these could then be translated to the most efficient pair of PowerPC instructions in the

gen pass. Alternatively, the PowerPC gen pass could keep track of which instructions have

been generated and then backtrack if a more efficient sequence could be emitted. As a

final alternative, a pass could be run after the gen pass to clean up all of the extraneous

branches. This would have to do some dependency analysis to ensure that values

computed for the branches were not used elsewhere.

3.3 Target Operating System

Differences between operating systems effect the code the backend produces. We

considered LinuxPPC, AIX, and Macintosh OS9. Linux was chosen because it provided a

good development infrastructure, and the platform was readily available.

The differences between the operating systems is relatively small. Extending the

PowerPC Linux backend to support AIX or OS9 should be simple. The calling convention

and the global variable space differ between the OS’s.

The calling convention has significant differences between the operating systems. One

exception is the way mixtures of float and scalar parameters are passed. In AIX and OS9

integer argument registers are unused corresponding to each of the floating point registers

used. Under Linux, the first 8 floating point arguments are passed via registers, while still

allowing all the integer argument registers available for integer parameters. How

structured data types are passed also differs between the platforms.
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The global data area also differs. In AIX a register is dedicated to point to the

beginning of the global data segment. This is typically constant throughout the execution

of the program. Under Linux, there is no such dedicated register. It would be possible to

dedicate a register to this purpose, but it would be necessary to maintain it for external

calls. Also, having a dedicated global base pointer limits the addressable global area to

32K bytes.

3.3.1 Structured Datatypes as arguments

0x00 Caller’s saved SP (SP and FP point here.)
0x04 Saved return PC (or unused: i.e. if non-leaf)
0x08 Space for extra parameters
0x0C as many as needed for longest call
0x10 from this function.
0x14
0x28 Space for arguments (must start on a multiple of 0x08)
0x2C up to 16 passed in registers
0x30 8 int, 8 float, others
0x34 placed into caller’s stack.
0x38 Locals stored here
0x3C as many as necessary.
0x40
0x44
0x48
0x4C Caller’s FP
0x50 Caller’s Frame (must start on a multiple of 0x10)

Figure 3.4: PowerPC Stack structure for Linux calling convention
This is the stack structure used in the PowerPC calling convention on Linux.
Space for arguments is optional (i.e. if the function makes no calls.) Param-
eters are passed on the caller’s stack, so sufficient space for the call with the
greatest size of non-register parameters must be allocated.

Structured data types may be passed by value in C. Most calling conventions

accomplish this by passing the value of the structure on the stack or in registers as other

parameters are passed. That is, when an integer is passed by value, it value is placed on

the stack or in a register. The source is thus inaccessible from the callee. Structured data
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.data .data
x: .long 0 x: .long 0
.text .text
lis 3,x@ha lwz 3,x@l(gp)
lwz 3,x@l(3)
Loading a global on PowerPC Linux Loading a global on AIX

Figure 3.5: Loading a Value from the Data Segment
Loading a global variable on PowerPC Linux and PowerPC AIX. Because
there is no global pointer (gp) in PowerPC Linux, it requires two instructions
to load a global variable instead of one.

types may be passed in a similar fashion.

The PowerPC calling convention differs slightly here. The structure is not copied into

the caller’s stack along with the other parameters. Instead it is copied elsewhere, usually

into the local variable area, and a pointer to the copy of the structure is passed instead.

This effectively changes the type of the parameter. To the caller, structures passed by

reference and those passed by value look exactly the same.

3.3.2 Global Variables

As noted in Section 3.3 Global variables are handled differently on PowerPC Linux than

on other platforms. To load a global variable, it is necessary to compute its complete

memory address, not just the offset from a frame, stack or global pointer. This is

accomplished with two instructions as shown in Figure 3.5.

More specifically, it requires two instructions to load values from the data segment.

Not all variables declared as global go into the data segment, and not all variables in the

text segment are declared global in the source code. For example, string literals are

usually placed in the data segment, and a global which is not used externally or globally

may (temporarily) be placed on the stack, in the heap, or in a register.

The example in Figure 3.5 uses register 3 for two purposes. It first loads part of the

address into register 3, then using the register as the base for the offset, loads into register

3. Using the same register for the base of the offset and the destination of the load works
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in this case, but not in other cases. If the destination of the load is a floating point

register, the floating point register cannot be used temporarily to hold the base of the

address. Also, when storing into variables in the data segment, the register cannot be

recycled before the store takes place, so again we need to use an additional register. For

this reason, it is necessary that this pass run before register allocation.

When the register allocation pass, raga, is run, it is necessary that all dependency

information be preserved. The load from x@l(3) in Figure 3.5 should look like a use of the

global variable x. This is not only necessary for register allocation, but also for any other

pass which will use dependency information – a scheduler, for example. The half address

(x@ha or x@l) is not supported by MachSUIF2. It is necessary to indicate this dependency

by adding x as a source for this instruction. Though the load instruction actually only has

one source, it is registered twice. Once in a form which is used for printing, and once in a

form which is understood by MachSUIF2.

The raga pass does more than just register allocation. Before raga is run, all variables

are treated as registers; instructions may have arguments which will eventually reside in

memory. The raga pass breaks instructions like these into the appropriate loads and

stores. This work must be done before the GlobalSpiller pass is run.

These constraints necessitate that raga be run both before and after the GlobalSpiller

pass, implying that it must be run twice. Fortunately, the second time raga is run, there

are far fewer virtual registers to allocate, and it runs more quickly.

The raga pass makes use of a SUIF2 function to allocate unique new variables when it

is necessary to spill registers. This function was implemented to run in O(n2) (where n is

the number of variables in the scope) time making some of the benchmarks unreasonably

slow to compile. After running raga on the su2cor benchmark for more than 20 hours, it

did not complete. After modifying the new unique variable function to run in O(n lg n)

time, the pass ran in a few minutes.
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3.4 Large Immediate Values

The instruction word on the PowerPC is 32 bits. The load immediate instruction, li, takes

an immediate whose size is at most 16 bits. To load immediate greater than 16 bits in

size, it is necessary to break this into two instructions. This is similar to what is done

with global variables as discussed in Section 3.3.2.

Fortunately, in the case of loading immediates, there is no source variable which is

recycled as is the case with global variables. It is therefore possible to do this

transformation in the gen pass without needing to add any information for future passes.

Though translating large immediate values found in load immediate instructions can

be done in the gen pass, it does not cover all large immediate values. Large immediate

values may also be found in a base-displacement operand. Global variables are a special

case of a large immediate in a base-displacement operand where the base is zero.

For functions with very large stack displacements, large immediates may be found in

the statement which allocates space on the stack at the beginning of the function.

(Functions with large local arrays are common in the benchmarks addressed in this

project.) The stack size is not determined until the fin pass is run, so it is necessary for

this expansion pass to be run after fin.

Because all of these large immediate values can be handled in a single pass, they are

not expanded in the gen pass, but instead left until the end of code generation. This pass

is LargDispFixer in Figure 3.2.

3.5 Long Conditional Branches

The encoding of a conditional branch is offset based. That is, the immediate value

encoded in the instruction is the value which must be added to the PC to make the

branch. This immediate is a 16 bit value. This limits the conditional branch to jump at

most 32K bytes. Unconditional branches can jump to offsets of up to 227 = 128G bytes.

Many of the benchmarks examined in this project needed conditional branches to

span more than this distance. This is the case for many large loops.
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bc BO, cr0+n, far

.

.

.

.

far:

bc BO, cr0+n, not far
.
.
.
b over

not far:
b far

over:
.
.
.

far:

bc BO, cr0+n, over
b far

over:

.

.

.

.

far:

Initial code. Branch spans
more than 32K bytes. This in-
struction cannot be coded in
the PowerPC ISA.

Modified code. Conditional
branch targets an intermediate
unconditional branch.

Alternate modified code. Con-
ditional logic is reversed and
target is reached by an uncon-
ditional branch.

Figure 3.6: Distant Branch Target Solutions

There are two ways to utilize unconditional branches to increase the range of

conditional branches that were considered in this project. One way is to have the

conditional branch jump to an unconditional branch that jumps to the final destination.

Alternatively, the logic of the conditional branch could be reversed, and the target

changed to jump over an unconditional branch that jumps to the final destination. These

two options are illustrated in Figure 3.6

Both of these options increase the code size. Aside from the usual consequences (i.e.

increased instruction cache miss rate) this may also increase the distance which other

conditional branches need to jump. This may cause a chain reaction making it difficult to

do this transformation in a fixed number of passes.

Branching to an unconditional branch has the advantage that the logic of the

conditional branch is not changed. If some work were put into branch prediction and

control flow in previous passes, this would not be lost, and the program control flow would
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be most similar to the original control flow.

Finding a place to put the unconditional branch may be difficult. From the example

in Figure 3.6 the distance from the conditional branch to label far is greater than 32K

bytes. The distance to label not far must be less than 32K bytes. Therefore, the not far

label must be between the two, in between other instructions of this function, or if the

conditional branch is less than 32K bytes from one end of the function, it may be placed

outside the function.

Placing the intermediate target inside the function requires one of two options. Find

a place in the control flow which can’t be reached. This would be following an existing

unconditional branch or return statement. This point would need to be within 32K bytes

of the unconditional branch. If such a point could not be found, a second option would

have to be employed. An additional unconditional branch around the new target would

have to be established as shown in Figure 3.6. This way the new target could be placed

anywhere. If the new target were placed inside a highly trafficked tight loop, there may be

some negative performance impact.

The algorithm for of the alternate approach is much simpler. The logic of the branch

is reversed so that the branch is taken in only the cases when it was not taken before.

This is encoded in the BO operand of the bc statement shown in figure 3.6. The target of

the branch is then changed to be the following instruction. Between the two is inserted an

unconditional branch to the initial target. Also encoded in the BO operand is a branch

prediction bit. This bit is flipped to preserve any branch prediction information.

The disadvantage of this transformation is that a branch must be taken whether the

condition is true or false. On most modern architectures the unconditional branch costs

very little. This is true for the G4 PowerPC which is the target of this project.

This transformation is performed in the LongJumpFixer pass. (See Figure 3.2.) It is

necessary that this pass be run near the end of the compile chain because it depends on

code size. Any pass which inserts or deletes instructions could potentially destroy the

work which this pass does.

In order to increase performance of this pass at compile time, some assumptions were
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Table 3.2: Scalar Code Generation Results
Benchmark ppc gcc -O1 gcc -O2 gcc -O3

tomcatv 9.78 7.66 7.30 7.30

swim 7.77 3.72 2.69 2.68

mgrid 39.86 18.62 12.48 12.47

made. First, it is assumed that all bc statements operate within a single function.

Branches to other functions should be done with a call (i.e. bl) statement. Second, it is

assumed that the instruction word size is 4 bytes and instructions are emitted in sequence,

without any unnecessary space between them. From these assumptions we can determine

the distance in bytes between any bc statement and its target.

This analysis and transformation is done in two passes. It operates on a single

function at a time. First the function is scanned and the byte offset to each label is

recorded. Next, the function is scanned for bc statements, and the distance between the

branch and its target is estimated. If it is greater than half the maximum allowed

distance, the transformation is applied.

Choosing to transform branches spanning more than half the maximum distance may

transform more branches than necessary. However, it guarantees that the pass can be

done in two scans of the code. Because each branch is expanded into two instructions, the

code size, and distance between branch and target, can at most double. Therefore

applying the transformation when half the limit is reached is safe.

3.6 Results

We successfully created a backend for PowerPC code generation. Using the Spec95 FP

benchmark suite we were able to compare our backend against code generated by gcc.

These results are shown in Table 3.2.

In the benchmarks we were able to successfully compile, our backend performs

significantly worse than gcc. This is due to a number of factors. A lack of data-flow and

other optimizations contribute to the increased execution times. The main contributing
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factor is the inefficient translation of conditional branches. Not only are the set and branch

instructions translated inefficiently by the ppc pass, but s2m also expands conditional

branches significantly. The end result is that a branch which could be translated into two

instructions is instead translated into nearly 20 lines of code with up to 4 branches.
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Chapter 4

Multimedia Vector Code

Generation

There are several issues which make multimedia code generation different than code

generation for other targets. Because the word size of the multimedia unit is larger than

the word size of the rest of the machine, alignment of data structures needs to be handled

carefully. The separation of the multimedia processor from the CPU complicates register

allocation. Also, additional optimizations which are unique to multimedia units may be

applied.

4.1 AltiVec Instruction Set Architecture

The AltiVec uses vector registers and a Single Instruction Multiple Data (SIMD)

instruction set. Each vector register is 128 bits wide. Table 4.1 shows the data types

permitted in a vector. Note that neither 64 bit floating point or integer operations are

supported on AltiVec. Vector instructions in the AltiVec unit are SIMD instructions.

They perform the same computation on every element of the vector.
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Table 4.1: Vector Datatypes

Word Size Elements per Vector Floating point Integer

8 bits 16 no yes
16 bits 8 no yes
32 bits 4 yes yes

This table shows the vector types supported on the AltiVec unit.

Arithmetic Instructions

AltiVec arithmetic instructions perform one operation on all of the elements in a vector. A

vector add takes two source registers and one destination register. The sum of each

corresponding value is computed and placed into the destination vector.

Most arithmetic instructions come in two forms; these are saturate and modulo. A

vector add saturate will compute the sum, and if it exceeds the range of that type, the

resulting value will be the closest maximum value for that type. The vector add modulo

instruction operates the way most architectures implement add. Saturated instructions

only exist for integer types.

Permutation Instructions

Several instructions exist for the purposes of permuting and moving data between vectors.

The most general of these instructions is the vector permute instruction. One vector is

used to specify the desired permutation, the values from two other vectors are then

permuted into a destination vector. This instruction may be used to shift, rotate, or

otherwise permute each byte of the source vectors into the destination vector.

To support this general permutation instruction there are instructions which load

useful permutations specifications into a vector. For example, there is a vector load for

shift right instruction.
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b

c

Figure 4.1: Alignment Illustrated
Each square in this figure represents a word of memory. The gray squares
indicate an array using those words. These arrays are labeled for reference.
The thicker black lines indicate 128 bit boundaries.

Load and Store Instructions

All load and store instructions use the indexed memory mode. This is the mode used by

the ltypex instructions in Table 3.1. The base-displacement memory mode is not

supported in the AltiVec ISA.

There are load and store instructions to store varying sizes of data. Individual bytes,

half words, or words can be stored as well as the complete 128 bit vector.

4.1.1 Alignment Restrictions

A word in the AltiVec unit is 128 bits. This is 4 times the word size of the CPU. This

allows 4 integer, or floating point calculations to be performed simultaneously in the

AltiVec unit. A super word register may be loaded from memory, or copied from another

super word register. To load a full super word from memory, it is most efficient to load

consecutive data aligned on a 128 bit boundary. Individual 8, 16, or 32 but words may be

loaded at roughly the same cost as a single 128 bit load. This results in an importance of

data alignment. The compiler may need to re-organize alignment and placement of

variables in a program to reduce the cost of loading them into the AltiVec unit.

Though a compiler may reorganize the alignment of some data, not all alignment

issues can be avoided this way. Some functions may be passed arrays or pointers to
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memory of arbitrary alignment, making it impossible to determine the alignment of data

at compile time. Figure 4.1 shows three arrays stored in memory at different 128 bit

alignments. This makes it difficult to perform calculations between the arrays because the

data must be realigned in the AltiVec registers.

Because it is most efficient to write a 128 bit word to memory at a time, it is

sometimes necessary to perform a read before writing back to memory. This is the case

when writing to the beginning or end of an array which is not aligned on 128 bit

boundaries. It is necessary to preserve the values in memory before and after the array.

Writing a 128 bit word without reading the previous values first may destroy the values

which were there.

4.2 Implementation

In implementing code generation for the AltiVec unit, the most prevalent consideration we

came upon was memory alignment. It was also necessary to extend the backend to have a

consistent representation of the new vector types, and to accommodate some of the

limitations of the instruction set.

4.2.1 Load and Store instructions

There are two addressing modes which are used in the PowerPC instruction set. These are

the base-displacement, and indexed modes. See the ltype and ltypex instructions in Table

3.1 for examples of these modes.

The AltiVec instruction set only supports the indexed memory mode. Because the

backend and backend infrastructure assumes that the base-displacement mode is available,

it was necessary to create a pass which converts base-displacement memory accesses into

indexed mode accesses for the AltiVec instructions.

Figure 4.2 shows the transformation we used to convert memory references in the

base-displacement mode to indexed mode. This process requires using a new temporary

register, t, to hold the displacement value. Because this pass uses new registers, it must

run before the final register allocation pass. However, because of similar constraints to
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lvx dst, d(b)
li t, d
lvx dst, t, b

Base-Displacement mode Indexed mode

Figure 4.2: Base-Displacement to Indexed conversion

those for fixing global variables, it is necessary that the raga pass be run before this pass.

(See section 3.3.2.) This pass is inserted between the two raga passes as shown in

Figure 4.3.

raga GlobalSpiller ExpandBD raga

PowerPC PowerPC PowerPC PowerPC

Figure 4.3: Placement of the Base-Displacement to Indexed Conversion Pass

Base-displacement operands are most frequently used when referencing a value on the

stack. This is the way local variables and spilled registers are loaded and stored. It is

efficient because the stack offset is constant and can be determined at compile time.

However, this information is not known until the fin pass is run. This pass is very late in

the compile chain, and must be after the final register allocation. To accommodate this

paradox, instructions which can not be expanded completely in the ExpandBD pass are

marked as such. The load immediate instruction is generated, and a register is reserved in

the ExpandBD pass. The value is filled in in the fin pass.

An alternative to this approach is to use the addi instruction to temporarily add the

immediate value to the base register. This value would then be subtracted after the load

or store had completed. This expands each load or store instruction into three instructions

instead of two. A later constant folding pass could potentially reduce the number of these

addi and subi instructions by half.
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4.2.2 Loading and Storing Unaligned Data

The load and store instructions generated by the SLP analysis are guaranteed to be

aligned on 128 bit boundaries. This makes it easy to translate load and store instructions.

However, if this restriction were relaxed, and the SLP pass could take advantage of

unaligned data as well, more vectorization would be possible. To support this possibility

and furthermore, to make our backend more general, it is important to consider the case

where the previous analysis can not make such strong assertions about the alignment of

the data.

Often times the alignment of data can not be guaranteed. For example, a function

may dereference a pointer which is the result of an outside library call, and it may be

desirable to use a vector to load four words from this address. In this case, we may not be

able to guarantee anything about the alignment of the data at compile time.

Because loading and storing unaligned data is potentially a relatively common

operation, and tends to be very expensive, it was necessary to develop an efficient code

sequence for this operation. The general mechanism used in this project is shown in

Figure 4.4.

The example in Figure 4.4 shows loading 4 words of data into a vector register. This

can be generalized for any supported alignment and word size. Alignment is limited to a 1

byte resolution. Word sizes are irrelevant since the entire 128 bit word is loaded. The

generalized load code is shown in Figure 4.5. It contains an optional optimization for

loading data in the aligned case.

We considered an alternative to the load and store code presented here. One may

think that to use the store vector element instructions, it only takes 4 store word element

instructions to store the vector at an arbitrary alignment. Four store word instructions

will may execute more quickly than two vector loads and two vector stores. Unfortunately,

the vector store element instruction will only store elements which are the same alignment

in the vector as they are in memory.

On the AltiVec, the four store word instructions execute roughly twice as fast as the

two loads and two stores, but still not as fast as a one or two vector stores. Table 4.2
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Figure 4.4: General Solution to Unaligned Data
Boxes denote 128 bit vector registers. The continuous lines at the top and
bottom are memory. Thick arrow indicate loads and stores. Thin arrows
indicate a logical shift.
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ldvx vr3, offset, base
andi test, offset, 0x0F
cmpi cr0, test, 0
bc cr0, EQ, over
addi offset2, offset, 16
ldvx vr1, offset2, base
ldvfsl vr2, offset, base
perm vr3, vr3, vr1, vr2

over:

andi test, offset, 0x0F
cmpi cr0, test, 0
bc cr0, EQ, over
ldvx vr0, offset, base
addi offset2, offset, 16
ldvx vr1, offset2, base
ldvfsl vr2, offset, base
perm vr4, vr0, vr0, vr2
perm vr5, vr1, vr1, vr2
ldvfsr vr8, offset, base
perm vr7, vr3, vr5, vr8
perm vr3, vr4, vr3, vr8
stvx vr7, offset2, base

over:
stvx vr3, offset, base

Load MEM[R[offset]+R[base]] into vr3 Store vr3 into MEM[R[offset]+R[base]]

Figure 4.5: General Vector Load and Store
Code in italics may be left out. When the data is aligned, this code bypasses
the instructions required for unaligned data. The code is still correct without
this optimization.
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Table 4.2: Vector Load and Store Timing

Instruction Alignments timing

lwz {0,4,8,12} 1.85
lvx {0,16} 0.97
lvx {0} 1.01

stw {0,4,8,12} 0.97
lvx,stvx {0,16,16,0} 2.01
lvx,stvx {0,16,0,16} 2.17
stvx {0,16} 0.51
stvx {0} 0.32

The timings shown in this table are based on load and store instructions
placed in a tight loop ranging over a 40000 byte array. The instruction
shown in the first column were executed at the alignments shown in the
second column. One load or store at each of the listed alignments is executed
per iteration. For rows with both load and store instructions listed, the two
loads are performed before the two stores.

shows these relationships. Also shown in this table is a comparison between the vector

and scalar load functions. This table shows that in the general load store case, it is most

efficient to load the data with

4.2.3 Additional Load Store Optimizations

The code presented in Figure 4.5, though completely general, is not very efficient. If the

data is unaligned, the combination of load and store operation takes 6 memory accesses,

plus additional instructions to load the data. When loading 32 bit words, the equivalent

operation on the CPU takes 8 memory accesses. This is a worst case comparison. Loading

smaller word sizes would take the same number of memory accesses on the AltiVec unit,

and a larger number of accesses for the CPU.

Though this generated code for the AltiVec outperforms the equivalent instructions

on the PowerPC, there are significant improvements which can be made. The ideal ratio

of 2 memory accesses per load and store can be achieved.

Vector load and store operations often occur inside a loop body which steps through

an array of continuous memory. It is in this special case which we are able to achieve an

43



1 2 3 4

1 2 3 40

0 21 3

31 20

X

0 21 3 4 5 6 7

1 2 3 4

0 21 3 4 5 6 7 8 9 10 11

8 9 10 110 5 6 71 2 3 4

4 5 6 7

5 76

5 6 74

1 2 3 4

X

Figure 4.6: Special Case Solution to Unaligned Memory Accesses
Boxes denote 128 bit vector registers. The continuous lines at the top and
bottom are memory. Thick arrow indicate loads and stores. Thin arrows
indicate a logical shift. Medium arrows indicate a move within a register.
Dashed lines indicate a carryover from one iteration to the next.

amortized ratio of 2 memory accesses per general load and store. Figure 4.6 illustrates our

algorithm to achieve the amortized rate of 2 memory accesses per general load and store.

In figure 4.4 we see that the same memory is loaded twice before the generalized load

and store are completed. By storing these values in registers for the duration of the

modifications to the desired data, we can eliminate the redundant load.

In the subsequent iteration of the loop, we only need to load one of the two vectors

from memory. The other we already have from the previous iteration. Similarly, one of the

stores from the previous iteration may be postponed to this iteration provided that we use

the vector’s value instead of the unmodified copy from memory.
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4.2.4 SLP Analysis

The AltiVec instruction set does not provide an instruction to move data directly from the

CPU’s registers into the multimedia vector registers. Data must be transfered through

memory. Because memory accesses are typically the slowest operations on modern

computers, executing a computation partially on each unit is expensive. It is critical to

determine on which unit the computation should take place.

The SLP analysis finds and vectorizes statements which can be performed on the

AltiVec unit. It takes the cost of loading and storing the data into account in this

analysis. This attempts to minimize the communication between the two processors. The

cost model used in the SLP analysis assumes that vector loads and stores are actually only

a single load and store, not the six loads and stores in our general case. Thus it is

important to reduce the number of loads and stores so that the SLP analysis does not

hinder the performance of the code.

4.3 Results

We were unable to complete the backend AltiVec code generation, but we were still able

to discover many issues raised by targeting this architecture. We found that data

alignment is of critical importance to achieve high performance SIMD execution. However,

even with a minimal SLP analysis the SIMD unit can be used beneficially.
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Chapter 5

Conclusion

In our development of a backend for a modern architecture, we discovered many impacts

of the new architecture on the compiler tool chain. The new features added to the

architecture add not only complexity to the processor design, but also to the backend

development making implementation harder. We found three major impacts of the G4

PowerPC and Altivec processors on the compiler backend. Use of dedicated condition

registers resulted in suboptimal code generation. Limited instruction word length (and

instruction set) increased compiler complexity and impacted compiler performance.

Limited memory functionality of the multimedia unit significantly impacted vector

memory accesses.

Condition registers are a modern architecture feature which can improve performance

of conditional branches. This modification to the ISA may seem superficial, but it

introduces complexities to the backend. Modern compiler tool chains use an infrastructure

which is designed to target a standard RISC architecture. The PowerPC’s condition

registers are not a standard RISC feature. This makes it difficult to generate good

conditional branch code with a standard backend infrastructure. Furthermore, languages

like C, encourage a representation which computes boolean values before a decision to

branch is made. Because the choice of comparison is delayed until the branch instruction

in the PowerPC ISA, it is necessary to perform either significant analysis or

transformation to produce good code.
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The AltiVec’s SIMD instructions have potential to significantly increase performance.

However, the memory access functions of the AltiVec serve as a serious detriment resulting

in compiler backend complexity and poor code generation. Because only aligned stores are

supported, the cost of a single vector store quadruples when the alignment is unknown.

With a significant amount of analysis, in special conditions, this can be reduced to the

ideal cost of a single store per unaligned vector store. The limited address modes

supported by the AltiVec also hinder code production.

These features and intricacies of a modern architecture show the critical impact of

architecture on the compiler tool chain. Features directly exposed like the SIMD

instructions of the AltiVec unit, and minor ISA changes like the conditional branches

impact code generation. Hidden features like super-scalar scheduling and memory timing

need to be considered in the code generation. From our development of a backend for the

G4 PowerPC and AltiVec we demonstrated the impact of a modern architecture on the

compiler tool chain.

5.1 Future Work

There are several components of the backend infrastructure which are incomplete and

would be necessary to make this backend generally useful. These limitations did not stop

us from analyzing the many issues of modern backend development.

Currently there is only limited support for variable argument function calls. The

backend correctly generates code for calls to variable argument functions, but is not able

to compile functions which take a variable number of arguments. The compilation of such

functions has been sketched out, but its implementation is still incomplete.
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