
1

Internet for the Developing World: Offline Internet Access at
Modem-speed Dialup Connections

Umar Saif
LUMS, Computer

Science Department,
Pakistan

umar@lums.edu.pk

Ahsan Latif Chudhary

LUMS, Computer
Science Department,

Pakistan
alatif@lums.edu.pk

Shakeel Butt
LUMS, Computer

Science Department,
Pakistan

shakeel@lums.edu.pk

Nabeel Farooq Butt
LUMS, Computer

Science Department,
Pakistan

nabeelbutt@lums.edu.pk

Ghulam Murtaza
LUMS, Computer

Science Department,
Pakistan

 murtaza@lums.edu.pk

Abstract—Users in the developing-world are typically forced
to access the Internet at a fraction of the speed achievable by a
standard v.90 modem. In this paper we present an
architecture to enable offline access to the Internet at the
maximum possible speed achievable by a standard modem.
Our proposed architecture provides a mechanism for
multiplexing the scarce and expensive international Internet
bandwidth over higher bandwidth p2p dialup connections
within a developing country. Our system combines a number
of architectural components, such as incentive-driven p2p
data transfer, intelligent connection interleaving and content-
prefetching. This paper presents a detailed design,
implementation and evaluation of our dialup p2p data
transfer architecture inspired by Bittorrent.

I. INTRODUCTION
The “digital divide” between the developed and developing
world is underscored by a stark discrepancy in the Internet
bandwidth available to end-users. For instance, while a 2
Mbps ADSL link in US costs around 40 USD/month, a 2
Mbps broadband connection in Pakistan costs close to
4000/month.

The reasons for the order of magnitude difference in end-
user bandwidth in the developed and the developing-world
are three-fold:

• Expensive International bandwidth: Developing
countries often have to pay the full cost of a link to a
hub in a developed country, making the cost of
broadband Internet connections inherently expensive
for ISPs. For instance, more than 40 countries have
less than 10Mbps of international Internet bandwidth,
whereas in Belgium, a 9Mbps ADSL high-speed
Internet package is available for just USD 80 a month
[1]

• Lack of Proper Peering-points: ISPs in the
developing-world typically have to sign transit
agreements with upstream ISPs; there is typically no
notion of a peering agreement between small regional
ISPs. Smaller ISPs, therefore, purchase bandwidth at a
cost derived from the price of international Internet
link, even when its traffic is destined for a host

connected to an ISP in the same region.
It is worth mentioning that even when an Internet
Exchange Point (IXP) exists, it is typically owned by a
large upstream ISP. Such an “IXP” is mostly a
marketing term by a transit provider, offering a router
configured for BGP4 packet-exchange and “sold” as a
transit agreement to the Internet at international
bandwidth rates. On the other hand, when no such
“IXP” exists, traffic generated by a user in the
developing-world has to actually traverse international
links even if the recipient is connected to an ISP in the
same region.

• Poor Provisioning for “Pre-paid” Users: Like cell-
phone users, Internet users in the developing-world
predominantly use “pre-paid” scratch-cards for
accessing Internet over dialup. While the pre-paid
model reduces the barrier to entry for users, ISPs
cannot easily anticipate and provision their network for
their user-base. As a result, end-user bandwidth is both
expensive (due to conservative ISP provisioning) and
unpredictable.

Characterized like this, the scarcity of available bandwidth
in the developing world is not a “last-mile” problem. Our
experience has shown that a 56Kbps modem can typically
achieve an average throughput of greater than 40Kbps,
more than twice the bandwidth afforded over a typical (10-
15Kbps) dialup Internet connection in Pakistan. Our
experiments, conducted with several different ISPs in the
second largest metropolitan in Pakistan, repeatedly
highlighted the fact that end-user bandwidth lower than
15Kb/sec is typically not due to poor phone lines. Rather, it
is because of a chocked upstream Internet connection of the
ISP.

We conclude that given the high cost of international
Internet circuits, local ISP idiosyncrasies, and the
economics and politics of routing on the Internet, end-users
in the developing world are forced to access the Internet at
a fraction of the speed possible over a dialup connection.

2

Unfortunately, the paucity of Internet bandwidth severely
limits the utility of Internet in the developing world. In
general, Internet is almost never used for accessing or
transferring data larger than a few hundred kilobytes. This
includes software downloads and online software updates,
large email attachments and sharing and download of large
files. On the other hand, such bulk data transfer comprises
70% of the overall Internet traffic [2].

To illustrate the limited role of Internet in the developing
world, consider a simple scenario where two users in
Pakistan wish to exchange a 3.5MB PDF file as an email
attachment. On a characteristically slow dialup connection
in Pakistan of, say 16kb/sec, it would take close to an hour
to transfer the file (30 minutes each for uploading and
downloading the email attachment). Accounting for
possible disconnections over such long dialup connections,
the effective time for file transfer may be prohibitively long
for most people to even consider the Internet as a medium
for exchanging such large content.

Ironically, without the Internet, if the users established a
direct peer-to-peer dialup connection between the two
computers, they can exchange the file in less than 18
minutes (over a v.90 peer-to-peer dialup connection at
32kb/sec) – a performance improvement of more than a
factor of 3 -- at a bandwidth equivalent to a typical
broadband connection in Pakistan (~35Kb/sec).

However, the contemporary view of a dialup is limited to a
“last-mile” connection between the end-host and the
Internet Service Provider (ISP) to access the Internet. In
this paper, we propose a departure from this view of dialup
to address the bandwidth limitations in the developing
world. The key idea of our proposal is simple: instead of
using dialup solely as a mechanism to connect to the
Internet, at a fraction of bandwidth afforded by the modem,
we propose to use point-to-point dialup connections, at
modem-speed, to bypass the Internet when transferring
large content between end-hosts. This is achieved by using

a network routing layer, dubbed dialup-underlay, which
monitors end-host bandwidth and interleaves the (low-
bandwidth) ISP dialup connection with modem-speed peer-
to-peer dialup connections to download large content on the
Internet.

The point-to-point nature of our architecture is reminiscent
of routing systems from the pre-Internet days, such as
FidoNet, USENET (historically dubbed poor man’s
ARPANET) and UUCP. However, our motivation, design
goals and implementation strategy is very different from
these systems. Unlike pre-Internet systems that relied solely
on dialup connections for moving content between
computers, our goal is to accelerate access to large content
on Internet by utilizing a dialup connection at the
maximum bandwidth supported by the modem. In our
model, content still “resides” on the Internet, but may be
downloaded using a p2p dialup connection to reduce
download time. Figure 1 illustrates the interleaving
architecture of our system. Figure 2 illustrates the
performance benefit of the proposed interleaving
architecture by comparing the download performance of an
end-host for a 30 minutes session with and without our
interleaving architecture.

Perhaps radical, and closer to pre-internet technologies
(such as FidoNet) than current-day broadband networking
technologies, we believe that such an approach has
practical appeal for the “other four billion” users of the
Internet. Furthermore, while this paper is focused on using
POTS to-modem dialup connections to circumvent
extremely low bandwidth Internet connections in the
developing world, the crux of our proposal has generic
appeal in the developing world. Countries like Pakistan
have seen a phenomenal growth in Telecom, resulting in
cheaper and better communication infrastructure within the
country -- including deployment of high-bandwidth
Wireless Local Loop (WLL) and WiMAX -- while Internet
connectivity and bandwidth remains scarce. Our proposed

Peer-to-peer
dialup
connections

Line-speed (32kb/s)
dialup connections

10-15kb/s
Internet dialup Internet

ISP

IS

5-15kb/s
Internet dialup

Dialup
Underlay

Internet-dialup and Dialup-underlay
connections are interleaved to optimize
available bandwidth

Figure 1: Our system interleaves low-bandwidth Internet connections with modem-speed p2p dialup

3

ISP

DitTorrent
P2P

ISP

DitTorrent
P2P

100 KB

200 KB

400 KB

500 KB

300 KB

600 KB

700 KB

800 KB

900 KB

ISP

DitTorrent
P2P

ISP

DitTorrent P2P
Interleaved ISP

Figure 2: The difference in the data downloaded with
and without our interleaving architecture

architecture, at an abstract level, provides a mechanism for
multiplexing the scarce and expensive international Internet
bandwidth over higher bandwidth peer-to-peer connections
within a developing country.

Key to the practicality of our approach is a realization that
it is not always possible or desirable to make a direct dialup
connection between the “client” and “server”. For instance,
a Web-server may not be accessible over dialup; the server
may not support a dial-in facility or may be located in a
different country, requiring an expensive international
phone call to establish a dialup connection. Even when the
server is accessible over dialup, it would have a limited
number of modems and a finite capacity for handling dial-
in connections.

Our system derives its practicality from combining the p2p
dialup-underlay with a data transfer architecture that
enables dialup clients to cache and collaboratively share
downloaded content – a peer-to-peer (p2p) file-sharing
systems [3] (albeit with additional mechanism for direct
p2p dialup connections). Our p2p data transfer architecture
is derived from and compatible with the hugely popular
Bittorrent peer-to-peer file-sharing system [3]. We chose
Bittorrent over other p2p file-sharing systems like Gnutella,
Kazaa, eDonkey etc. due to its download performance and
robust incentive mechanism [12, 13, 14]. We call our
system DitTorrent (Dialup Bittorrent).

The DitTorrent module presents an interface similar to
Bittorrent and is designed to be compatible with existing
Bittorrent clients and trackers. Additionally, DitTorrent can
establish direct point-to-point dialup connections to
download content at modem-speed when such a connection
can reduce the overall download time of a requested file.

Using DitTorrent as a mechanism for data transfer, we
implement a session layer that enables offline Web access
over DitTorrent’s modem-speed dialup connections.
Offline Internet access in our system is enabled by several
components working in concert: (1) browser plug-in that
employs the p2p data transfer layer, when possible, to
download requested content over DitTorrent (rather than
using a TCP/IP connection over the Internet between the
client and the Web-server), (2) p2p and Web bridge module
that converts Web pages into DitTorrent packages to enable
offline download, (3) a pre-fetching proxy that mitigates
the disruption of online access when interleaving ISP and
p2p dialup connections, and (4) suspend-resume download-
manager provides a common caching and scheduling
mechanism to maintain download sessions across
interleaving of ISP (Internet) and peer-to-peer dialup
connections. Figure 3 sketches the high-level architecture
of our system.

In this paper, we describe the design and implementation of
our system and present detailed analysis of data transfer
over the p2p dialup-underlay. The rest of the paper is
organized as follows. Section II gives an overview of the
system architecture and describes the offline access model
of our system. Section III describes the design and
evaluation of our extension to Bittorrent, called DitTorrent,
which provides the mechanism for offline data exchange.
Section IV outlines our implementation and Section V
presents related and future work.

II. SYSTEM OVERVIEW
Our system is based on a modular architecture, sketched in
Figure 3. The browser plug-in drives the entire system: a
user clicks on a URL in his browser; the URL is shipped to
the bridge module which passes this to the DitTorrent
module; the DitTorrent module looks up the requested file
on the p2p network and may start downloading the file in
the offline mode. If the file does not exist on the p2p
network, the p2p network responds with a failure code,
causing the browser to download the file over the Internet.

Files that are downloaded over the Internet are turned into
DitTorrent-packges by the bridge-module, such that
subsequent download requests by other hosts may be
served offline by the DitTorrent p2p network. The
DitTorrent package, importantly, typically includes more
files than just the one requested by the user; files that are
linked by the current page are downloaded by the pre-
fetching proxy and are included in the DitTorrent package.

The suspend/resume module provides a common session
layer, which permits blocks of a file to be downloaded and
checked in parallel by different data transfer mechanisms
(offline p2p and Internet in our case).

Below we describe these components in detail.

4

A. Data-oriented Transfer

The internal interfacing between the Web browser and the
p2p client embodies a data-oriented architecture; a user
chooses a file he wishes to download, while the system
automatically explores alternative mechanisms to download
the file in minimum possible time [2].

To achieve this, the first critical piece is the bridge-module,
which bridges Web browsing and p2p offline file-
download. In order to download a webpage on the p2p
network, the bridge module must first translate the
requested file to a .torrent file which may be looked-up on
the DitTorrent network. To achieve this, the browser plug-
in passes the URL of the requested file to the bridge
module which looks-up the requested URL on an indexing
server1 to download the corresponding .torrent file. The
bridge module then passes the file to the DitTorrent module
which contacts the tracker and, subsequently, its swarm to
download the file in offline mode at modem-speed.

However, the role of the bridge module is more involved
when it cannot find the requested URL on the DitTorrent
network. In this case, the bridge module waits for the user
to download the file over the Internet, and assembles a
DitTorrent package to be put on the p2p network for
subsequent (offline) downloads by other users.

1 In DitTorrent, we use the URL of a requested for indexing and
look-up of the file on a Torrent indexing server.

Before describing the operation of packaging Web Pages as
DitTorrent packages, it is important to realize that making a
single webpage accessible over DitTorrent is typically not
feasible. This is because the bandwidth improvement
resulting from a transition from a slow-speed Internet
connection to a 32kb/sec p2p modem-to-modem connection
is not for free. In fact, each such transition incurs an
overhead of close to 30 seconds for negotiating the new
modem connection. Of course, each subsequent transition
between two p2p dialup connections, as well as the
transition back to the Internet connection, also incurs the
same overhead of modem-handshake. A typical webpage
on the Internet, on the other hand, is less than 40KB in size,
making it infeasible to incur the overhead of modem-to-
modem handshake. To illustrate the point, Figure 4
illustrates suitable ISP-p2p interleaving points with varying
Internet bandwidth and the number of dialup connections
necessary to download a file. For smaller files, the
overhead of modem-to-modem negotiation outweighs the
time-saved in downloading the file at modem speed. With a
moderately low-bandwidth dialup Internet connection of
15kb/sec, and between 2-4 average modem connections
(disconnection and reconnection to the Internet, as well as
dialup connections between peers), interleaving of ISP-p2p
typically becomes feasible for files larger than 50KB.

Another important consideration for off-line Web access is
an understanding of user browsing patterns. Typically users
do not access a single web-page on a website.

Figure 3: System Architectural Components

Web Browser

Pre-fetching
level

hole(FID)

Pre-fetching Proxy

get(FID,{block})
)

URL Browser
Plug-in

Bridge between
P2p and Web

DitTorrent Web
Package

Offline p2p
connections at
modem-speed

put(FID, block[offset, length, Hash])

Pre-fetched Pages

DitTorrent

 .torrent

Suspend-Resume Session Layer
Common System Cache

Bandwidth
Monitor and
Interleaving
Scheduler

5

 Recent studies [17] show that on average a user clicks-
through between 10-30 web-pages on a website. Therefore,
in order to afford a smooth offline browsing experience on
the p2p network, DitTorrent packages must include several
pages on a website. Given the distribution of crawled pages
by users on a website [17], the challenge is to balance
smooth browsing experience for a user who may click-
through several pages while minimizing the cost (of
downloading a large package) for users who browse fewer
pages. Figure 5 shows the percentage of users who get
redundant web-pages with respect to the pages included in
a single DitTorrent package2.

With this background, we assemble a DitTorrent package
(for offline browsing) as follows. If the bridge module
cannot find a page on the DitTorrent p2p network, it waits
for the user to finish her browsing session. If the number of
pages browsed by the user (in a single session) exceeds a
pre-configured threshold, it simply puts all these pages in a
single DitTorrent package and publishes the package for
others to download. However, if the user visits fewer pages,
the bridge module requests the pre-fetching proxy to
download an additional k level of egress links (k is
configurable), such that the package is also useful for a user
who exhibits “average” browsing patterns.

We have currently set the package size to be 40 pages,
which corresponds to the 50 percentile mark in [17]; with
40 pages, 50% of the users will have a smooth browsing
experience by downloading just a single DitTorrent
package.

B. Interleaving of Online-Offline Connection
Web browsing mandates that p2p-ISP connections are
interleaved without manifestly disrupting “normal

2 User click-through distribution is derived from a recent study by
Jian Hu et. al. [17].

Figure 5: Percentage of users that download “extra”
pages with respect to the package size

browsing” of the web. When a user requests to download a
file, say, http://ocw.mit.edu, over the Internet (via an ISP)
the browser plug-in asks the bridge-module to find the file
on DitTorrent. If found, it then requests DitTorrent to
download the requested file. DitTorrent establishes p2p
diaup connection with a peer that has the requested URL
package to download the file in offline mode at maximum
modem-speed.
However, subsequently, a user may click her way to a page
that is not part of a DitTorrent package downloaded by
DitTorrent over the p2p network. Therefore, the browser
plug-in keeps track of user clicks in the DitTorrent package
and switches over to ISP-mode if the user subsequently
clicks her way to a level beyond which nothing is locally
present. The browser may be configured to switch back to
the ISP-mode even before that stage, say, at k-1 levels, to
make the browsing experience smoother.

Figure 6 shows a timeline of p2p and web access
interleaving for the above scenario. A switchover between
the slow Internet connection and modem-speed Dittorrent
is manifested as the change in the gradient of the line. The
dotted lines represent download times without ISP-p2p
interleaving.

C. Suspend-resume Session Layer
In order to support downloads from both the Internet (via
ISP) and the DitTorrent’s offline mode, our system
includes a common suspend-resume session layer. The
common suspend-resume session layer permits different
download mechanisms, such as DitTorrent and Web
browser, to create a file handle (encoded as a unique File
ID, FID) and put in different blocks of a file that are pieced
together to generate the complete file. The FID is a (MD5)
hash of the file contents, permitting both unique
identification of file contents for subsequent lookups and

0
100
200
300
400
500
600
700
800
900

4 12 20 28 36 44 52 60 68 76 84 92
100

File Size(KB)

Ti
m

e
Ta

ke
n

(s
ec

)

10 KBPS

15 KBPS

20 KBPS

32 KBPS

32 (1 Call Overhead)

32 (2 Call Overhead)

32 (3 Call Overhead)

32 (4 Call Overhead)

32 (5 Call Overhead)

Figure 4: Feasible interleaving points between p2p
and Internet

6

0
200
400
600
800

1000
1200
1400
1600
1800

5 25 45 65 85 10
5

12
5

14
5

16
5

18
5

20
5

Time (min)

D
at

a
(K

B
)

Download
via ISP

DitTorrent

Point to
Point
Interleaving

Figure 6: Interleaving of an Internet connection with a
point-to-point connection for fetching pages not present
in a DitTorrent package

verification of the completeness and integrity of the
downloaded contents. Different download mechanisms,
such as p2p DitTorrent and client-server HTTP
connections, invoke the hole interface of the session layer
to find chunks of a file currently not downloaded; the hole
method, when invoked with an FID, returns a pair of offsets
that indicate a range of bytes in the file, or a hole, currently
not stored in the cache. Successive invocations of the hole
interface return non-overlapping file chunks not stored in
the cache; the browser plug-in and DitTorrent calling the
hole interface are assigned non-overlapping chunks of a file
to download either in parallel (online mode) or sequentially
(when interleaving online and offline modes). In our
current implementation, we have fixed the hole size to be
the same as a Bittorrent block (128kB), simplifying the
interoperation of the session layer and our p2p DitTorrent
client.

D. DitTorrent Peer-to-Peer Client
The centerpiece of our architecture is the DitTorrent p2p
client [16]. As mentioned earlier, our architecture derives
its practicality by enabling clients (peers) to share
downloaded data, minimizing the need for direct dialup
connections between clients and servers. Our p2p data
transfer architecture is derived from and compatible with
the hugely popular Bittorrent peer-to-peer file-sharing
system [3]. The key attraction of Bittorrent for us is its
practical incentive-driven data-sharing model; instead of
assuming a volunteer-driven model like FidoNet, where
users are expected to voluntarily call one another to copy
data between various nodes, our system is based on a more
practical incentive-driven tit-for-tat data-sharing model of
Bittorrent [3]. In our model, files are divided into smaller
chunks, as in Bittorrent, that are virally replicated in the
network based on opportunistic peer connections; node A
may let node B download a chunk of a file as long as node
B can offer another chunk in return that node A wishes to
download.

However, this model also raises a number of interesting
challenges. For one, download of a file in this model does
not involve a single switchover from the online Internet
world to a point-to-point dialup connection, but several
shorter connections with different peers in the same vein as
Bittorrent. Therefore, with the 30 seconds penalty of a
modem-to-modem handshake, it is important to minimize
the number of connections needed to download the entire
contents of the file. Moreover, given the point-to-point
nature of the operation over the dialup-underlay, clients
must somehow discover other offline clients and establish
peer-to-peer connections to exchange chunks of a file. The
point-to-point nature of the dialup-underlay also introduces
another interesting idiosyncrasy: if two peers are connected
to each other, no other peer can connect to them. Hence,
once a point-to-point connection is established, there is no
mechanism for a client to opportunistically discover a
better peer, till a time it hangs-up and connects to another
client. Furthermore, Bittorrent’s rate-based tit-for-tat data
sharing model -- in which a host uploads data to a peer for
only as long as it can download data from that peer at a
similar data rate -- becomes superfluous in a point-to-point
dialup connection. This is because upload and download
rates in a standard p2p dialup connection are symmetric,
e.g. 32kb/s upload and download for typical v.90 modems.
Section III discusses the challenges and possible solutions
to these challenges in detail.

III. OFFLINE PEER-TO-PEER DATA TRANSFER
In this section, we describe the design, implementation and
evaluation of DitTorrent.

A. Evaluation Methodology
In order to understand the behavior of DitTorrent,
especially under extreme conditions in the developing
world, we use a simulation-based approach. Even though
we have released our DitTorrent implementation (Client
and Tracker) to a community of users in Pakistan, via
sourceforge [15], we chose a simulation-based evaluation
since very little data exists in terms of traces of real torrents
for extremely low-bandwidth connections.

For our evaluation, we have implemented a discrete-event
simulator of DitTorrent, which extends the Bittorrent
simulator implemented by Bharambe et al. [11]. However,
while the underlying framework of our simulator is derived
from the simulator described in [4], our model of
DitTorrent is almost diametrically different from the
Bittorrent model implemented by [4]. For instance, the
bittorrent simulator by Bharambe et al. is designed to
simulate parallel downloads by a Bittorrent client, while
DitTorrent is limited to point-to-point symmetric
upload/download between only two hosts. Likewise,
Bharambe’s simulator [4] assumes perfect knowledge of
the location of each block of a file, while a DitTorrent

7

client’s knowledge about the location of file blocks is often
imperfect. Similarly, a Bittorrent client is designed to
maximize download bandwidth, while a DitTorrent client
attempts to minimize the time wasted in negotiating new
modem-to-modem connections.

To capture the idiosyncrasies of DitTorrent’s (offline)
operation, we implemented the following new features in
the simulator described in [4]: Point-to-point symmetric
connections, call-overhead resulting from modem-to-
modem negotiation, busy-tones overhead during “flash
crowds”, offline block-discovery and greedy peer selection
with different “end-game” modes. Below we describe the
motivation, implementation and evaluation of each of these
features in detail.

In our experimental setup, we configured our simulator to
use a swarm of 100 nodes (typical Bittorrent swarm size).
Our simulations were run on a P4 machine 3.2GHz, with
1GB RAM. Our simulation environment was configured
with the following parameters:

 In our simulation environment, all the participating
nodes were configured with symmetric download and
upload bandwidth, set at 30 Kbps.

 Peers in our simulation were bootstrapped with a
single block, unless otherwise stated in the
experiments described below.

 In our experiments, we measured the performance of
the system by varying the size of the file to be
downloaded, and where specifically mentioned, the
number of initial blocks allocated to each peer.

 Given the point-to-point nature of DitTorrent, each
node was configured to only connect with one other at
a time.

 We set the seed leaving probability to 1 in our
experiments; we do not assume that a node stays in the
simulation after completing its download.

 In the simulations for offline block discovery and flash-
crowds (described below), nodes were introduced in an
ongoing experiment, after a random delay, to simulate
late-entering nodes.

B. Architectural Overview
DitTorrent is designed to be backwardly compatible with
Bittorrent. Compatibility with Bittorrent has obvious appeal
in terms of user adoption, making DitTorrent a vehicle for
using Bittorrent in the developing-world. Above all,
DitTorrent derives its incentive-driven tit-for-tat data-
sharing model from Bittorrent. Furthermore, high-level
architectural components of DitTorrent are derived from
Bittorrent; files are published by advertising a .torrent
meta-file, clients make peer-to-peer connections to
opportunistically download, cache and publish blocks of
files, and a tracker acts as a directory service for clients to
discover peers from which blocks of a file may be
downloaded. The use of a .torrent file and a tracker for
initial peer discovery and bootstrap provides a basis for
compatibility with Bittorrent; DitTorrent tracker, as well as
the DitTorrent .torrent file format, is designed to be
backwardly compatible with Bittorrent. As a result, existing
Bittorrent clients can interoperate with DitTorrent clients.
DitTorrent clients, however, of course have the additional
capability to establish point-to-point dialup connections for
accelerated download of content.

Before proceeding with the description of DitTorrent, it is
instructive to consider the behavior of Bittorrent over
characteristically low-bandwidth connections in the
developing world. Figure 7 plots the download time of a 10
MB file over Bittorrent by a client connected to the Internet
on a slow dialup connection. The results shown in figure 7
were reported by the original Bittorrent simulator of
Bharambe et al [4], which most notably, ignores TCP
timeouts. Still, the download time of a file goes up sharply
as the bandwidth is reduced from 15kb/sec to 5kb/sec. This
is because the number of chokes experienced by the client
(snubs by peers as they find better partners), increase as the
client bandwidth nears 10kb/sec. For comparison, in the
case when there are 30% low-bandwidth hosts in the mix of
nodes using Bittorrent, a client with a 10kb/sec takes close
to 8.5 times more than a cable node with a bandwidth of
100kb/sec for upload and 250 kb/sec for download. For
these low-bandwidth nodes, point-to-point symmetric
dialup connections, at 32kb/sec, can offer a substantial
performance improvement. For instance, compared to a
10kb/sec Bittorrent client that downloads a 10MB file in 2
hours and 21 minutes (derived from the experiments shown
in figure 7), a client using a point-to-point 32kb/sec
connection can download the same file in 41.6 minutes
(assuming a single point-to-point connection) -- a
performance improvement of close to 70%.

0.00
2000.00
4000.00
6000.00
8000.00

10000.00
12000.00
14000.00
16000.00
18000.00

25 20 15 10 5
Bandwidth (kb/s)

DownloadTime(sec) Choking Count

Figure 7: Bittorrent performance deteriotes
sharply as the client bandwidth drops to 10kb/sec

8

C. DitTorrent Tracker-Client Interaction
DitTorrent is designed to interoperate with Bittorrent in its
online mode. However, its offline point-to-point mode
requires special support from the tracker. Importantly,
unlike a traditional Bittorrent tracker that keeps track of
currently online hosts, a DitTorrent tracker must keep track
of both offline and online hosts interested in downloading a
file. While fundamental to the duality of operation of a
DitTorrent client, this extension requires only a minor
modification to existing Bittorrent trackers. Current
Bittorrent trackers require a client to refresh its registration
periodically by sending announce messages after interval
number of seconds. A DitTorrent tracker, instead of
deleting the record of a client that fails to refresh its
registration after Interval seconds, simply marks the client
offline and retains its entry for future lookups from
DitTorrent clients. However, since dialup nodes are prone
to frequent disconnections, our DitTorrent tracker marks a
client offline only after the client misses successive
periodic announcements.

A DitTorrent tracker distinguishes between Bittorrent and
DitTorrent clients such that the latter can be given
additional information for offline operation. To this end, a
DitTorrent tracker accepts an additional event attribute
from a DitTorrent client during registration; the event
param in the URL is set to 'dialup' to indicate that the
registering client is a DitTorrent client. A client announce
with event param set to dialup may include two additional
parameters to the GET request URL, as described below.

The key additional parameter in a DitTorrent client
registration request is a phone number to reach the client in
the offline p2p mode. Additionally, a DitTorrent client can
also include a list of time-windows that specify times of
day during which dialup connections may be established
with the client. A client can specify the following time-
windows as part of its request to the tracker:
available_time_window specifies the time interval in which
the client is available for accepting phone calls,
query_time_window specifies the time interval in which
the client intends to make calls to download the file, and
optionally, a previous_time_window in case this request
updates existing registration of the client. For instance, a
client installed on an office computer may advertise a time-
window between 8 PM and 7 AM when phone lines for the
office are generally free. Subsequent DitTorrent clients
registering with the tracker are given contacts of those
peers whose available_time_window overlaps with the
query_time_window of the client (as well as online clients).
The use of time-windows in our system is reminiscent of
“zone mail hour” used by FidoNet [5] clients to specify a
time-window for receiving dialup connections.

D. DitTorrent Peer-to-Peer Interaction
DitTorrent’s offline point-to-point operation is
fundamentally different from Bittorrent. Where a Bittorrent

client attempts to minimize the download time of a file by
opportunistically connecting with and disconnecting
(choking and unchoking) from a large set of peers (peer
swarm) in search for better download bandwidth, a
DitTorrent client must minimize the number of peer
connections when downloading a file. This is because
“trying” new peers in Bittorrent is an almost zero-overhead
operation (an unchoke message sent to the peer over a long-
running TCP connection), while a new dialup connection in
DitTorrent incurs a 30 second overhead in negotiating the
dialup connection. To illustrate the point, consider the
simulation results of Bittorrent shown in figure 7. The
Bittorrent client shown in Figure 7, with a 10kb/sec
symmetric upload/download bandwidth, makes close to
564 connections (with rate-based choking period set at 10
sec and opportunistic unchoking every 30 sec) during the
download of a file of size 10 MB. If these were dialup
connections, the time spent in negotiating new dialup
connections would equal the actual time spent in
downloading the contents of the file (an overhead of
100%).

Furthermore, given a symmetric upload/download
bandwidth in a p2p dialup connection, DitTorrent’s offline
operation does not need to include Bittorrent’s rate-based
choking. Instead, a DitTorrent client (in offline mode)
should only choke a peer when the peer can no longer
upload newer blocks needed by the client; peer connections
last for as long as peers can reciprocate each other with
non-overlapping blocks of file, while there is no need for
opportunistic unchokes. This approach of peer-choking,
similar to pairwise block-level tit-for-tat (BLTFT) proposed
in [4] (as opposed to rate-based tit-for-tat implemented by
Bittorrent), is a natural fit in a point-to-point dialup setup
and is implemented by DitTorrent.

However, while disabling opportunistic unchokes and using
Block-level TFT avoids unnecessary connections in
DitTorrent’s point-to-point mode, the overhead of
negotiating dialup connections must be carefully managed,
especially for smaller files. This is because dialup
connections, worth 30 seconds each, incur an overhead
equivalent to exchange a whole block (128kB) on
Bittorrent at 32kb/sec.

a. Peer-to-Peer Dial-up overhead
In order to understand the overhead of modem-to-modem
negotiation in DitTorrent, consider the theoretical best and
worst case for downloading a file of size N blocks, with a
client starting with a single block of the file.

The theoretical best case, aimed at minimizing the number
of calls required to download a file, may be understood as
peer selection policy that exactly matches peer needs; a
client calls only that peer which has exactly the same
number of complementary blocks. In this case, with
BLTFT, the first dialup connection of a new client with a
single initial block will result in the exchange of 1 block,

9

making it 2 blocks at the client. The next call will result in
2 blocks exchanged, making it 4 blocks at the client.
Likewise, the next call will result in 8 blocks at the client
and so on. Therefore, for a file of size N blocks, it will take
at least log2N calls to download all blocks of the file.
Unfortunately, this theoretical best case assumes a perfect
match of peer needs on every call made by the client -- any
mismatch would result in additional future calls for either
the caller or the callee.

The theoretical worst case, on the other hand, may arise in
a scenario in which a client must make N calls to download
a file of N blocks, incurring a modem-to-modem
negotiation overhead for each block of the file.

In order to come close to the theoretical best case, our
system uses a simple greedy strategy for peer selection. In
the greedy strategy, a client grabs the maximum it can at
any point in time, regardless of whether it is an exact or a
suboptimal match on either side of perfect-match. Figure 8
compares the performance of this simple greedy-strategy
with the best (Log2N calls) and worst case (N Calls). The
clients in the simulation are bootstrapped with an initial set
of 1-5 random blocks for swarm of size 100.

However, while a simple greedy strategy performs
adequately well on average, we quickly realized the impact
of the “last-block-problem” in p2p systems [4]. Figure 9
plots the download times from 20 different simulations as
we varied the file size. The variability in the measured
times for a given file size reflects the time for which
different nodes in the swarm may be “stuck” trying to
download the last few blocks of a file. Bittorrent employs
two techniques to help nodes that are near completion to
finish quickly: End-game mode, which enables a client
close to finishing to quickly search for the last few missing
blocks, and Local Rarest First (LRF) which helps balance
the rarity of different blocks by requiring clients to
download the rarest block first from a connected peer.

In DitTorent, we experimented with analogues of both of
these schemes. In the first implementation, we mimicked
the effect of the end-game mode by modifying the greedy
policy, dubbed greedy-completor. With this modification, a
greedy client favors those peers that will finish the file
download at the end of the connection. Intuitively, this
scheme is aimed at enhancing the chances of relative
newcomers to expedite the completion of peers closer to
finishing. Conversely, peers relatively early in the race get
blocks from those near completion, causing rare blocks
(typically stored at seeds or near-seeds) to be transferred
from the old to the new. Figure 10, like Figure 9, plots
download times across 20 simulations, illustrating the
reduction in the variability of measured times for greedy-
completor.

Our second strategy to combat the last-block-problem is
inspired by Bittorrent’s LRF strategy. However, LRF’s
rationale is that a peer should grab the rarest block first
from a peer in case it is choked prematurely. This has little
impact in DitTorrent since a p2p connection in DitTorrent
lasts as long as peers have something to exchange; there is
no danger of unanticipated choking due to a dip in the
client’s upload bandwidth. Instead, we implement Global
Rarest First (GRF) strategy in DitTorrent. Unlike LRF, in
which a client grabs the rarest blocks stored at a peer, a
client using GRF chooses a peer that has the rarest blocks
stored at it. Viewed differently, LRF is a block
prioritization strategy, while GRF is a peer selection policy;
a client using GRF prioritizes its connections with peers
according to the rarity of blocks stored at them. For
instance, in our greedy strategy, a client that could
exchange three blocks each with two of its peers, will call
that peer first which can offer comparatively rarer blocks.

Figure 11 shows that our greedy peer selection policy with
GRF performs better than greedy-completor in terms of the
variability in download times across 20 simulations.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

File Size(MB)

C
al

ls
 M

ad
e

&
 R

ec
ei

ve
d

DitTorrent(Greedy) Worst Case(N-Calls) Best Case(lgN-Calls)

Figure 8: Comparison of the modem-to-modem
negotiation overhead of the greedy peer selection
with the best and worst cases

Greedy Scheme

0.00
500.00

1000.00
1500.00
2000.00
2500.00
3000.00
3500.00
4000.00
4500.00

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00

File Size(KB)

Figure 9: Variability in file download times due to
the Last block problem in the simple greedy
strategy

10

b. Flash Crowds in DitTorrent
As mentioned earlier, the point-to-point nature of
DitTorrent’s offline operation precludes multiple peer
connections. In fact, a client calling a peer that is already
connected to another peer would get a “busy-tone”.
Unfortunately, however, this operation of checking the
availability of a peer incurs an extra overhead of close to 10
seconds (time to call the number and receive a busy tone).
This overhead becomes particularly significant during the
so-called flash crowds [4], in which many clients want to
quickly download a newly accessible file. In a point-to-
point setup, flash crowds result in a large fraction of the
call attempts failing with busy-tones.

Intuitively, this may be addressed by introducing a wait-
time between calls during times of congestion. Our
implementation combats flash crowds by using two simple
heuristics: 1) Each client must wait for n seconds before
trying again if it finds all of its potential peers (peers with
non-overlapping chunks) busy; 2) A client must wait for n
seconds between successive calls. The former introduces a
backoff period in the times of congestion, while the latter is
aimed at giving clients a chance to receive calls in between
making calls.

In our simulation experiments, we found that the backoff
time was more useful than the introduction of wait-time
between calls. For instance, Figure 12 shows the file
download time with respect to the backoff time and a fixed
time to wait-between-calls (WBC). The performance of the
system (file download time), improves significantly by
introducing a backoff time, but quickly tapers off at around
8 seconds for a setup in which the average call time is 3
minutes. It is worth highlighting though that while we
achieved best performance with WBC set to a nominal 1
second, a WBC of zero (no wait between calls) makes the
performance exponentially worse. A WBC of, say 25
seconds, however, makes the performance more variable,
without resulting in any real performance advantage. We
are currently exploring an adaptive policy for WBC such

that the value of WBC is dynamically adjusted according to
the congestion in the network. For instance, the value of
WBC may be increased multiplicatively by a constant
factor upon a failed call, and reduced correspondingly if a
call succeeds.

c. Offline Block Discovery
In Bittorrent, a client starts the download of a file by
acquiring from the tracker a list of peers that have chunks
of the file. The client then connects with the set of 80-100
peers returned by the tracker (its peer swarm) and acquires
from each a list of blocks currently stored at the peer
(called peer handshake in Bittorrent). Subsequently, peers
in a swarm keep each other informed about newly acquired
blocks by sending “have” messages. All this mechanism of
discovering file blocks rests on a Bittorrent client’s ability
to talk to multiple peers in parallel. Hence, this cannot be
directly mapped to our p2p dialup architecture.

We implement block discovery in DitTorrent’s offline
mode by using a scheme inspired by distributed gossip
protocols [6]. In this scheme, when a client calls a peer, it
not only exchanges complementary file blocks, the peers
also exchange lists of blocks discovered at hosts that
previously connected to the clients (including their own).
The aim is to virally spread the knowledge about the blocks
stored at various hosts, while minimizing the number of
connections required spreading the information. For
instance, consider a DitTorrent client A that has previously
connected with (either as a caller or callee) nodes B and C,
each with the following sets of blocks: B{0,5,3}, C{1,2,9}.
With our gossip-based approach, when a newly arrived
client D (with zero current blocks) calls A, it is not only
given a single block of file (c.f. DitTorrent bootstrap
mode), it is also given lists of blocks stored at B and C
(including the blocks exchanged in their connection with
A). Once understood like this, it quickly becomes apparent
that a client in this scheme will greatly benefit by initially
calling nodes that have been around for a long time i.e.
nearing completion.

Completor Scheme

0.00
500.00

1000.00
1500.00
2000.00
2500.00
3000.00
3500.00
4000.00
4500.00

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00

File Size(KB)

Figure 10: Variability in the file download times
due to the last block problem in the greedy-
completor strategy

Globally Rarest First(GRF) Scheme

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00
File Size(KB)

Figure 11: Variability in file download times due to
the last block problem with Global-Rarest-First
peer prioritization

11

Given this background, block discovery in DitTorrent’s
offline mode works as follows. Newly arrived clients
“scrape” the tracker to find out the percentage of file
downloaded by each client in its swarm (as reported by
their last update message to the tracker). Armed with this
information, the client goes into offline mode. In the offline
mode, it first calls the host that has downloaded the
maximum number blocks of the file. Of course, this could
be a seed node, but a DitTorrent client only calls non-
source seeds since they have acquired a diverse knowledge
while working their way up from a single block to the
completion of the file.

In our implementation, a DitTorrent client initially calls a
fixed number of peers, three in our current setup, that have
downloaded the maximum fraction of the file. After this
initial bootstrap, a client using offline block discovery
proceeds in this mode till a time it has acquired information
about all N blocks of the file. Subsequently, the client
simply follows the greedy scheme when choosing peers to
exchange blocks. Figure 13 compares the performance of
DitTorrent’s gossip-style offline block discovery with a
setup in which a client has perfect knowledge of its peers as
in Bittorrent. The performance of DitTorrent closely
mirrors Bittorrent with its gossip-style offline block
discovery, with the overhead of block discovery becoming
more visible as we increase the number of file blocks (that
must be discovered).

d. Budget-based Download
Often in our work, we were asked about the economic
feasibility of our approach. This concern was raised
because Internet is typically a flat-rate service while phone
calls are charged by the minute. First, it is worth noting that
POTS is increasingly becoming like Internet in terms of
service charges; it is typical for telephone service providers
to offer flat-rate regional or national plans. In case of such a
flat-rate subscription, our approach offers “near-
broadband” speed for no additional cost as long as calls are
localized in the flat-rate region. DitTorrent clients can be
configured to only call those peers that are within their

calling “region” by, for instance, matching the ISP calling
code with available peers. Importantly, given the p2p
nature of our data transfer scheme, the burden of making a
phone call is shared between peers; a peer downloads data
both as a caller and a callee.

Initially, we considered providing an interface to the users
to limit the number of calls to be made by the client when
downloading the file. The intuition was that after the client
has made the specified number of calls, it goes into a
passive mode in which it simply waits to be called to
acquire more file blocks. If a client fails to download the
file in a specified time, it prompts the user to increase the
call budget. In some sense, this scheme exposes a tradeoff
of calling-cost vs. timely-download to the user. It is worth
highlighting that with the current download speeds in the
developing world, such an architecture is still very
practical; more often than not, a user may be happy with a
one-time extra cost to quickly download an important file,
otherwise not possible with an extremely slow and
intermittent Internet connection. However, we found that
limiting the number of calls this way not only leads to
starvation of peers, it results in an increase in the average
number of calls each client has to make to download a file.
Figure 14 shows the percentile of nodes that complete a file

Optimum Choking Interval

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Choking Interval

Ti
m

e
Ta

ke
n(

m
in

)

WBC=1 WBC=25

Figure 12: Analysis of overhead due to “busy-
tones” in flash crowds

Downloading Time

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.
5

1.
5

2.
5

3.
5

4.
5

5.
5

6.
5

7.
5

8.
5

9.
5

File Size(MB)

Ti
m

e
Ta

ke
n(

m
in

)

Online Block Discovery Offline Block Discovery

Figure 13: Comparison of DitTorrent’s offline
block-discovery with Bittorrent “perfect
knowledge” about block locations

0.00

20.00

40.00

60.00

80.00

100.00

120.00

2 4 5 6 8 10 12 15 18 -1

Calls Allowed

%
ag

e
of

 In
co

m
pl

et
e

No
de

s

0

20

40

60

80

100

120

%
ag

e
of

 D
at

a
A

cq
ui

re
d

Incomplete Nodes (%age) Data Acquired(%age)

Figure 14: Analysis of budget-based download

12

download as we increase the call budget. With a call-
budget restriction, a 100% completion rate is achieved for a
call-budget that is slightly worse than the average number
of calls made in a setup without a call-budget (average
number of calls without a call-budget in this simulation is
9).

IV. IMPLEMENTATION
DitTorrent’s implementation comprises of the following
three components: DitTorrent Daemon, Browser plug-in
and the DitTorrent Tracker.

1. The DitTorrent Daemon is written in python 2.4 and is
an extension of Bram Cohen’s Bittorrent version 4.4.0. The
Daemon includes the additional capability to make point-
to-point telephone calls using PPP connections for data
transfer.
2. The Browser plug-in is a plug-in for firefox (xpi file)
which detects and passes links .torrent files to the
DitTorrent Daemon. The Daemon component also provides
the URLs of the web pages for prefetching to the pre-
fetching proxy. The prefetching proxy in our
implementation extends the open source wwwoffle [7]
proxy, specifically designed as a dialup offline proxy
server.
3. The DitTorrent Tracker is written in C++ as an extension
to the open source BNBT tracker [8]. Our extension to the
BNBT tracker include time-window based lookups using
efficient interval-trees, as well as compliance with
additional parameters introduced to enable point-to-point
dialup connections.

The source code of our implementation is available at [15].
The distribution at sourceforge also includes the DitTorrent
simulator described in the paper.

V. SUMMARY AND FUTURE WORK
In the current age of broadband networks, dialup
networking is mostly a forgotten technology. Perhaps the
most relevant technologies for our system date back to the
pre-Internet days, including FidoNET [5], UUCP [9] and
USENET [10]. However, our use of an incentive-driven
p2p data exchange mechanism makes our architecture
fundamentally different from such systems. Importantly,
unlike pre-Internet systems that relied solely on dialup
connections for moving content between computers, our
goal is to accelerate access to large content on Internet by
utilizing a dialup connection at the maximum bandwidth
supported by the modem. In our model, content still
“resides” on the Internet, but may be downloaded using a
p2p dialup connection to reduce download time. Our
system combines a number of architectural components,
such as p2p data transfer, intelligent connection
interleaving and content-prefetching to make a practical
system.

We are currently investigating gossip-based Internet Cache
Consistency protocols to minimize the time-window for

which an offline DitTorrent package is out-of-synch with
the online version.

Currently, our system lacks comprehensive security
architecture. We are currently working on rendezvous
servers much in the same vein as the recently introduced
Google click-to-call service which hides the identities of
the peers connected on a dialup.

While this paper is focused on using POTS modem-to-
modem dialup connections to circumvent extremely low
bandwidth Internet connections, we intend to explore high-
bandwidth intra-country deployments of Wireless Local
Loop (WLL) and WiMAX as well. Our proposed
architecture, at an abstract level, provides a mechanism for
multiplexing the scarce and expensive international Internet
bandwidth over higher bandwidth peer-to-peer connections
within a developing country.

ACKNOWLEDGEMENTS
The work presented in this paper was in part funded by the
Microsoft Research (MSR) Digital Inclusion Grant, 2006.

REFERENCES
[1] “The Digital Divide at a Glance”, World Summit on the Information
Society, Tunis 2005.

[2] Niraj Tolia, Michael Kaminsky, David G. Andersen, and Swapnil
Patil, “An Architecture for Internet Data Transfer”, Proc. 3rd Symposium
on Networked Systems Design and Implementation (NSDI) San Jose, CA,
May 2006

[3] Bram Cohen, “Incentives Build Robustness in BitTorrent”,
Workshop on Economics of Peer-to-Peer Systems, 2003

[4] AR Bharambe, C Herley, VN Padmanabhan. “Analyzing and
Improving a BitTorrent Network’s Performance Mechanisms”, IEEE
Conference on Computer Communications (INFOCOM), 2006.

[5] FidoNet, http://en.wikipedia.org/wiki/FidoNet/

[6] AJ Ganesh, AM Kermarrec, L Massoulie. “Peer-to-peer membership
management for gossip-based protocols”, IEEE Transactions on
Computers, 2003.

[7] WWWOFFLE, http://www.gedanken.demon.co.uk/wwwoffle/

[8] BNBT, http://bnbt.depthstrike.com/

[9] UUCP, http://en.wikipedia.org/wiki/UUCP/

[10] Usenet, http://en.wikipedia.org/wiki/Usenet/

[11] Bharambe, A. and Herley, C. and Padmanabhan, V. N., “Microsoft
Research Simulator for the BitTorrent Protocol,”
http://www.research.microsoft.com/projects/btsim.

[12] D. Qiu and R. Srikant, “Modeling and Performance Analysis of
BitTorrent-like Peer-to-Peer Networks,” SIGCOMM, Sep. 2004.

[13] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips, “A
Measurement Study of the BitTorrent Peer-to-Peer File-Sharing System,”
Technical Report PDS-2004-003, Delft University of Technology, The
Netherlands, April 2004.

[14] S. Saroiu, P. K. Gummadi, S. D. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems”, Multimedia Computing and
Networking 2002 (MMCN ’02).

[15] DitTorrent, http://dittorrent.sourceforge.net/

[16] Umar Saif, Ahsan Latif Chudhary, Shakeel Butt and Nabeel Farooq
Butt, "Poor Man's Broadband: Peer-to-Peer Dialup Networking", ACM
SIGCOMM CCR, vol. 37, no. 5, Oct 2007

13

[17] Jian Hu, Hua-Jun Zeng, Hua Li, Cheng Niu, Zheng Chen,
“Demographic prediction based on user's browsing behavior”, WWW
2007, 151-160

